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Abstract: Problem statement: First, this study considers how the structure of symmetry for 
probabilities is decomposed into two structures. Secondly, this study infers the structure of unknown 
probabilities which indicates how the right eye is better (or worse) than the left eye for three kinds of 
data on unaided distance vision of (1) women in Britain, (2) students in an university of Japan and (3) 
pupils in elementary schools in Tokyo, Japan. This study proposes a new decomposition of symmetry 
model for probabilities and analyzes these vision data using the decomposition. Approach: This study 
considers a new decomposition theorem that for the probabilities the symmetry model (indicates that 
the right eye vision is symmetric to the left eye vision) holds. Also this study analyzes the vision data 
using this decomposition.  Results: From the statistical approach, we can see that (1) for the vision data 
of women, the right eye is better than the left eye and the mean of right eye is not equal to the mean of 
left eye, (2) for the vision data of students, the right eye is worse than the left eye and the mean of right 
eye is not equal to the mean of left eye and (3) for the vision data of pupils, the right eye is symmetric to 
the left eye and the mean of right eye is equal to the mean of left eye. Conclusion: When the symmetry 
model fits the data poorly, this new decomposition is useful for seeing which of decomposed two models 
influences stronger. We can see the structure of asymmetry for vision data in more details. 
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INTRODUCTION 
 
 Consider three sets of data on unaided distance 
vision of (1) 7477 women aged 30-39 employed in 
Royal Ordnance factories in Britain from 1943-1946 
(Table 1), (2) 4746 students aged 18 to about 25 
including about 10% women in Faculty of Science and 
Technology, Science University of Tokyo in Japan 
examined in April 1982 (Table 2) and (3) 3168 pupils 
comprising nearly equal number of boys and girls aged 
6-12 at elementary schools in Tokyo, Japan, examined 
in June 1984 (Table 3). In these data, the row variable 
is the right eye grade and the column variable is the left 
eye grade with the categories ordered from the Best (1) 
to the Worst (4). The data in Table 1 have also been 
analyzed by many statisticians including Stuart (1955); 
Bishop et al. (2007); McCullagh (1978); Goodman 
(1979); Agresti (1983); Tomizawa (1985; 1993); 
Miyamoto et al. (2004); Tomizawa et al. (2006) and 
Tomizawa and Tahata (2007). The data in Table 2 have 
been analyzed by Tomizawa (1984; 1985). The data in 

Table 3 have also been analyzed by Tomizawa (1985) 
and Miyamoto et al. (2004). 
 For these vision data, an individual’s right eye 
grade is strongly associated with his/her left eye grade 
because many observations concentrate on (or near) the 
main diagonal cells in each table. Therefore, instead of 
independence between an individual’s right eye grade 
and his/her left eye grade, we are interested in whether 
or not an individual’s right eye grade is symmetric to 
his/her left eye grade and in how both eyes are 
symmetric or asymmetric, for example, whether or not 
the mean of right eye grade is equal to the mean of left 
eye grade. In addition, we are interested in seeing the 
reason by considering a decomposition of structure of 
symmetry if there is not the probability structure of 
symmetry between the right eye vision and the left eye 
vision in each table. Many models of symmetry and 
asymmetry for probabilities have been proposed by 
many statisticians. Also decompositions of the 
symmetry model have been given by some statisticians.
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Table 1: Unaided distance vision of 7477 women aged 30-39 employed in Royal Ordnance factories in Britain from 1943-1946; from Stuart 
(1955). (The parenthesized values are the maximum likelihood estimates of expected frequencies under the CLDPS model.) 

