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Abstract: A significant basis of raw materials for the forest products
industry is provided by Cupressus lusitanica, one of the commercial timber
tree species found in the forest. Accurate tree and stand volume development
models are necessary for intensive forest management to yield timber. The
goal of this study was to develop and validate volume equations for
Cupressus lusitanica tree species in North-western highlands, Ethiopia. Four
tree volume estimation models were developed and validated for Cupressus
lusitanica plantation forest at Tsarikan. Tsarikan plantation forest was
selected purposively, and systematic sampling technique was employed to
select four square plots having an area of 100 m2 each. A total number of 46
trees were observed and diameter at breast height and tree height were
measured. Among the computed estimation models, an equation that used
both tree Diameter at Breast Height (DBH) and height as independent
predictors (V = -5.6*10-17+1.25*10-5(DBH2*h)) was selected to be the
best fit and suitable model for individual tree volume prediction of
Cupressus lusitanica monoculture forest depending on the respective
standard error of estimation and coefficient of determination values. This
volume estimation model can be used by forest growers and managers for
sustainable production and utilization of Cupressus lusitanica plantation
forest at North-Western highlands of Ethiopia, as well as other areas of the
country having similar agroecology. The use of species- and site-specific
models are strongly recommended for the countries having a varied range of
topographical and biophysical situations like Ethiopia.

Keywords: Cupressus lusitanica, Model Fitting, Standard Error, Volume
Equations

Introduction
Cupressus lusitanica, one of the forest's commercial

timber tree species, offers a substantial supply of raw
materials to the forest products sector (Faedo de Almeida
et al., 2016). For intensive forest management to produce
timber, accurate models for tree and stand volume
development are required (Shamaki and Akindele, 2014).
An equation that enables the accurate estimation of total
stem volume is one of the essential parts of a forest
growth and yield modelling system (Wang et al., 2017).
To develop a volume equation, precise information on
the stem volume and relevant predictor factors of the
sample trees are required (Silva et al., 2020). Tree
volume estimation is essential for forest management
tasks like stock assessment, wood valuation, delineating
the boundaries of the forest and estimating growth and
production (Levick et al., 2016). For volume estimation,
allometric models including parameters such as Diameter

at Breast Height (DBH), total tree height and
occasionally even some measurements of tree form are
frequently employed (Adekunle et al., 2013). Numerous
allometric tree volume models have been developed for
different kinds of tree species and forests in Europe
(Forrester et al., 2017).

The earliest and most popular type of models are
growth and yield models, which forecast the alterations
that tree stands would experience over time (Pretzsch et
al., 2015). Tree number estimation has historically been
given a lot of weight in forest management (Kumar et
al., 2020). A set of equations that allow for an accurate
estimation of the total stem volume is one of the most
crucial parts of a system for modelling forest growth and
yield (Tsega et al., 2019). To construct a volume
equation, precise information on the stem volume and
relevant predictor factors of the sample trees is required
(Yao et al., 2012). Studies on growth and yield,
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assessments of the forest growing stock, timber value
estimation and harvest zone selection all require it
(Machado et al., 2015). In volume equations, Height (H)
and Diameter at Breast Height (DBH) are frequently
used to determine stem volume (Chukwu et al., 2020).
By developing an allometric formula and applying field
measurements of the diameter at breast height (DBH)
and total height, the stem volume can be ascertained (Seo
et al., 2015). However, in this study, the Diameter at
Breast Height (DBH) and height of each tree were
measured and the volume of each tree was calculated
using the 0.5 form factor that is the default (Mandal et
al., 2020).

These models can be used to investigate the
interactions between various elements and analyse the
vertical structure of forest communities, although they
might not always be reliable predictors unless more exact
height values are needed (Vibrans et al., 2015). For
instance, determining the stem volume of standing trees
is necessary to evaluate the biomass of the forest.
Moreover, stem volume estimations are necessary for
sustainable forest management (Njana et al., 2016).
While there are several tree-sectional volumes, total tree
volume models make up the majority of volume models
created for sub-Saharan Africa (Mauya et al., 2014). A
tree species' rate of diameter growth is mostly dictated
by the quality of the site, soil type and the quantity of
trees in the stand (Erkan and Aydin, 2016). According to
Masota (2014), there is a strong correlation between the
diameter at breast height and the overall height of the
tree and environmental parameters such as soil nutrients,
climate, disturbance, successional status, topographic
position, tree species and genetic factors. When
calculating volume, this variation presents a problem that
necessitates the use of models calibrated for particular
circumstances, tree species, or environmental factors
(Henry et al., 2015).

