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Abstract: In this study, we model the interaction among antibody, virus, host cell, immune cell and 
normal cell as random collisions, because antibody and virus are unlikely to have efficient driving 
systems. Then we use the model II of waiting times to analyze the collision between antibody and virus 
with a certain number of normal cells, and use the Monte-Carlo simulation to analyze the random 
collision process with respect to different numbers of viruses, antibodies, normal, immune and host 
cells, and whether normal and host cells are fixed or free to move. Finally, we estimate the ratio of 
antibodies to viruses, which can prevent the host cells from virus infection at two endpoints, by means 
of the Monte Carlo simulation.  
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INTRODUCTION 

 
 At current knowledge level, an antibody unlikely 
has any efficient driving system. This means that an 
antibody is more likely to encounter a virus by random 
collision. Actually even an antibody would have a very 
efficient driving system to overcome the blood 
circulation, but more importantly the immune detecting 
system should at first contact with the signal of a virus 
by chance, then the antibody can move with a definite 
direction. 
 Hence we need to consider the interaction between 
an antibody and a virus as a random collision from a 
probabilistic viewpoint. For the simplest example, there 
are three elements in our imaging system, a virus, a 
normal cell, and an antibody, so we have a 1 versus 2 
system. The question is how many collisions are needed 
for the antibody to hit the virus. Our intuition with 
regard to this random collision process may suggest that 
the antibody would hit the virus at the second collision 
at the worst case, because the antibody spends the 1/2 
chance to randomly collide with the virus at the first 
collision. Our experience in daily life would tell us this 
intuition wrong because we could not expect to throw a 
ball randomly into the second hole if we have two holes 
and our first throw is in the first hole. Actually, the 
antibody always has the 1/2 chance to randomly collide 
the virus at any collision, therefore the probability of 
random collision at the second collision is 
0.5 + 1/2 × the remained probability after the first 

collision, i.e. 1/2 + 1/2 × (1–0.5) = 0.75, that says, the 
probability that the antibody hits the virus at the second 
collision is 0.75. Thus, the antibody will hit the virus at 
the fifth collision if we set the 0.95 as the chance of 
random collision (Table 1). [1]  Or we can say that it 
needs five collisions for the antibody to hit the virus in 
this imaging system. 
 
Table 1: Probability that an antibody hits the virus in 1 
versus 2 system. 
 
Collision Calculation of collision probability Criterion 
1st 0+1/2×(1–0)=0.5 < 0.95 
2nd 0.5+1/2×(1–0.5)=0.75 < 0.95 
3rd 0.75+1/2×(1–0.75)=0.875 < 0.95 
4th 0.875+1/2×(1–0.875)=0.9375 < 0.95 
5th 0.9375+1/2×(1–0.9375)=0.96875 > 0.95 
6th 0.96875+1/2×(1–0.96875)=0.984375 > 0.95 
. . . . . . . . . 
 
 In the above consideration, the antibody hits, 
whereas the other two do not. This being the case, the 
virus and normal cell would be fixed. If both virus and 
normal cell are free to move, such as in blood, and each 
has the 1/2 chance to randomly collide with the 
antibody, so how many collisions are needed for the 
antibody to hit the virus in this 1 versus 2 system? Our 
intuition may once again suggest that the antibody 
would hit the virus at the third collision because the 
virus can also hit the antibody with the same 
probability, so the number of collisions would be 
5/2 = 2.5. In fact, the situation is more complicated as 
the normal cell takes part in the collision process, and 
consumes the number of collisions. For example, if the 
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hitting proceeds in the following sequence, say, the 
antibody collides, the virus collides, the antibody 
collides, the normal cell collides, the normal cell 
collides, clearly the antibody will not hit the virus at the 
fifth collision in this particular sequence. We, however, 
can use the Monte Carlo simulation to minic this 
collision process by randomly choosing the collision 
sequence. Fig. 1 shows the distribution of 10,000 sets of 
simulations, and each set of simulations continues until 
the occurrence of collision between antibody and virus 
with p > 0.95. Based on these 10,000 sets of 
simulations, we know that it needs 7.53 ± 2.05 
collisions (mean ± SD, n = 10,000, min = 5, max = 28) 
for the antibody and virus to collide each other in this 
imagining system. Naturally, the more are the collisions 
needed for the antibody to hit the virus, the larger is the 
chance that the virus escapes from immune 
surveillance.  

