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Abstract: Problem statement: Relative risk has concrete meanings of comparing two groups and 
measuring the association between exposures and outcomes in medical and public health studies. Log-
binomial model, using a log link function on binary outcomes, is straightforward to estimate risk ratios, 
whereas generates boundary problems. When the estimates are located near the boundary of 
constrained parameter space, common approaches or procedures using software such as R or SAS fail 
to converge. Approach: In this study we proposed a truncated algorithm to estimate relative risk using 
the log-binomial model. We used simulation studies on both single and multiple covariates models to 
investigate its performance and compare with other similar methods. Results: Our algorithm was 
shown to outperform other methods regarding precision, especially in high dimensional predictor 
space. Conclusion: The truncated IWLS method solves the slow convergence problem and provides 
valid estimates when previously proposed methods fail. 
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INTRODUCTION 
 
 For datasets with binary responses, there has been 
tremendous research study done by statisticians on 
prediction and inference. So far, the logistic model has 
been among the most popular models and widely used 
in the fields of medical and public health studies due to 
its pleasant characteristics linking to estimation of the 
odds ratio (McCullagh and Nelder, 1999). Nevertheless, 
odds ratio may occasionally not be scientifically 
appropriate to measure the association between 
exposures and outcomes. Relative risk, which is a ratio 
of the probability of the event occurring in the exposed 
group versus a non-exposed group, has more concrete 
meanings in the sense of comparing two groups 
(Holford, 2002; Robbins et al., 2002; Spiegelman and 
Hertzmark, 2005). If we further explore the literatures, 
we found out that many studies used odds ratios 
obtained from logistic models to approximate the 
relative risks. Neglect of the fact that such 
approximation merely retains its validity under the rare 
disease assumption will produce largely biased 

estimates away from the null hypothesis and 
consequently lead to false positive conclusions in many 
scenarios (Zhang and Yu, 1998; McNutt et al., 2003; 
Chu and Cole, 2010). As an alternative, log-binomial 
models may be more favorable with direct connection 
of coefficient estimates to the risk ratio. However, the 
algorithm of log-binomial models sometimes fails to 
converge and produces an invalid Maximum Likelihood 
Estimate (MLE) (Baumgarten et al., 1989; Petersen and 
Deddens, 2010), attributable to the constrained space of 
the linear predictors using log link. The problem 
becomes severe when multiple covariates are 
considered (Lumley et al., 2006; Williamson, 2011). 
Many researchers have been working on the log-
binomial model and offered several virtuous estimation 
methods. Lumley et al. (2006) had a comprehensive 
discussion on the issues of log-binomial model.  
 Among all, the methods in favor include: 
Maximum Likelihood Estimation; Nonlinear Least 
Squares; Scaling by the Average Prevalence; 
Duplication of Cases. Whereas some of these methods 
don’t fit in the regression scenario. For instance, the 
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Scaling by the average prevalence method requires that 
the model has the sole binary predictor, which renders 
the method limited in general. In contrast, MLE based 
algorithm is prevalent among the regression studies 
owing to the solid characteristics of inference. Major 
MLE based algorithms include: Searching the 
boundary; COPY method; Truncating fitted values (We 
also name it as “Truncated IWLS Method (T-IWLS)”); 
(Wacholder, 1986; Deddens and Petersen, 2003) The 
Searching the boundary algorithm may get to be 
intractable due to the difficulty in finding the 
boundaries in high dimensional parameter space. In this 
article, we focus on the discussions on COPY and 
Truncated IWLS methods. A modified algorithm of 
Truncated IWLS method is proposed.  
 

