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Abstract: Problem statement: Relative risk has concrete meanings of companmgy groups and
measuring the association between exposures andmes in medical and public health studies. Log-
binomial model, using a log link function on binaytcomes, is straightforward to estimate riskosati
whereas generates boundary problems. When the atsimare located near the boundary of
constrained parameter space, common approacheesaadpres using software such as R or SAS fail
to convergeApproach: In this study we proposed a truncated algorithrastimate relative risk using
the log-binomial model. We used simulation studiashoth single and multiple covariates models to
investigate its performance and compare with o8imilar methodsResults: Our algorithm was
shown to outperform other methods regarding pregjsespecially in high dimensional predictor
space.Conclusion: The truncated IWLS method solves the slow convergeproblem and provides
valid estimates when previously proposed methoitls fa

Key words. Generalized linear model, iterative weighted lesagtare, maximum likelihood estimator,
odds ratio, relative risk, truncation

INTRODUCTION estimates away from the null hypothesis and
consequently lead to false positive conclusionsiamy
For datasets with binary responses, there has beesgenarios (Zhang and Yu, 1998; McNattal., 2003;
tremendous research study done by statisticians oBhu and Cole, 2010). As an alternative, log-bindmia
prediction and inference. So far, the logistic nidies  models may be more favorable with direct connection
been among the most popular models and widely useaf coefficient estimates to the risk ratio. Howevitre
in the fields of medical and public health studie® to  algorithm of log-binomial models sometimes fails to
its pleasant characteristics linking to estimatadrnthe  converge and produces an invalid Maximum Likelihood
odds ratio (McCullagh and Nelder, 1999). Nevertbgle Estimate (MLE) (Baumgarteet al., 1989; Petersen and
odds ratio may occasionally not be scientifically Deddens, 2010), attributable to the constrainedespé
appropriate to measure the association betweethe linear predictors using log link. The problem
exposures and outcomes. Relative risk, which istia r becomes severe when multiple covariates are
of the probability of the event occurring in thepezed  considered (Lumleyet al., 2006; Williamson, 2011).
group versus a non-exposed group, has more concreldany researchers have been working on the log-
meanings in the sense of comparing two group$inomial model and offered several virtuous estiomat
(Holford, 2002; Robbingt al., 2002; Spiegelman and methods. Lumleyet al. (2006) had a comprehensive
Hertzmark, 2005). If we further explore the litenats, discussion on the issues of log-binomial model.
we found out that many studies used odds ratios Among all, the methods in favor include:
obtained from logistic models to approximate theMaximum Likelihood Estimation; Nonlinear Least
relative risks. Neglect of the fact that suchSquares; Scaling by the Average Prevalence;
approximation merely retains its validity under thee  Duplication of Cases. Whereas some of these methods
disease assumption will produce largely biaseddon't fit in the regression scenario. For instante
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Scaling by the average prevalence method requies t start with illustrating the algorithm of IWLS,
the model has the sole binary predictor, which eesd particularly for log-binomial model and then introxk
the method limited in general. In contrast, MLE dzhs the proposed the method in subsequent context.
algorithm is prevalent among the regression studies

owing to the solid characteristics of inference.jdda WLS method: Assume Y is Bernoulli distributed, we
MLE based algorithms include: Searching thecan write the p.d.f. as:

boundary; COPY method; Truncating fitted values (We
also name it as “Truncated IWLS Method (T-IWLS)");
(Wacholder, 1986; Deddens and Petersen, 2003) The
Searching the boundary algorithm may get to be
intractable due to the difficulty in finding the where, p=E(Y). Set the linear predictor as:
boundaries in high dimensional parameter spacthisn

article, we focus on the discussions on COPY and N=By +B X, +BX .. +B, X o ,=XP
Truncated IWLS methods. A modified algorithm of
Truncated IWLS method is proposed.

f(y) =p’(@-p) = exp{ymgﬁ + log(1- p))

Log-link or n=log(p)orp= €is adopted. Based on
MATERIALSAND METHODS VGV:_itI\E/}I.theory on exponential distribution family, warc