  
Fig. 1: Random collisions in 1 versus 2 system. 
  
 
 To have more practical feeling on the random 
collisions and its order of magnitude, we consider the 
chance of a leukocyte to hit an abnormal cell or a 
microbe in blood. In one-milliliter blood there are 
4,300 – 10,800 leukocytes and 4,200,000 – 6,900,000 
erythrocytes. On average one leukocyte has to monitor 
cells numbered between 639 cells (6,900,000 
erythrocytes)/(10,800 leukocytes) and 977 cells 
(4,200,000 erythrocytes)/(4,300 leukocytes). If there is 
an abnormal cell in the targeting range of a leukocyte, 
then we face the situation between 1 versus 640 system 
and 1 versus 978 system. Table 2 shows that the 
leukocyte will hit the abnormal cell between 1,916 and 
2,929 collisions at the extremely best situation. This, 
though, is an unlikely case as only the leukocyte moves 
and others are fixed, it gives us a numerical concept. If 

all the cells are free to move, our Monte Carlo 
simulation indicates that it needs 612,367 ± 1,916 
(mean ± SD, n = 250, min = 607,948, max = 617,687) 
to 1,435,562 ± 17,845 (mean ± SD, n = 250, min = 
1,407,887, max = 1,469,040) collisions for the 
leukocyte to hit its target. 
 The life span of most leukocytes is ranged from 
hours to years (neutrophils account for 54–75% of 
leukocytes with life span of 6 hours to a few days, 
eosinophils account 1–4% of leukocytes with life span 
of 8–12 days, basophils account for 0–1% of leukocytes 
with life span of a few hours to a few days, monocytes 
account for 2–8% of leukocytes with life span of 
months, lymphocytes account for 25–40% of 
leukocytes with life span of days to years). A 
conceptual calculation of ratio of life span may help us 
estimate our random collision. If the life span is ranged 
to 100 days from 6 hours, the ratio is (60×60×24×100 
sec)/(60×60×6 sec) = (8,640,000 sec)/(21,600 sec) = 
400. The ratios in our Monte Carlo simulation are 
(612,367 collisions)/(1,916 collisions) = 320 and 
(1,435,562 collisions)/(2,929 collisions) = 490, 
therefore the ratio of leukocyte life span is in the same 
order of magnitude of ratio of random collisions. 
 Equally, the virus should hit its host cell by random 
collision because there is no driving system in virus too. 
Hence the interaction among antibody, virus, host cell, 
immune cell and normal cell is random collisions. In 
this study, we analyze the virus dynamics in vivo along 
this line of thought.  
 

METHODS 
 
Collision probability.  The probabilistic model we 
used is the model II of waiting times, [2,3]  that is, the 
model continues randomly placing balls as long as a 
predefined hole remains empty. In our application, the 
probability that an antibody hits the virus is equal to 
accumulated probability + collision probability × (1 –
 accumulated probability after last collision). We define 
p > 0.95 as the probability of efficient collision between 
any two of antibody, virus, host cell, immune cell and 
normal cell, which means that the probability of 
missing collision is < 0.05 as this probability is 
generally used in medical statistical practice. [1]   
 
Monte Carlo simulation.  The Monte Carlo simulation 
is used to analyze the random collision process with 
respect to different numbers of viruses, antibodies, 
normal, immune and host cells, and whether normal and 
host cells are fixed or free to move. A set of simulations 
continues until the occurrence of collision between our 
predefined elements such as antibody and virus with 
p > 0.95. A hundred sets of simulations are conducted 
for each scenario. [8–10]   
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RESULTS AND DISCUSSION 
 