 Left eye grade 
 --------------------------------------------------------------------------------------------------------------------------------------------------  
Right eye grade Best (1) Sec (2) Third (3) Worst (4) Total 
Best (1) 1520 266 124 66 1976 
 (1520.00) (256.31) (132.83) (62.32)  
Sec (2) 234 1512 432 78 2256 
 (244.68) (1512.00) (412.05) (86.69)  
Third (3) 117 362 1772 205 2456 
 (105.99) (383.42) (1772.00) (196.93)  
Worst (4) 36 82 179 492 789 
 (40.56) (71.34) (187.88) (492.00)  
Total 1907 2222 2507 841 7477 

 
Table 2: Unaided distance vision of 4746 students aged 18 to about 25 including about 10% women in Faculty of Science and Technology, 

Science University of Tokyo, Japan, examined in April 1982; from Tomizawa (1984). (The parenthesized values are the maximum 
likelihood estimates of expected frequencies under the CLDPS model.) 

 Left eye grade 
 ------------------------------------------------------------------------------------------------------------------------------------------------- 
Right eye grade Best (1) Sec (2) Third (3) Worst (4) Total 
Best (1) 1291 130 40 22 1483 
 (1291.00) (133.38) (44.32) (15.16)  
Sec (2) 149 221 114 23 507 
 (145.93) (221.00) (115.01) (21.19)  
Third (3) 64 124 660 185 1033 
 (59.69) (123.11) (660.00) (201.30)  
Worst (4) 20 25 249 1429 1723 
 (26.40) (26.22) (233.29) (1429.00)  
Total 1524 500 1063 1659 4746 

 
Table 3: Unaided distance vision of 3168 pupils comprising nearly equal number of boys and girls aged 6-12 at elementary schools in Tokyo, 

Japan, examined in June 1984; from Tomizawa (1985). (Upper and lower parenthesized values are the maximum likelihood estimates of 
expected frequencies under the S and ME models, respectively.) 

 Left eye grade 
 ------------------------------------------------------------------------------------------------------------------------------------------------- 
Right eye grade Best (1) Sec (2) Third (3) Worst (4) Total 
Best (1) 2470 126 21 10 2627 
 (2470.00) (111.00) (15.50) (11.00)  
 (2470.00) (120.51) (19.25) (8.80)  
Sec (2) 96 138 33 5 272 
 (111.00) (138.00) (37.50) (6.00)  
 (100.58) (138.00) (31.56) (4.58)  
Third (3) 10 42 75 15 142 
 (15.50) (37.50) (75.00) (15.50)  
 (11.00) (44.01) (75.00) (14.35)  
Worst (4) 12 7 16 92 127 
 (11.00) (6.00) (15.50) (92.00)  
 (13.90) (7.70) (16.76) (92.00)  
Total 2588 313 145 122 3168 

 
The purpose of this study is (1) to review some models 
and decompositions, (2) to give a new decomposition of 
symmetry and (3) to analyze three sets of vision data 
using the new decomposition. 
 

MATERIALS AND METHODS 
 
Reviews of models and decompositions: Consider an 
R×R square contingency table with the same row and 
column classifications. Let pij denote the probability 
that an observation will fall in the ith row and jth 

column of the table (i =1,…,R; j =1,…,R). The 
symmetry (S) model is defined by: 
 

( )ij jip p i 1, ,R; j 1, ,R= = =… …  

 
Bowker (1948). For the vision data, this indicates that 
the probability that an individual’s right eye grade is i 
and left eye grade is j is equal to the probability that 
his/her right eye grade is j and the left eye grade is i. 
 The quasi-symmetry (QS) model is defined by: 
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Caussinus (1965). A special case of this model with {δi 
= δ}is the S model. Although the detail is omitted, the 
QS model indicates the symmetry of odds ratios with 
respect to the main diagonal of a table. 
 The marginal homogeneity (MH) model is defined 
by: 
 

( )i ip p i 1, ,R= =
i i

…  

 

where 
R

i itt 1
p p

=
=∑i

 and 
R

i sis 1
p p

=
=∑i

 (Stuart, 1955). For 

the vision data, this indicates that the probability that an 
individual’s right eye grade is i is equal to the 
probability that his/her left eye grade is i (i = 1,…,4). 
 Caussinus (1965) gave the decomposition of the S 
model as follows: 
 