MATERIALS AND METHODS 
 
COPY method: Deddens and Petersen (2003) 
proposed a COPY method which could possibly obtain 
estimates close to the maximum likelihood estimator. 
The idea of COPY is to take C copies of the data and 1 
copy with response Y set to 1-Y and fit the relative risk 
model to these modified data. They did not achieve 
clarity in several issues: (a) for the example they 
illustrated, they did not provide detailed proof showing 
the mechanism of why and how the method works; (b) 
further simulation results indicated that COPY method 
may not necessarily study well when C is very large 
and how to adjust for large C remains unsolved; (c) the 
performance of COPY method in models with multiple 
covariates is not yet promising according to our 
simulation results. 
 
SAS solutions: Here we use SAS 9.2 PROC GENMOD 
to explore the illustrative example of Deddens and 
Petersen (2003). We fit the data using 3 models: (a) log 
link with binomial distribution; (b) log link with Poisson 
distribution; (c) log link with no specific distribution. 
 From the table we observed that estimates from 
the log-binomial model failed. SAS 9.2 tried to fix 
the boundary problem by unspecification of the 
distribution. The estimates of-2.1538 and 0.2351 are 
not far from the exact MLE, although still 
outperformed by COPY Method. Moreover, 
estimates from the model with unspecified 
distribution lack interpretability in practical use. 
 
Truncated IWLS method: The log-binomial model 
belongs to the class of Generalized Linear Models 
(GLM). It is known that the Iterative Weighted Least 
Square method (IWLS) (Wolke and Schwetlick, 1988) 
is frequently used to estimate GLM parameters. We 

start with illustrating the algorithm of IWLS, 
particularly for log-binomial model and then introduce 
the proposed the method in subsequent context. 
 
 IWLS method: Assume Y is Bernoulli distributed, we 
can write the p.d.f. as: 
 

y 1 y p
f (y) p (1 p) exp{ylog log(1 p)}

1 p
−= − = + −

−
 

 
where, p=E(Y). Set the linear predictor as: 
 

0 1 1 2 2 q 1 q 1X X ... X X− −η = β + β + β + β = β  

 
 Log-link or nlog(p)or p eη = = is adopted. Based on 

GLM theory on exponential distribution family, we can 
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 We can get the MLE of β ’s using the following 
equation interatively until converge Eq. 1: 
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 However, the convergence problem occurs 
occasionally in estimation and leads to un-estimable 
model parameters using the above IWLS method. In 
SAS, we will receive warnings indicating the algorithm 
fails to converge. 
 
Truncated IWLS method: We lands on the method of 
truncating fitted values to get MLEs for log-binomial 
models to solve the boundary problem. The idea is very 
straightforward. p = E(Y) = eXβ, which may exceed the 
parameter space [0, 1] in the iterative steps when values 
hitting the boundary, i.e., X β > 0. To solve the 
problem, we propose a constraint on Xβ in each 
iterative step. As Lumley et al. (2006) pointed out: An 
approximate MLE for the log-binomial model is to 
simply truncate the range of ρ (Wacholder, 1986). 
Usually we pick a threshold near 1, such as 0.999 and ρ 
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is set to min (p, 0.999) after each iteration for the purpose 
of computing working residuals and working weights for 
the next iteration. In the i-th iterative step, we update βnew 
using βdd when X βold<0, otherwise, βdd =T is used in (1). 
It is equivalent to construct a constrain:  
 

Pi = min (T, exp(X β)) 
 
Here, 0 <T<1. It can be conjectured that T are preferred 
to be some large value close to 1 when the MLE is on the 
boundary of parameter space. The estimator improves the 
robustness although scarifying some degree of un-
biasness in these extreme scenarios.  
 At the same time, we notice that iterations may be 
stuck within parameter areas which are impossible for 
convergence. To improve the efficiency of the algorithm, 
we add another step to assist iterative estimates in 
jumping out of such area. Meanwhile, this “jumping” 
step will help to solve the problem of instability and 
diverged estimates due to starting values. The idea is 
intuitive: if the steps fail to converge after a 
significant number of iterations, we replace ρi by 
independent sample from the interior of the parameter 
space. For instance, we can sample ρi ~ Uniform (0.1, 0. 
9) .There is no definitive choice of the range for uniform 
distribution. The purpose is to start with new values 
when iterations rush to the wrong direction against 
convergence. This step makes this method favorable and 
greatly improves the truncated IWLS algorithm. 
 We can oversee its benefits when generalizing the 
application to multiple covariate cases. Consider the 
following simple example with 2 quantitative covariates. 
 For the log-binomial model, the parameter space is: 
 