Collision between antibody and virus with a certain 
number of normal cells. The model we used in 
Introduction section is related to the collisions between 
an antibody and a virus with a certain number of normal 
cells. With p > 0.95 as criterion, the minimal number of 
collisions can be regressed as follows: 
collisions = 3 × (numbers of normal cells) – 3. This 
means that the antibody needs additional 3 collisions to 
hit the virus when a normal cell is added into the 
collision system. Fig. 2 displays the pattern of this type 
of collision, and the intersection line between shadowed 
and unshadowed parts is the minimal number of 
collisions required for an antibody to hit the virus. The 
collision number should be located in the shadowed 
part if the virus and normal cells are free to move. The 
same reasoning is applied to the collision between virus 
and host cell with a certain number of normal cells, and 
the collision between virus and immune cell with a 
certain number of normal cells.   

 

 
Fig. 2: Random collision between antibody and virus 

with a certain number of normal cells.  
 

Collision in five-element system. As random collisions 
occur among antibody, host cell, immune cell, normal 

cell and virus, we can image a five-element system, 
which serves as the simplest dynamic system 
containing all the necessary elements for consideration 
just as the earth is considered as a point in the classical 
physics leading to the huge success in scientific history 
and changing our daily life. This five-element system 
contains an antibody, a host cell, an immune cell, a 
normal cell and a virus. Any real-life situation is a 
version from this imaging five-element system, and a 
deep analysis of collisions in this abstract five-element 
system can help us understand what happens in the real 
system.  
 

Fig. 3: Random collisions in five-element system with 
respect to whether or not an element is fixed. 

 
In this five-element system, what we are actually 

interested in is the collisions of virus with antibody, 
host cell, and immune cell rather than with normal cell 
as well as the collisions among others. The only factor 
affecting the collision is whether or not an element is 
fixed (in tissue). Fig. 3 reveals several aspects with 
respect to whether or not an element is fixed using the 
Monte Carlo simulations: (i) the collisions between 

Table 2: Probability that a leukocyte hits an abnormal cell in 1 versus 640 system and 1 versus 978 system    
with p > 0.95 as the criterion. 

 
Collision Calculation of probability of collision 
 1 versus 640 system 1 versus 978 system 
1st 0+1/640×(1–0)=0.001563 0+1/978×(1–0)=0.001022 
2nd 0.001563+1/640×(1–0.001563)=0.003123 0.001022+1/978×(1–0.001022)=0.002044 
3rd 0.003123+1/640×(1–0.003123)=0.004680 0.002044+1/978×(1–0.002044)=0.003064 
. . . . . . . . . 
1916th 0.949940+1/640×(1–0.949940)=0.950018 . . . 
. . . . . . . . . 
2929th . . . 0.949983+1/978×(1–0.949983)=0.950034 
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antibody and virus, between host cell and virus, and 
between immune cell and virus can equally occur if all 
five elements are free to hit others, (ii) the fixed 
element requires more collisions if others are free to hit, 
and (iii) the collision number is minimal if host cell, 
immune cell, normal cell and virus are fixed and only 
antibody is free to hit, which can be calculated using 
the regression equation. 

It is somewhat unexpected that the collision 
number increases if an element is fixed, however this is 
reasonable when the collision is random and unaimed, 
because the fixed element loses the chance to actively 
hit others and can only be passively hit by others. The 
implication is that the host cell is more likely to be hit 
by a virus if the host cell is circulating in blood for 
example.  

The unaimed fighting in mathematical language is 
the linear Lanchester (Osipov) equation for a single 
battle, [4,5]  which we used in medical settings in the 

past: 
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, [6,7]  in our case x is the number 

of  attackers  (viruses),  y  is  the  number  of  defenders 

 
Fig. 4: Random collision with different numbers of 

antibodies with respect to whether or not an 
element is fixed. 

(antibodies), A is the attacker’s killing rate, D is the 
defender’s killing rate, t is the time, and both attacker 
and defender are unaimed. However, the difficulty in 
the use of the Lanchester (Osipov) equation is that there 
are civilians (for example, normal cells) involved in the 
fighting, who play the role of human shield.   
 