Theorem 1: The S model holds if and only if both the 
QS and MH models hold. 
 Each of S, QS and MH models indicates the 
structure of symmetry for the probabilities in the square 
table as the vision data. As a model which indicates the 
structure of asymmetry (instead of symmetry), the 
linear diagonals-parameter symmetry (LDPS) model is 
given as: 
 

( )ij j i

ji

p
i j

p
−= θ <  

 
Agresti (1983). For the vision data, this indicates that 
the probability that an individual’s right eye grade is i 
and left eye grade is j (> i) is j i−θ  times higher than the 
probability that his/her right eye grade is j and left eye 
grade is i. If θ>1, then the right eye tends to be better 
than the left eye. A special case of the LDPS model 
with θ =1 is the S model. Also the LDPS model is a 
special case of the QS model obtained by putting {δi = 
θi}. 
 Let X and Y denote the row and column variables, 
respectively. For the vision data, X is the right eye 
grade and Y is the left eye grade. The mean equality 
(ME) of X and Y model is given by: 
 

E(X) E(Y)=  
 

where 
R

ii 1
E(X) ip

=
=∑ i

 and 
R

ii=1
E(Y) = ip∑ i

. For the 

vision data, this indicates that the mean of right eye 
vision is equal to the mean of left eye vision. 

Yamamoto et al. (2007) gave the following theorem: 
 
Theorem 2: The S model holds if and only if both the 
LDPS and ME models hold. 
 Let for i<j, 
  

i R R i

ij st ji st
s 1 t j s j t 1

G p , and G p .
= = = =

= =∑∑ ∑∑  

 
 For the vision data, (1) Gij for i<j indicates that the 
cumulative probability that an individual’s right eye 
grade is i or below and his/her left eye grade is j (> i) or 
above and (2) Gji for i<j indicates that the cumulative 
probability that an individual’s left eye grade is i or 
below and his/her right eye grade is j (> i) or above. 
 Miyamoto et al. (2004) considered The Cumulative 
Quasi-Symmetry (CQS) model defined by: 
 

( )ij j

ji i

G
i j

G

γ
= <

γ
 

 
 The CQS model is different from the QS model. 
Miyamoto et al. (2004) also considered the cumulative 
linear diagonals-parameter symmetry (CLDPS) model 
defined by: 
 

( )ij j i

ji

G
i j

G
−= ∆ <  

 
 The CLDPS model is different from the LDPS 
model. The CLDPS model is a special case of the CQS 
model obtained by putting {

iγ  = ∆i}. For the vision 

data, the CLDPS model indicates that the probability 
that an individual’s right eye grade is i or below and 
his/her left eye grade is j (> i) or above, is ∆j-i times 
higher than the probability that an individual’s left eye 
grade is i or below and his/her right eye grade is j (> i) 
or above. If ∆>1, then the right eye tends to be better 
than the left eye. 
 Yamamoto et al. (2011) gave the following 
theorem: 
 
Theorem 3: The S model holds if and only if both the 
CQS and MH models hold. 
 
A new decomposition of symmetry model: We can 
obtain a new decomposition of the S model as follows: 
 
Theorem 4: The S model holds if and only if both the 
CLDPS and ME models hold. 
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Proof: If the S model holds, then both the CLDPS and 
ME models hold. Conversely, assuming that the 
CLDPS and ME models hold and then we shall show 
that the S model holds. We see: 
 

( )
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where X

iF P(X i).= ≤  Similarly we see: 
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where Y

iF P(Y i).= ≤  Thus we see: 
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From the ME model, we obtain: 
 

R 1 R 1

i,i 1 i 1,i
i 1 i 1

G G
− −

+ +
= =

=∑ ∑  

 
From the CLDPS model, we obtain: 
 

i,i 1 i 1,iG G .+ += ∆  
 
 Thus ∆ = 1. Namely the S model holds. The proof 
is completed. 
 