In addition to producing timber, in the plantation
forest offers the surrounding inhabitants certain
ecosystem services. In this study to develops, compares,
tests and validates various allometric models to estimate
stem tree volume (stem plus branches) for individual et
al., 2011). It would be challenging to collect enough data
to develop a single universal model that takes into
consideration all variables and species, though, because
tropical forests involve a wide range of environmental
conditions and species (Harrison et al., 2018).
Developing species- and climate site-specific models
may be the most effective way to address these
problems. According to Pathmanathan (2015), argue that
as there isn't a single volume model that works for all
applications, volume equations need to improve in terms
of accuracy, flexibility, validity and normality of their
predictions. This study can be a portion of the solution,
as the volume estimation equation for C. lusitanica trees
at Tsarikan plantation forest. Many allometric tree

volume models have been developed in Australia (Mauya
et al., 2014) for a variety of tree species and forest types.
However, very few models have been developed for sub-
Saharan African tropical forest types (Henry et al.,
2011). Furthermore, questions concerning the accuracy
of models used to estimate forest volume in tropical
forests are raised by the absence of a wide range of
species, tree sizes and geographic locations (Henry C.
lusitanica in North-Western highlands of Ethiopia has
not yet been generated. The aims of this study were to
develop an appropriate tree volume estimation model for
C. lusitanica tree species in Awi zone, Ethiopia.

Materials and Methods

Study Area Description

The study area was conducted in Tsarikan plantation
forest, found in Amhara region, Fagita Lekoma District.
This district is geographically located between 100 57՛
23՛՛-11011՛ 21՛՛ N and 360 40՛ 01՛՛-370 50՛ 21՛՛E. The
average annual temperature and rainfall are 24 oC and
2874.5 mm, respectively and the elevation ranges from
2630-2750 m above sea level (m.a.s.l). Tsarikan’ state
forest has an area of about 72 hectares and is located 12
km north of Injibara. The forest was established around
1972 E.C. artificially by order of the state in order to
cover the mountainous areas with forest rather than
cultivated land for environmental purposes and firewood.
The forest has no forest roads, which are much needed
infrastructure for forest management (Fig. 1).

Fig. 1: Map of the study area

Climate and Topography

The forest site is found in dega climatic zone, mean
annual temperature of the area is11-22°C and the altitude
of the forest area ranges from 2630-2750 m above sea
level. The rainy season starts from May and ends at
October which is unimodal (one rainy season). The
amount of mean annual rain fall is estimated about 1300-
1500 mm. The major land form of the plantation forest
Area is dominated by slopes up to 40%. Whether the
classification of terrain is of macro or micro scale there

http://192.168.1.15/data/13045/fig1.png
http://192.168.1.15/data/13045/fig1.png
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are primarily three terrain features which are of great
importance for the tree harvesting work: ground
condition, ground roughness, slope. The carrying
capacity of the ground that is, its capacity to resist
physical pressure, primarily depends on type and
moisture of the soils. Therefore, Tsarikan forest ground
condition is good especially during dry season. The
surface structure influencing a particular set of
operations depends on the nature, size and number of the
obstructions. Humic Nistisols are the most common soil
types in this area.

Sampling Design and Technique

In the study area a systematic sampling technique
was employed. For plantation forests with well-defined
spacing and shape, a square plot is relatively more
suitable than a circular plot. Therefore, a square plot
within 10�10 m (100 m2) was considered for data
collection. The interval between consecutive sample
plots was 80 meters apart based on the length of the
forest which is actually about 300 meters. In order to
reduce the boarder effect, the sample plots were laid- out
20 m away from the edge of the forest both sides. To
gather the volume data, five trees that were closest to the
sample plots' centre were chosen for stem examination.
After measuring each of the 46 sample trees' Diameters
at Breast Height (DBH), the trees were felled and
divided into five equal-length sections that were spaced
30 cm from the tree's tip to the stump height. The actual
tree volume for C. lusitanica was determined using
volume formula.