0 1 2 0 1 1 1 2

1 2

{( , , ) : 0 exp ( X X )

1 for 1 X 5, 2 X 10}

β β β ≤ β + β + β
≤ ≤ ≤ ≤ ≤

 

 
 Figure 1 illustrates the surface of the boundary 
which has consists of 4 segments. Using Truncated 
IWLS algorithm without the jumping step, we 
experienced cases when iterations kept bouncing back 
and forth in one particular corner. Adding this step 
avoids those redundant iterations.  
 Some issues still remain open to discussion: (1) 
the choice of T and its sensitivity; (2) the performance 
in multiple covariates model; (3) comparison with 
COPY and other methods. These issues will be 
addressed in the remaining context of this study. We 
begin with the illustrative example by Deddens and 
Petersen (2003) and explore the properties of the 
method using simulated datasets in single and 
multiple covariate models with dichotomous 
outcomes. The conclusion will be drawn based upon 
the comparison in the end. 

 
 

 
 
Fig. 1: Parameter space for Illustrative example in 

Table 2 
 
Table 1: SAS results from proc GENMOD on Illustrative example 

by Deddens and Petersen (2003) 
 β0 SE (β0) β1 SE (β1) 
Binomial -0.8273 0.5892 0.0827 0.1272 
Poisson -2.8839 1.5956 0.3251 0.1964 
Distribution -2.1538 0.6655 0.2351 0.0765 
unspecified 
Exact MLE -2.0936 1.0208 0.2094 0.1021 
COPY method -2.0913 1.0197 0.2091 0.1020 
 
Table 2: Illustrative example of 2-quantitative covariates 
X1 1 1.5 2 2.5 3 3.5 4 4.5 5 
X2 3 10.0 5 4.0 6 7.0 8 2.0 9 
Y 0 00.0 0 0.0 1 0.0 0 1.0 1 

 
Table 3: Illustrative example of 1-quantitative covariate by Deddens 

and  Petersen (2003) 
X 1 2 3 4 5 6 7 8 9 10 

Y 0 0 0 0 1 0 1 1 1 1 
 
Illustrative example by Deddens and Petersen (2003) 
revisited: In this example, 10 pairs of observations 
are generated (Table 3). Y is the response variable 
with possible values 0 and 1. Variable X is the 
predictor in the range of (1, 10). 
 We use R to implement the algorithm of the 
proposed method. We compare it with Exact MLE, 
COPY method and log-binomial and log-poisson 
models     from   SAS     PROC   GENMOD (Table 1). 
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Table 4: Results of Illustrative Example by Deddens and Petersen (2003) 
 β0 SE (β0) β1 SE (β1) 
Truncated IWLS (T = 0.2) -4.5309 2.6207 0.7864 0.4160 
Truncated IWLS (T = 0.4) -3.4217 1.5731 0.4639 0.2207 
Truncated IWLS (T = 0.6) -2.7877 1.0670 0.3454 0.1345 
Truncated IWLS (T = 0.8) -2.4243 0.8971 0.2744 0.1073 
Truncated IWLS (T = 0.9) -2.2447 0.7864 0.2490 0.0875 
Truncated IWLS (T = 0.999) -2.0946 0.7917 0.2097 0.0793 
Truncated IWLS (T = 0.9999) -2.0935 0.7928 0.2094 0.0792 