COPY method: Deddens and Petersen (2003)
proposed a COPY method which could possibly obtain 6 =log p b@)=log(l+ € ),y= b0 ) p (t p

estimates close to the maximum likelihood estimator 1-p’
The idea of COPY is to take C copies of the dathlan
copy with response Y set to 1-Y and fit the relatrisk Clearly, on, \apl =:¢p . Let W=diag(w) and

model to these mc_)dified data. They did not achievezz(zli___'zn),, where:

clarity in several issues: (a) for the example they

illustrated, they did not provide detailed proobsgling =

the mechanism of why and how the method works; (b) w, =v, —1[%] =P and Z=n, +5j y-p)
further simulation results indicated that COPY rnoeth op 1-n op

may not necessarily study well when C is very large

and how to adjust for large C remains unsolveditie) We can get the MLE of’s using the following
performance of COPY method in models with multiple equation interatively until converge Eq. 1:
covariates is not yet promising according to our

simulation results. XTWBoldx B =X T\NBUI(}Z goiOF B"0r

1
SAS solutions Here we use SAS 9.2 PROC GENMOD = (X"W goX) "X W Z @
to explore the illustrative example of Deddens and
Petersen (2003). We fit the data using 3 mode)dofp
link with binomial distribution; (b) log link witiPoisson
distribution; (c) log link with no specific distnittion.

From the table we observed that estimates fro
the log-binomial model failed. SAS 9.2 tried to fix
the boundary problem by unspecification of the

distribution. The estimates 0f-2.1538 and 0.235% ar 1, ncated IWL S method: We lands on the method of
not far from the exact MLE, although still yncating fitted values to get MLEs for log-binahi
outperformed by COPY Method. Moreover, moqels to solve the boundar problem. The ideaiyg v
estimates from the model with unspecified gyaightforward. p = E(Y) =”&, which may exceed the
distribution lack interpretability in practical use parameter space [0, 1] in the iterative steps widues

. . hitting the boundary, i.e., X3 > 0. To solve the
Truncated IWLS method: The log-binomial model problem, we propose a constraint orf ¥n each
belongs to the class of Generalized Linear Modelsterative step. As Lumlegt al. (2006) pointed out: An
(GLM). It is known that the Iterative Weighted Léas approximate MLE for the log-binomial model is to
Square method (IWLS) (Wolke and Schwetlick, 1988)simply truncate the range gf (Wacholder, 1986).
is frequently used to estimate GLM parameters. WeJsually we pick a threshold near 1, such as 0.9@a

21

However, the convergence problem occurs
occasionally in estimation and leads to un-estimabl
model parameters using the above IWLS method. In
n%AS, we will receive warnings indicating the algjom
fails to converge.
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is set to min (p, 0.999) after each iteration f@ purpose
of computing working residuals and working weigfts
the next iteration. In the i-th iterative step, wedateBnew = QIS
usingBqg when XByq<0, otherwiseByq =T is used in (1). R

ORI 180

It is equivalent to construct a constrain:

P, = min (T, exp(XB))

Here, 0<T<L1. It can be conjectured that T are preferred
to be some large value close to 1 when the MLEithe
boundary of parameter space. The estimator imprinees
robustness although scarifying some degree of un-
biasness in these extreme scenarios.

At the same time, we notice that iterations may be
stuck within parameter areas which are impossiote f
convergence. To improve the efficiency of the atgan,
we add another step to assist iterative estimates i
jumping out of such area. Meanwhile, this “jumping”
step will help to solve the problem of instabildyd
diverged estimates due to starting values. The islea
intuitive: if the steps fail to converge after a
significant number of iterations, we replagg by 7 T I 1
independent sample from the interior of the paramet
space. For instance, we can sanmple Uniform (0.1, O.