A tape was used to measure the length of each
segment and a calliper was used to measure the mid-
diameter over bark in two opposing directions
perpendicular to the longitudinal axis of the tree's bole.
The total height (m) from stump to tip height (m) was
then calculated by adding the segment lengths. Using
Huber's formula, the total volume over bark (without
stump volume) of each sample tree (V m3) was
determined. Because of its higher accuracy and ease of
use, the Huber method was employed to estimate the
cubic volume of logs and trees (Schikowski et al., 2018).
The volume of each tree was determined using its own
diameter, height and using the common form factor (0.5).
For 35 (75%) data’s the initial model development and
11 (25%) data for model validation, all of the data set
was used. four volume estimation equation forms were
used.

Data Analysis

The most popular technique for locating estimators of
an equation's parameters is the least squares method.
Because the variation of the tree volume is not
homogeneous, it is challenging to fit stem volume data
using least squares (Cunia, 1964). Using the weighted
least squares approach to estimate the regression
parameters is one strategy to account for the variance's

non-homogeneity (WLS). Four (4) tree volume
estimation models were considered and the best suitable
model was selected. 75% of trees were used for model
development by using the general form factor for this
specific agroecology (0.5), while the remaining 25%
were used for the validation of the developed model
(Fischer et al., 2021). The parameters of these models
were estimated using the Statistical Analysis System
non-linear procedure. In order to evaluate the
performance of these models, the standard error of
estimate (SEE) and coefficient of determination (R2)
were determined. To identify the best fit model(s), the
model with the lowest values of SEE and the model with
the R2 value closest to 1 were considered. The tree
volume equations' exponent values are examined using
the t-test under the assumption that the residuals are
normally distributed (Teshome, 2005). In order to
determine whether the weighted residuals from the four
equations were normal, the (Duchnowski and
Wyszkowska, 2020) test was used (Table 1).
Table 1: Volume equations used for model development and

validation

Model code Model form
1 V = a dbhb

2 V = a+b(dbh)
3 V = a+b(dbh2)
4 V = a+b(dbh2*h)

V= volume (m 3 ); h = tree total height (m); DBH = tree diameter
at breast height (cm); “a “and “b” are the estimated parameters

Results

Model Development and Evaluation

From this result, four volume model forms were
chosen and further tested in the C. lusitanica species
using the extensive mensuration literature based on
evaluations of tree volume models in various forest
types. Three of the models have considered only DBH as
an independent variable, whereas both parameters (DBH
and H) are considered independent variables in the fourth
model. The estimated volume and measured volume in
m3 were then computed. The value of DBH was
measured in centimetres and then converted to metres in
order to calculate tree volume. It was also noticed that
the standard errors for each of the predictive parameters
varied between models. The performance of the models
was assessed using the four-fit statistics shown below
(Table 2). The coefficients for model parameters were
identified and the standard errors for each of the
predicting parameters were also observed to be variable
from model to model. Using the four-fit statistics, the
performance of the models was evaluated as below:

The given non-linear or exponential model was
changed into a linear equation by taking both sides into
the natural logarithm that is indicated below (Table 2).

Model 1 V = a DBH( b)
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(2)

(3)

(4)

Table (2), the parameters a and b are determined as
follows: the intercept ‘a’ = -10.36 and ‘b’ = 2.70, but the
value of ‘a’ was converted to an exponent. i.e., ‘10.37 =
0.00000314. Therefore, the fitted allometric equation to
obtain the tree volume of C. lusitanica tree species by
using DBH (m) as an explanatory variable was
developed as V= 0.00000314dbh2.7037 it shows in the
(Table 2):

Table 2: Regression statistics for the first model

Regression Statistics
Multiple R 0.98
R Square 0.96
Adjusted R Square 0.96
Standard Error 0.18
Observations 31
ANOVA
  df SS MS F Significance F
Regression 1 21.59 21.59 684.56 1.01266E-21
Residual 29 0.91 0.03
Total 30 22.50      

Table (3), shows that the values of parameters ‘a’ and
‘b’ are -0.19595 and 0.016112, respectively and the fitted
allometric equation to obtain the tree volume of C.
lusitanica tree species by using DBH as an explanatory
variable was V = -0.19595 + 0.016112 (DBH) OR V =
0.016112 (DBH) - 0.19595:

Table 3: Regression statistics for the second model

Regression Statistics
Multiple R 0.95
R Square 0.90
Adjusted R Square 0.89
Standard Error 0.03
Observations 31
ANOVA
  df SS MS F Significance F
Regression 1 0.31 0.31 262.66 4.49E-16
Residual 29 0.03 0.001
Total 30 0.34      