Reinforcement in antibody and virus. No matter what 
happens in collision, we will eventually face four 
scenarios, (i) the number of antibodies increases, in 
terms of the Lanchester (Osipov) equation, this is the 
battle with reinforcement on one side, 
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numbers of  both antibodies and viruses increase, this is  

 
Fig. 5: Random collision with different numbers of 

viruses with respect to whether or not an 
element is fixed. 
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the battle with reinforcement on both sides 
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; and (iv) the 

battle is finished. Naturally the mathematical forms of 
reinforcements depend on the replication mechanism of 
virus and the production rate of antibody.  

Fig. 4 enlightens the random collisions with 
different numbers of antibodies, which is the version of 
five-element system, that is, we keep the numbers of 
host cell, normal cell, immune cell and virus constant, 
and change the number of antibodies with respect to 
whether or not an element is fixed. Once again the 
randomness reveals something unexpected, that is, the 
number required for collision between antibody and 
virus increases with the increment of antibodies when 
the ratio of antibodies to virus is larger than 3. This 
phenomenon is understandable, because the increase in 
antibodies will increase the collisions among 
themselves and decrease the collision probability. 
Although there is the possibility of occurring of 
simultaneous collisions, there should be a small interval 
between two collisions at extremely small time scale. 
Regarding whether or not an element is fixed in 
collision, the fixed element requires more collisions if 
others are free, which is similar to Fig. 3.   

Fig. 5 illustrates the collisions with different 
numbers of viruses with respect to whether or not an 
element is fixed. In general, Fig. 5 is similar to Fig. 4, 
but the number of collisions is significantly lower in 
Fig. 5 than in Fig. 4. This is so because not only the 
collision between antibody and virus is meaningful, but 
also the collisions of virus with antibody, host cell and 
immune cell are all meaningful, thus the antibody has 
only 1/4 chance to hit the virus in five-element system 
whereas the virus has 1/4 chance to hit antibody, host 
cell and immune cell, respectively, in whole the virus 
has 3/4 chance to hit them.   

 
Hitting of 5% or 20% host cells by virus. We assume 
two endpoints in our Monte Carlo simulation: (i) 5% 
host cells are hit by viruses, which should lead to 
statistically significant difference in comparison of 
numbers of host cells before and after virus infection, 
and (ii) 20% host cells are hit by viruses, which would 
result in disfunction in human body although no human 
data are available, and we assume so because the 
military history shows that on average one side would 
lose the battle if it loses 20% troops in the battle. [5]  In 
this context, we are interested in how many antibodies 
can prevent host cells from being hit by viruses with 
regard to 5% and 20% endpoints. 
 Generally, the more the viruses, the more the 
antibodies needed. However, we need to consider the 
relationship between host cells and antibodies. As 

usual, we can at first imagine that the hitting of viruses 
at host cell is similar to the placing of balls continues 
randomly into four types of holes, which represent 
antibody, immune, host and normal cells. A simple 
deduction would be that the more the antibodies, the 
smaller the probability that the virus randomly hits a 
host cell, that is, the larger the ratio of antibodies to 
host cells, the smaller the chance that the virus infects 
the host cell. Such a deduction is logical because a large 
number of troops should be allocated to defend a large 
city while a small number of troops should be deployed 
to defend a small village. Therefore the number of 
antibodies should increase with the increase of number 
of the host cells in order to defend them. 

 
Fig. 6: Relationships among antibodies, host cells and 

viruses with regard to 5% (the upper panel) 
and 20% (the lower panel) host cells hit by 
viruses. 

 
 Fig. 6 displays the relationships among antibodies, 
host cells and viruses found by the Monte Carlo 
simulations, where the x and y axis represent the ratios 
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of antibodies to host cells and to viruses, respectively, 
while the z axis shows the remained number of viruses 
after hitting 5% host cells (the upper panel) and 20% 
ones (the lower panel). Two general conclusions can be 
highlighted as follows: (i) virus infection (5% host cells 
infected by viruses) can be avoid when the ratio of 
antibodies to viruses is larger than 10, and (ii) human 
body can be protected from disfunction (20% host cells 
infected by viruses) when the antibodies overnumber 
viruses in 3 to 4 folds. 
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