9) .There is no definitive choice of the rangedaiform  Fig. 1: Parameter space for lllustrative example in
distribution. The purpose is to start with new ealu Table 2

when iterations .rUSh to the erng direction rSlgamStl'able 1: SAS results from proc GENMOD on lllustvatiexample
convergence. This step makes this method favoeaide

by Deddens and Petersen (2003)
greatly improves the truncated IWLS algorithm.
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Bo SE o) B1 SE 1)
We can oversee its benefits when generalizing th&inomial -0.8273 0.5892 0.0827 0.1272
application to multiple covariate cases. Consides t Poisson -2.8839 1.5956 03251  0.1964
following simple example with 2 quantitative coeis. 5&;’2&223 21538 0.6655 02351 0.0765
For the log-binomial model, the parameter space iSexact MLE -2.0936 1.0208 0.2094 0.1021
COPY method -2.0913 1.0197 0.2091 0.1020
{(ByByB):0<exp By +B X, +BX) _ —
<1 for 1< X, <5 2< X,<10} Table 2: lllustrative example of 2-quantitative agates
X1 1 15 2 25 3 35 4 45 5
Figure 1 illustrates the surface of the boundaryi((2 g 38:8 g 3:8 i’ g:g g f'g 519
which has consists of 4 segments. Using Truncated

IWLS_ algorithm W'thOUt_ the_ Jjumping step_, W€ Table 3: lllustrative example of 1-quantitative aacate by Deddens
experienced cases when iterations kept bouncing bac and Petersen (2003)

and forth in one particular corner. Adding thispste x 1 2 3 4 5 6 7 8 9 10
avoids those redundant iterations. v 0 0 o o 1 o 1 1 1 1
Some issues sti_II remai_n open to discussion: (1)
the choice of T and its sensitivity; (2) the pemf@nce .4+ ative example by Deddens and Petersen (2003)
in multiple covariates model; (3) comparison with =~ " . . .
COPY and other methods. These issues will béewsned. In this example, 10 pairs of observations
addressed in the remaining context of this stude. ware genergted (Table 3). Y is the response yariable
begin with the illustrative example by Deddens andVith possible values 0 and 1. Variable X is the
Petersen (2003) and explore the properties of th@redictor in the range of (1, 10). _
method using simulated datasets in single and We use R to implement the algorithm of the
multiple covariate models with dichotomous proposed method. We compare it with Exact MLE,
outcomes. The conclusion will be drawn based upor€OPY method and log-binomial and log-poisson
the comparison in the end. models from SAS PROC GENMOD (Table 1).
22
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Table 4: Results of lllustrative Example by Deddand Petersen (2003)

Bo SE o) Bs SE 64)
Truncated IWLS (T = 0.2) -4.5309 2.6207 0.7864 6011
Truncated IWLS (T = 0.4) -3.4217 15731 0.4639 0222
Truncated IWLS (T = 0.6) -2.7877 1.0670 0.3454 0313
Truncated IWLS (T = 0.8) -2.4243 0.8971 0.2744 0310
Truncated IWLS (T = 0.9) -2.2447 0.7864 0.2490 098
Truncated IWLS (T = 0.999) -2.0946 0.7917 0.2097 0703
Truncated IWLS (T = 0.9999) -2.0935 0.7928 0.2094 .0792
Table 5: True values of model parameter

Zero slope Medium slope High slope

Prevalence at
X=5 Bo B1 Bo B1 Bo B1
0.1 -2.3026 0.00 -3.3026 0.20 -4.3026 0.40
0.3 -1.2040 0.00 -1.7040 0.10 -2.2040 0.20
0.5 -0.6931 0.00 -0.9431 0.05 -1.1931 0.10
0.7 -0.3567 0.00 -0.5067 0.03 -0.6567 0.06
0.9 -0.1054 0.00 -0.1554 0.01 -0.2054 0.02

Table 6: Average slope and average estimate®3E (

Zero slope Medium slope High slope

Prevalence at

X=5 Method 1 s.e B1 s.e. By s.e.