Test of goodness-of-fit of model: Let nij denote the 
observed frequency in the (i, j)th cell of the R×R table 
(i = 1,…, R; j = 1,…,R), with ijn n=∑∑ and let mij 

denote the corresponding expected frequency. Assume 
that {nij} have a multinomial distribution. The 
maximum likelihood estimates of expected frequencies 
{m ij} under each model could be obtained, for example, 
using the Newton-Raphson method to the log-
likelihood equations. Each model can be tested for 
goodness-of-fit by e.g., the likelihood ratio chi-squared 
statistic G2 with the corresponding degrees of freedom, 
defined by: 

R R
ij2

ij
i 1 j 1 ij

n
G 2 n log

m̂= =

 
=   

 
∑∑  

 
where ijm̂ is the maximum likelihood estimate of mij 

under the model. The numbers of degrees of freedom 
for the S, CLDPS and ME models in Theorem 4 are 
R(R-1)/2, (R+1)(R-2)/2 and 1, respectively. Note that 
the number of degrees of freedom for the S model 
equals the sum of those for the CLDPS and ME models. 
 

RESULTS 
 
 Consider the vision data in Table 1-3. We shall 
analyze these data using Theorem 4. Table 4 gives the 
values of likelihood ratio test statistic G2 for each model. 
 
Analysis of vision data of women in Table 1: We see 
from Table 4 that each of QS, LDPS and CLDPS 
models fits the vision data of women (Table 1) well, 
however, each of S, MH, CQS and ME models fits 
these data poorly. 
 Since the S model does not hold for these data, the 
probability that a woman’s right eye grade is i and her 
left eye grade is j (≠ i) is not equal to the probability 
that the woman’s right eye grade is j and her left eye 
grade is i. Namely, a woman’s right eye grade is not 
symmetric to her left eye grade. 
 The maximum likelihood estimates of parameters 
{ ∆j-i} under the CLDPS model areˆ 1.154∆ = , 2ˆ 1.332∆ =  

and 3ˆ 1.537∆ = . Since the CLDPS model holds for these 
data, the probability that a woman’s right eye grade is i 
or below and her left eye grade is j (>i) or above is 
estimated to be j iˆ −∆  times higher than the woman’s left 
eye grade is i or below and her right eye grade is j or 
above. Sincê 1∆ > , a woman’s right eye grade is 
estimated to be better than her left eye grade. 
 Since the ME model does not hold for these data, 
the mean of women’s right eye grades is not equal to 
the mean of women’s left eye grades. Using the sample 
proportions{ }ij ijp̂ n n= , we see that the mean of 

women’s right eye grades is estimated to be 2.275 and 
the mean of women’s left eye is estimated to be 2.305. 
Therefore a woman’s right eye grade is expected to be 
better than her left eye grade in the sense of the mean. 
 We see from Theorem 4 that the poor fit of the S 
model is caused by the influence of the lack of structure 
of the ME model rather than the CLDPS model. 
Namely the fact that a woman’s right eye grade is not 
symmetric to her left eye grade is caused by the fact 
that the mean of women’s right eye grades is not equal 
to the mean of women’s left eye grades. 
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Table 4: Values of likelihood ratio chi-squared statistic G2 for models 
applied to the data in Table 1, 2 and 3. (*means significant at 
the 0.05 level) 

Models Degrees of freedom Table 1 Table 2 Table 3 
S 6 19.25* 16.95* 9.69 
QS 3 7.27 5.71 2.81 
MH 3 11.99* 11.18* 6.87 
LDPS 5 7.28 6.95 8.22 
CQS 3 8.43* 7.27 1.99 
CLDPS 5 8.63 7.90 7.81 
ME 1 11.98* 9.94* 1.46 

 
Analysis of vision data of students in Table 2: We 
see from Table 4 that each of QS, LDPS, CQS and 
CLDPS models fits the vision data of students (Table 2) 
well, however, each of S, MH and ME models fits these 
data poorly. 
 Since the S model does not hold for these data, the 
probability that a student’s right eye grade is i and 
his/her left eye grade is j (≠ i) is not equal to the 
probability that the student’s right eye grade is j and 
his/her left eye grade is i. Namely, a student’s right eye 
grade is not symmetric to his/her left eye grade. 
 The maximum likelihood estimates of parameters 
{ ∆j-i} under the CLDPS model areˆ 0.831∆ = , 2ˆ 0.691∆ =  