 
Table 5: True values of model parameter 
 Zero slope  Medium slope  High slope 
Prevalence at --------------------------------------- ------------------------------------ ------------------------------------------- 
X = 5 β0 β1 β0 β1 β0 β1 
0.1 -2.3026 0.00 -3.3026 0.20 -4.3026 0.40 
0.3 -1.2040 0.00 -1.7040 0.10 -2.2040 0.20 
0.5 -0.6931 0.00 -0.9431 0.05 -1.1931 0.10 
0.7 -0.3567 0.00 -0.5067 0.03 -0.6567 0.06 
0.9 -0.1054 0.00 -0.1554 0.01 -0.2054 0.02 

 
Table 6: Average slope and average estimated SE (β1) 
  Zero slope  Medium slope  High slope 
Prevalence at   -------------------------------- -------------------------------- ------------------------------ 
X = 5 Method  β1 s.e β1 s.e. β1 s.e. 
0.1 T-IWLS (T = 0.999) -0.0072 0.1152 0.206 0.103 0.417 0.0920 
 T-IWLS (T = 0.9999) -0.0071 0.1163 0.211 0.103 0.418 0.0910 
 GEN+COPY1000 -0.0020 0.1050 0.218 0.111 0.422 0.1050 
0.3 T-IWLS (T = 0.999) 0.0020 0.0550 0.100 0.051 0.205 0.0440 
 T-IWLS (T = 0.9999) 0.0010 0.0550 0.100 0.051 0.201 0.0440 
 GEN+COPY1000 -0.0020 0.0500 0.103 0.051 0.203 0.0480 
0.5 T-IWLS (T = 0.999) 0.0010 0.0350 0.050 0.034 0.101 0.0290 
 T-IWLS (T = 0.9999) 0.0000 0.0350 0.050 0.033 0.100 0.0290 
 GEN+COPY1000 -0.0000 0.0320 0.050 0.032 0.102 0.0310 
0.7 T-IWLS (T = 0.999) 0.0010 0.0230 0.031 0.021 0.059 0.0175 
 T-IWLS (T = 0.9999) -0.0010 0.0230 0.030 0.021 0.060 0.0174 
 GEN+COPY1000 -0.0010 0.0210 0.029 0.039 0.059 0.0390 
0.9 T-IWLS (T = 0.999) 0.0000 0.0110 0.010 0.010 0.019 0.0080 
 T-IWLS (T = 0.9999) 0.0000 0.0110 0.010 0.010 0.019 0.0080 
 GEN+COPY1000 0.0010 0.0110 0.010 0.010 0.018 0.0090 
 
We select the candidates of T in {0.2, 0.4, 0.6, 0.8, 0.9, 
0.999, 0.9999}. The estimates of β0 and β1 are 
summarized in Table 4.  
 The results confirm our conjecture that larger T 
could enhance the estimation. With large enough T, 
e.g., 0.999, 0.9999, the truncated method provides 
reasonable estimates compared with Exact MLE. The 
difference between the choice of T = 0.999 and 0.9999 
is almost neglectable. It also outperforms the COPY 
method regarding precision. We tried different sets of 
the starting values; all of them converge to the 
estimates listed in Table 4. However, we cannot neglect 
the tendency of underestimating standard errors using 
truncated IWLS. Scale factors in GLM adjust the effect 
of over-dispersion. Originally, the scale factor for 
binomial model is 1. However, the distribution 
achieved by truncated algorithm is not exactly binomial 
since we add a constraint on the boundary. Thus, some 
correction factor is required. Observed from later 
simulation, the magnitude of the impact by truncation 
can partially measured by the prevalence at median 
values of covaraites. When the prevalence is low, the 

underestimation of the standard errors is trivial and 
almost ignorable. We will leave the discussion of the 
problem open to further investigation. 
  