0.1 T-IWLS (T = 0.999) -0.0072 0.1152 0.206 0.103 410 0.0920
T-IWLS (T = 0.9999) -0.0071 0.1163 0.211 0.103 18.4 0.0910
GEN+COPY1000 -0.0020 0.1050 0.218 0.111 0.422 3010

0.3 T-IWLS (T = 0.999) 0.0020 0.0550 0.100 0.051 208. 0.0440
T-IWLS (T = 0.9999) 0.0010 0.0550 0.100 0.051 0.20 0.0440
GEN+COPY1000 -0.0020 0.0500 0.103 0.051 0.203 8n04

0.5 T-IWLS (T = 0.999) 0.0010 0.0350 0.050 0.034 100. 0.0290
T-IWLS (T = 0.9999) 0.0000 0.0350 0.050 0.033 0.10 0.0290
GEN+COPY1000 -0.0000 0.0320 0.050 0.032 0.102 103

0.7 T-IWLS (T = 0.999) 0.0010 0.0230 0.031 0.021 050. 0.0175
T-IWLS (T = 0.9999) -0.0010 0.0230 0.030 0.021 60.0 0.0174
GEN+COPY1000 -0.0010 0.0210 0.029 0.039 0.059 o3

0.9 T-IWLS (T = 0.999) 0.0000 0.0110 0.010 0.010 010. 0.0080
T-IWLS (T = 0.9999) 0.0000 0.0110 0.010 0.010 0.01 0.0080
GEN+COPY1000 0.0010 0.0110 0.010 0.010 0.018 ©.009

We select the candidates of T in {0.2, 0.4, 0.8, 0.9, underestimation of the standard errors is triviatl a
0.999, 0.9999}. The estimates df, and p, are almost ignorable. We will leave the discussion lud t

summarized in Table 4. problem open to further investigation.
The results confirm our conjecture that larger T
could enhance the estimation. With large enough T, RESULTS

e.g.,, 0.999, 0.9999, the truncated method provides . ) )
reasonable estimates compared with Exact MLE. Thé&ingle covariate model: We used same simulation
difference between the choice of T = 0.999 and @999 scheme as Deddens and Petersen (2003) to compare
is almost neglectable. It also outperforms the COPYvith the proposed method. Data were generated from
method regarding precision. We tried different s#ts the log-binomial model. Covariate X ranging froni0-

the starting values; all of them converge to thejs generated uniformly. Given the prevalence at B =
estimates listed in Table 4. However, we cannote®g yarying among {0.1, 0.3, 0.5, 0.7, 0.9), three eslare

the tendency of underestimating standard erromsgusi ¢gjected forp ;
; . 1 hamely 0, medium and large. True
truncated IWLS. Scale factors in GLM adjust theseff values off; and corresponding, are listed in Table 5.

of over-dispersion. Originally, the scale factorr fo . .
binomial rr?odel is 1.g Hov)\//ever, the distribution !\lote thatB, = log (preyalence) 9. anh simulation
achieved by truncated algorithm is not exactly bi ~ nvolves 1,000 replications (same X's, differens).

since we add a constraint on the boundary. Thuseso _ 1able 6 displays the average slope and average
correction factor is required. Observed from later€stimated standard errors of slope from the conabine

simulation, the magnitude of the impact by trurmati mMethod of PROC GENMOD and COPY method
can partially measured by the prevalence at mediaffetails in Deddens and Petersen, 2003) and the
values of covaraites. When the prevalence is Ibw, t proposed — method using T =0.999 and 9299
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Comparing to true population values (Table 5), theHowever, COPY method also may fail to converge
truncated IWLS method estimates are all as closeeas when the dimension of covariates goes higher. The
combined method and indeed verify that truncatecharsimonious strategy is to make more copies, which
method is exact or at least asymptotic MLE. Usingheavily increase the burden of the computation. Our
different values of T yield very similar precisi@md  method is quietly efficient without much adjustment

MSE (Table 7), indicating the truncation IWLS medho onpe remaining concern is the choice of truncation

estimates is very stable regarding the choice ofils  {hreshold T. The following simulation is mainly
characteristic can make the method more attraetine designed to address the issue.
realistic in application since T = 0.9999 is suffitt in Two sets of simulations are conducted. The first
dealing with various scenarios. one is based on 2-covaraite model with covariates X
ranging from 0-10 and Xamong [0, 5]. Given the
Multiple covariate model: Deddens and Petersen prevalence at (X X,) = (5, 2.5), we select relatively
(2003) claimed that the simulations with 2 bigger and smaller values d¥; respectively. The
independent variables are consistent with the tesul specified values are listed in Table 8. We then mana
for one dependent variable using COPY methodthe truncated IWLS with T = 0.999 and T = 0.9999
regarding the precision and MSE. Each simulation