and 3ˆ 0.574∆ = . Since the CLDPS model holds for these 
data, the probability that a student’s right eye grade is i 
or below and his/her left eye grade is j (>i) or above is 
estimated to be j iˆ −∆  times higher than the student’s left 
eye grade is i or below and his/her right eye grade is j 
or above. Sincê 1∆ < , a student’s right eye grade is 
estimated to be worse than his/her left eye grade. 
 Since the ME model does not hold for these data, 
the mean of students’ right eye grades is not equal to 
the mean of students’ left eye grades. Using the sample 
proportions, we see that the mean of students’ right eye 
grades is estimated to be 2.631 and the mean of 
students’ left eye grades is estimated to be 2.602. 
Therefore a student’s right eye grade is expected to be 
worse than his/her left eye grade in the sense of the 
mean. 
 We see from Theorem 4 that the poor fit of the S 
model is caused by the influence of the lack of structure 
of the ME model rather than the CLDPS model. 
Namely the fact that a student’s right eye grade is not 
symmetric to his/her left eye grade is caused by the fact 
that the mean of students’ right eye grades is not equal 
to the mean of students’ left eye grades. 
 
Analysis of vision data of pupils in Table 3: We see 
from Table 4 that all models fit the vision data of pupils 
(Table 3) well. Since the S model holds for these data, 
the probability that a pupil’s right eye grade is i and 
his/her left eye grade is j (≠ i) is equal to the probability 

that the pupil’s right eye grade is j and his/her left eye 
grade is i. Namely, a pupil’s right eye grade is 
symmetric to his/her left eye grade. 
 Since the CLDPS model fits these data well, we 
shall test the hypothesis of ∆=1(i.e., the hypothesis that 
the S model holds) under the assumption that the 
CLDPS model holds. It can be tested according to the 
difference between the likelihood ratio statistic G2 for 
the S model and that for the CLDPS model. The 
difference is 1.88 with 1 degree of freedom. Therefore 
we can accept the hypothesis of ∆=1in the CLDPS 
model, at the 0.05 significant level. 
 Since the ME model fits these data well, we shall 
also test the hypothesis that the S model holds under the 
assumption that the ME model holds. The difference 
between the G2 value for the S model and that for the 
ME model is 8.23 with 5 degrees of freedom. Therefore 
we can accept the hypothesis that the S model holds 
under the ME model at the 0.05 significant levels. So, 
for pupils’ vision data, we prefer the S model to each of 
the CLDPS and ME models. 
 Since the ME model fits these data well, the mean 
of pupils’ right eye grades is equal to the mean of 
pupils’ left eye grades. Under the ME model, the 
maximum likelihood estimates of the mean of pupils’ 
right (left) eye grades is 1.301. This value is less than 
2.5 being the midpoint of categories. Therefore a 
pupil’s right (left) eye grade is expected to be close to 
Best (1) or Sec. (2), rather than Third (3) or Worst (4). 
 

DISCUSSION 
 
 Theorems 1, 2, 3 and 4 may be useful for exploring 
the reason for the poor fit when the S model fits the 
data poorly. Especially, Theorem 4 would be useful 
when we are interested in the asymmetric structure of 
cumulative probabilities {Gij}, i ≠ j and the symmetry 
structure of marginal means in the square table as the 
vision data. 
 

CONCLUSION 
 
 We have given a new decomposition in Theorem 4 
and have analyzed three sets of data on unaided vision 
data using Theorem 4. It has been estimated that (1) for 
the vision data of women, the right eye is better than the 
left eye and the mean of right eye is not equal to the 
mean of left eye, (2) for the vision data of students, the 
right eye is worse than the left eye and the mean of 
right eye is not equal to the mean of left eye and (3) for 
the vision data of pupils, the right eye is symmetric to 
the left eye and the mean of right eye is equal to the 
mean of left eye which is expected to be close to `Best’ 
or ‘Second’ rather than `Third’ or `Worst’. 
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