Table (4), shows that the values of parameters ‘a’ and
‘b’ are also estimated as -0.03869 and 0.000378,
respectively and the fitted allometric equation to obtain
the tree volume of C. lusitanica tree species by using
DBH as an explanatory variable was V = 0.000378
(DBH) - 0.03869:

Table (5), shows that the values of parameter ‘a’=
-5.6*10-17 and parameter ‘b’=10.0000125 and the fitted
allometric equation to estimate tree volume of C.
lusitanica tree species by using DBH and height as an
explanatory variable was V = -5.6*10-17+1.25*10-
5(dbh2*h).

Table 4: Regression statistics for the third model

Regression Statistics
Multiple R 0.97
R Square 0.95
Adjusted R Square 0.95
Standard Error 0.02
Observations 31
ANOVA
  df SS MS F Significance F
Regression 1 0.32 0.32 529.67 3.54E-20
Residual 29 0.02 0.00
Total 30 0.34      

Table 5: Regression statistics for the fourth model

Regression Statistics
Multiple R 1
R Square 1
Adjusted R Square 1
Standard Error 3.12442E-17
Observations 31
ANOVA
  df SS MS F Significance F
Regression 1 0.34 0.34 3.49E+32 0
Residual 29 2.83E-32 9.76E-34
Total 30 0.34      

Discussion

Model Goodness of Fit

Standard Error of Estimate (SEE) and coefficient of
determination (R2) are the most commonly used methods
to measure goodness of fit (Chicco et al., 2021). As this
results the value of the coefficient of determination (R2)
closes to 1 and as the value of the standard error of
estimate becomes low, the model is said to be well fitted
(Table 6).
Table 6: Allometric equations and respective error of estimate and

coefficient of determination

No. Allometric Equations Error of
Estimate

Coefficient of
Determination

1 V = 0.00000314dbh2.7037 0.177 0.9595
2 V = 0.016112(DBH) -

0.19595
0.0342 0.9

3 V = 0.000378(DBH) -
0.03869

0.025 0.948

4 V=-5.6*10-17+1.25*10
5(dbh2*h)

3.12*10-17 1.0

Table (6), shows that in the fourth model, the
Standard Error of Estimate (SEE) is nearly negligible
and the coefficient of determination (R2) is equal to 1, it
indicating that the model is relatively the best fit to use
for the estimation of C. lusitanica tree species in this
study area.

Model 2 V = a+ b DBH( ( ))

Model 3 V = a+ b DBH2( ( ))

Model 4 a+ b DBH2 ∗ h( ( ))
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Model Validation

Model goodness of fit alone cannot justify the
utilization of a model, whereas it must be validated
whether the fitted model is good or not (Barrett, 2007). A
T-test-tested for testing the goodness of fit (Table 7).

Model 1 (V = aDBHb)

The computed t-statistical test and respective p value
for the first model are 4.4159 and 0.00084, respectively.
If the value of P is greater than 0.05 at a 95% confidence
interval, then the statistic test is non-significant and vice
versa (Amrhein et al., 2017). In this case, the value of P=
0.00084, which is less than 0.05, indicating that there is a
significant difference between the observed value and the
predicted value. Therefore, the fitted allometric equation
cannot be used to predict the individual tree volume of
the C. lusitanica tree species (Table 7).
Table 7: t-Test Paired two sample for means

Variable 1 Variable 2
Mean 0.25 0.02
Variance 0.03 0.00
Observations 10 10
Pearson Correlation 0.97
Hypothesized Mean Difference 0
Df 9
t Stat 4.42
P(T<=t) one-tail 0.00
t Critical one-tail 1.83
P(T<=t) two-tail 0.00
t Critical two-tail 2.26  

Model 2 (V = a+b(DBH))

From this result the computed t-statistical test is
1.345 and the p-value is 0.1057. The computed statistical
test indicated that there is no significant difference
between the observed tree volume and the predicted tree
volume. Therefore, this fitted allometric equation can be
used to predict individual tree volumes in the C.
lusitanica tree species (Table 8).
Table 8: t-Test Paired two sample for means

Variable 1 Variable 2
Mean 0.25 0.22
Variance 0.03 0.02
Observations 10 10
Pearson Correlation 0.94
Hypothesized Mean Difference 0
Df 9
t Stat 1.35
P(T<=t) one-tail 0.11
t Critical one-tail 1.83
P(T<=t) two-tail 0.21
t Critical two-tail 2.26  

Model 3 (V = a+b(DBH2))

From this finding the computed t-statistic and P value
are 0.932 and 0.1878, respectively. The computed
statistical test indicated the difference is not significant
between observed and predicted tree volume and then the
fitted allometric model can be used to predict individual
tree volume in the C. lusitanica tree species (Table 9).