Table 7: MSE of estimatefi using truncated IWLS contains 1,000 replications (same covariates and
Prevalence different Y). Table 8 summarizes the population
atX=5  Method Zero Medium  High values of B, B1, B,) in these 2-covariate models.
01 T-IWLS (T=0.999)  0.0146  0.0127 0.0103 The second set is based on 3-covariate model
T-IWLS (T =0.9999) 0.0220  0.0128 0.0104 ;
0.3 T-IWLS (T=0.999) 0.0032  0.0026 00020 With covariates X .among [0, 10], X among [0, 5]
T-IWLS (T =0.9999) 0.0031  0.0027 00021 and X from 0-2. We cover 3 combinations (e.qg.,
0.5 T-IWLS (T=0.999) 0.0013  0.0444  0.0009 largef;, mediump, and smalBs) and replicate 1,000
T-WLS (T =0.9999) 00013 0.0011  0.0009  gamples to compare proposed method using T=0.999
0.7 T-IWLS (T=0.999) 0.0006  0.0006 0.0003 d 0.9999 velv. Th lati | ¢
T-IWLS (T=0.9999) 0.0006 0.0006  0.0003 &nd U. respectively. The population values o
0.9 T-IWLS (T=0.999) 0.0001  0.0001 0.0001  (Bo, B1, B2, B3) are listed in Table 9.
T-IWLS (T =0.9999) 0.0001  0.0001 0.0000 The results of simulations from 2-covaraite
_ models are summarized in Table 10. The different
Tab'el 8: True values of 2-covariate model pararseter truncation values yield very close results. Bottaab
Prevalence at : ;
(X0, X0) = (5. 2.5) 0.3 05 07 the estimates of parameters close to populanou_esal
o, Br. B2) (1.629,0.1,0.05) (1318,01,0.05) (0982,0.05 (Table 8)up to 3 decimal points. The MSE of estéma
(Bo, B, B2) (-1.704, 0.05, 0. 1) (-1.193,0.05,0.1) (-0.88D05,0.1)  from the two truncation values are very small.

Table 9: True Values of 3-covariate model paranseter
Prevalence at

(X1, X2, X3)=(5,2.5,1) 0.3 05 0.7
(Bor B, B2.B3) (-1.804, 0.10, 0.02, 0.05) (-1.293, 0.10, 0.25). (-0.957, 0.10, 0.20, 0.05)
(Bo, B, B2..Bs) (-1.849, 0.10, 0.05, 0.02) (-1.338, 0.10, 0.062p (-1.00, 0.10, 0.05, 0.02)

(Bo, B, B2.B3) (-1.529, 0.02, 0.05, 0.10) (-1.018, 0.02, 0.050p (-0.682, 0.02, 0.05, 0.10)

Table 10: Average and MSE of Estimat@d f,) in 2-Covarate Models (Table 8)

(BB2) = (0.1, 0. 05) {f.,B2) = (0,05,0,1)
Prevalence at
(X1, X2) = (5, 2.5) Method p1 B2 p1 B2
[MSE (3,)] [MSE (2)] [MSE (B.)] [MSE (2)]
0.3 T-IWLS (T=0.999) 0.104 [0.007] 0.043 [0.023] 088 [0.005] 0.109 [0.024]
T-IWLS (T=0.999) 0.105 0.047 0.053 0.109
[0.006] [0.025] [0.005] [0.023]
0.5 T-IWLS (T=0.999) 0.1 0.05 0.052 0.103
[0.002] [0.005] [0.003] [0.006]
T-IWLS (T=0.999) 0.1 0.05 0.052 0.102
[0.002] [0.004] [0.003] [0.005]
0.7 T-IWLS (T=0.999) 0.101 0.049 0.049 0.101
[0.001] [0.002] [0.001] [0.002]
T-IWLS (T=0.999) 0.1 0.05 0.05 0.101
[0.001] [0.002] [0.001] [0.002]
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Although the results are not listed in this articlesults Deddens, J.A. and M.R. Petersen, 2003. Estimatfon o