RESULTS 
 
Single covariate model: We used same simulation 
scheme as Deddens and Petersen (2003) to compare 
with the proposed method. Data were generated from 
the log-binomial model. Covariate X ranging from 0-10 
is generated uniformly. Given the prevalence at X = 5 
varying among {0.1, 0.3, 0.5, 0.7, 0.9), three values are 
selected for β1 namely 0, medium and large. True 
values of β1 and corresponding β0 are listed in Table 5. 
Note that β0 = log (prevalence) -5×β1. Each simulation 
involves 1,000 replications (same X’s, different Y’s). 
 Table 6 displays the average slope and average 
estimated standard errors of slope from the combined 
method of PROC GENMOD and COPY method 
(details in Deddens and Petersen, 2003) and the 
proposed     method  using   T = 0.999   and   0.9999. 
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Comparing to true population values (Table 5), the 
truncated IWLS method estimates are all as close as the 
combined method and indeed verify that truncated 
method is exact or at least asymptotic MLE. Using 
different values of T yield very similar precision and 
MSE (Table 7), indicating the truncation IWLS method 
estimates is very stable regarding the choice of T. This 
characteristic can make the method more attractive and 
realistic in application since T = 0.9999 is sufficient in 
dealing with various scenarios. 
 
Multiple covariate model: Deddens and Petersen 
(2003) claimed that the simulations with 2 
independent variables are consistent with the results 
for one  dependent   variable   using   COPY method. 
 
Table 7: MSE of estimated β1 using truncated IWLS 
Prevalence  
 at X=5 Method Zero Medium High 
0.1 T-IWLS (T = 0.999) 0.0146 0.0127 0.0103 
 T-IWLS (T = 0.9999) 0.0220 0.0128 0.0104 
0.3 T-IWLS (T = 0.999) 0.0032 0.0026 0.0020 
 T-IWLS (T = 0.9999) 0.0031 0.0027 0.0021 
0.5 T-IWLS (T = 0.999) 0.0013 0.0444 0.0009 
 T-IWLS (T = 0.9999) 0.0013 0.0011 0.0009 
0.7 T-IWLS (T = 0.999) 0.0006 0.0006 0.0003 
 T-IWLS (T = 0.9999) 0.0006 0.0006 0.0003 
0.9 T-IWLS (T = 0.999) 0.0001 0.0001 0.0001 
 T-IWLS (T = 0.9999) 0.0001 0.0001 0.0000 

 
Table 8: True values of 2-covariate model parameters 
Prevalence at  
(X1, X2) = (5, 2.5) 0.3 0.5 0.7 
(β0, β1, β2) (-1.829, 0.1, 0. 05) (-1.318, 0.1, 0. 05) (-0.982, 0.1, 0. 05) 
(β0, β1, β2) (-1.704, 0.05, 0. 1) (-1.193, 0.05, 0. 1) (-0.857, 0.05, 0. 1) 

However, COPY method also may fail to converge 
when the dimension of covariates goes higher. The 
parsimonious strategy is to make more copies, which 
heavily increase the burden of the computation. Our 
method is quietly efficient without much adjustment. 
One remaining concern is the choice of truncation 
threshold T. The following simulation is mainly 
designed to address the issue.  
 Two sets of simulations are conducted. The first 
one is based on 2-covaraite model with covariates X1 
ranging from 0-10 and X2 among [0, 5]. Given the 
prevalence at (X1, X2) = (5, 2.5), we select relatively 
bigger and smaller values of β1 respectively. The 
specified values are listed in Table 8. We then compare 
the truncated IWLS with T = 0.999 and T = 0.9999 
regarding the precision and MSE. Each simulation 
contains 1,000 replications (same covariates and 
different Y). Table 8 summarizes the population 
values of (β0, β1, β2) in these 2-covariate models.  
 The second set is based on 3-covariate model 
with covariates X1 among [0, 10], X2 among [0, 5] 
and X3 from 0-2. We cover 3 combinations (e.g., 
large β1, medium β2 and small β3) and replicate 1,000 
samples to compare proposed method using T=0.999 
and 0.9999 respectively. The population values of 
(β0, β1, β2, β3) are listed in Table 9. 
 The results of simulations from 2-covaraite 
models are summarized in Table 10. The different 
truncation values yield very close results. Both obtain 
the estimates of parameters close to population values 
(Table 8) up to 3 decimal points. The MSE of estimates 
from the two truncation values are  very  small.

 
Table 9: True Values of 3-covariate model parameters 
Prevalence at   
(X1, X2, X3)=(5,2.5,1 ) 0.3 0.5 0.7 
(β0, β1, β2, β3) (-1.804, 0.10, 0.02, 0.05) (-1.293, 0.10, 0.2, 0.05) (-0.957, 0.10, 0.20, 0.05) 
(β0, β1, β2, , β3) (-1.849, 0.10, 0.05, 0.02) (-1.338, 0.10, 0.05, 0.02) (-1.00, 0.10, 0.05, 0.02) 
(β0, β1, β2, β3) (-1.529, 0.02, 0.05, 0.10) (-1.018, 0.02, 0.05, 0.10) (-0.682, 0.02, 0.05, 0.10) 

 
Table 10: Average and MSE of Estimated (β1, β2) in 2-Covarate Models (Table 8) 

  (β1β2) = (0.1, 0. 05)  (β1,β2) = (0,05,0,1) 
Prevalence at  ------------------------------------------------- ----------------------------------------------- 
(X1, X2) = (5, 2.5) Method β1 β2 β1 β2 
  [MSE (β1)] [MSE (β2)] [MSE (β1)] [MSE (β2)] 
0.3 T-IWLS (T=0.999) 0.104 [0.007] 0.043 [0.023] 0.058 [0.005] 0.109 [0.024] 
 T-IWLS (T=0.999) 0.105 0.047 0.053 0.109 
  [0.006] [0.025] [0.005] [0.023] 
0.5 T-IWLS (T=0.999) 0.1 0.05 0.052 0.103 
  [0.002] [0.005] [0.003] [0.006] 
 T-IWLS (T=0.999) 0.1 0.05 0.052 0.102 
  [0.002] [0.004] [0.003] [0.005] 
0.7 T-IWLS (T=0.999) 0.101 0.049 0.049 0.101 
  [0.001] [0.002] [0.001] [0.002] 
 T-IWLS (T=0.999) 0.1 0.05 0.05 0.101 
  [0.001] [0.002] [0.001] [0.002]
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Although the results are not listed in this article, results 
of simulations from 3-covariate models are consistent 
with those in 2-covaraites models. In fact, we do increase 
the number of covariates up to 8 in exploratory studies. 
The results support our conclusion that selection of T is 
trivial in truncated IWLS method once T is large enough. 
The suggested value in application is 0.9999. 
 

DISCUSSION 
 
 In this study we discussed the importance of 
applying log-binomial models instead of logistic 
models to epidemiological studies when the rare disease 
assumption is invalid. In all, the truncated IWLS 
method study reasonably in both single and multiple 
covariates models. Our algorithm solves the slow 
convergence problem and provides valid estimates 
when previously proposed methods fail. Simulation 
results also show that the algorithm is not sensitive 
when the threshold in the truncation is selected close 
enough toward 1. Ad hoc methods such as multiple 
endpoints investigation could be used to obtain a 
working threshold, but more objective methods are in 
demand. Another potential research topic is to study the 
convergence performance in the truncated IWLS 
algorithm so that we can obtain further information on 
the convergence rate. Simulation studies to compare the 
convergence rate between the truncated IWLS 
algorithm and the algorithm of its corresponding 
untruncated model is also suggested. 
 

CONCLUSION 
 
       The boundary problems in log-binomial models 
were solved by a newly developed truncated IWLS 
method. The proposed method outperformed the existing 
COPY method when multiple covariates co-exist in a 
log-binomial model and is therefore of practical value. 
Such models and algorithms can be widely used in high-
prevalence disease modeling, such as diabetes and 
cardiovascular diseases. 
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