of simulations from 3-covariate models are consiste prevalence ratios when PROC GENMOD does not
with those in 2-covaraites models. In fact, we nivéase converge. Proceedings of the 28th Annual SAS
the number of covariates up to 8 in exploratorylistsi Users Group International Conference, (SASUGIC’
The results support our conclusion that selectiof 03), Cary NC, SAS Institute Inc. .
trivial in truncated IWLS method once T is largeegh. ~ Holford, T.R.,  2002. Multivariate Methods in
The suggested value in application is 0.9999. Epidemiology. 1st Edn., Oxford University Press,
Oxford, ISBN-10: 0195124405, pp: 408.
DISCUSSION Lumley, T., R. Kronmal and S. Ma, 2006. Relativ&kri

regression in medical research: Models, contrasts,

In this study we discussed the importance of \e/\ﬂg;ﬁgzn and  algorithms. ~ University ~ of
applying log-binomial models instead of logistic ' .
models to epidemiological studies when the rareatie McCu_IIagh, P. and J.A. Nelder, 1999. Generalized
assumption is invalid. In all, the truncated IWLS Linear Models. 2nd Edn., Chapman and Hall/CRC,
method study reasonably in both single and multiple Boca Raton, ISBN-10: 0412317605, pp: 511.
covariates models. Our algorithm solves the sIOV\MCNUtt’_ LA C. Wu, X._ Xut_a an_d J.P. Hafnerz 2003.
convergence problem and provides valid estimates E_stl_matmg_ the relative risk in cohort studies and
when previously proposed methods fail. Simulation C"U'Ca' _tnals of C(?mmon outcomes. Am. J
results also show that the algorithm is not seresiti Epldemlol._, 10: 940-943. DO:
when the threshold in the truncation is selecterbel 10.1093/aje/kwg074 .
enough toward 1Ad hoc methods such as multiple Pete_rse_n, M.R. gnd .‘]'A' Deddens, .2010.' Maximum
endpoints investigation could be used to obtain a likelihood estimation of the Iog-blpomlal model..
working threshold, but more objective methods are i~ Commun. Stat. Theory Methods, 5: 874-883. DOI:
demand. Another potential research topic is toysthd 19'1080/ 03610920902807879
convergence performance in the truncated IWLSRObb'nS',A'S" S.Y..Cha.o and V.P. Fonsec"’P 2002
algorithm so that we can obtain further informatmm Whats th(_a relat_lve .”Sk? A methpd to directly
the convergence rate. Simulation studies to comihare estimate risk ratios in cphort studies of common
convergence rate between the truncated IWLS outcomes. Ann. Epidemiol., 12: 452-454. PMID:

; . : ; 12377421
algorithm and the algorithm of its corresponding _ .
untruncated model is also suggested. Spiegelman, D. and E. Hertzmark, 2005. Easy SAS

calculations for risk or prevalence ratios and
CONCLUSION differences. Am. J. Epidemiol., 162: 199-200. DOI:
10.1093/aje/kwil88
The boundary problems in log-binomial mode|SWachoI_der,.S., .1986._Binomiall regression in GLIM:
were solved by a newly developed truncated IWLS  Estimating risk ratios and risk differences. Am. J.
method. The proposed method outperformed the egisti Epidemiol., 123: 174-84.
COPY method when multiple covariates co-exist in aWiliamson, T.S., 2011. Log-binomial ~models:

log-binomial model and is therefore of practicaluea Maximum Likelihood and failed convergence.
Such models and algorithms can be widely usedgh-hi Ph.D. Thesis, University of Calgary.
prevalence disease modeling, such as diabetes aidolke, R. and H. Schwetlick, 1988. Iteratively
cardiovascular diseases. Reweighted least squares: Algorithms,
convergence analysis and numerical comparisons.
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