Table 9: t-Test paired two sample for means

Variable 1 Variable 2
Mean 0.25 0.23
Variance 0.03 0.02
Observations 10 10
Pearson Correlation 0.96
Hypothesized Mean Difference 0
Df 9
t Stat 0.93
P(T<=t) one-tail 0.19
t Critical one-tail 1.83
P(T<=t) two-tail 0.38
t Critical two-tail 2.26  

Model 4 (a+b(DBH2*h))

Table (10), shows that the computed t-test for the
fourth allometric model is 1.38479 with a respective P-
value of 0.09974, indicating a non-significant difference
between observed and predicted tree volume and hence
the fitted allometric model can be used to predict
individual tree volume in the C. lusitanica tree species.
Among the different models used, the fourth model 4
(a+b(dbh2*h)) estimates individual tree volume using
DBH and total height as predictor variables. The
standard error estimate of this model is almost negligible
(3.12*10-17) when compared to the other three models.
Additionally, the coefficient of determination is greater
than the rest of the models usually = 1. The lowest
estimate of Standard Error (SEE) and the highest
coefficient of determination (R2) make  the model more
suitable and recommended for predicting the individual
tree volume of C. lusitanica species in this study.

Table 10: t-Test Paired Two Sample for Means

Variable 1 Variable 2
Mean 0.24 0.25
Variance 0.03 0.03
Observations 10 10
Pearson Correlation 0.99
Hypothesized Mean Difference 0
Df 9
t Stat 1.38
P(T<=t) one-tail 0.09
t Critical one-tail 1.83
P(T<=t) two-tail 0.19
t Critical two-tail 2.26  
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As a result, the best tree volume estimation model
was found to be V = a + b (DBH2*h), if both DBH and
tree height were used as predictors. Moreover, the model
(V = 0.000378 (DBH) - 0.03869) can also be used for
tree volume estimation using tree DBH only as a
predictor. This study area shown how air temperature is
the main factor influencing C. lusitanica growth. This
outcome is in line with a productivity model formed for
young, densely stocked C. lusitanica, which discovered
that the mean annual air temperature had the strongest
correlation with volume mean annual increment (Watt et
al., 2008). Additionally, this result supports anecdotal
reports that the species favors warm locations and
climates (Hoey et al., 2016). The temperature optimum
for C. lusitanica is not reached in this region's temperate
environment, according to the positive linear association
between mean minimum air temperature and site index.

The variances of the residuals were homogeneously
distributed, as demonstrated by the best model scatter
plots of weighted values (Stöckl et al., 2014). In general,
it was discovered that the three models that solely used
DBH as a predictor performed worse than the models
that included both height and DBH. Despite this, some
models performed worse when it came to C. lusitanica
volume prediction (Isaac, 2018). This study's
productivity determinants significantly improve
knowledge of how the environment controls C.
lusitanica growth. The findings clearly show that the
species prefers warm, fertile locations with sufficient
root depth. The study's findings regarding the
relationship between productivity and root depth indicate
that the species needs deep soils. One of the main
physical characteristics of soil that has been identified as
affecting forest production is soil depth. Shallow soils
change the availability of water in addition to limiting
production by limiting access to nutrients (Calvaruso et
al., 2017). Although these conclusions are in line with
anecdotal reports, they go beyond them by outlining the
functional forms of driving variables and their
proportional significance to total output.

Since C. lusitanica is sensitive to site fertility there is
a lot of room to improve the model's representation of
site fertility (Burdon and Moore, 2018). In contrast to
deforest/mixed scrubland sites, the results reported here
clearly demonstrate a significant increase in stands
developed on ex-pasture/cropland/grassland sites, which
are more likely to have had a history of fertilization.
According to earlier studies, the commonly planted
plantation species P. radiata is more productive on ex-
pasture sites (Beets et al., 2019).Therefore, future studies
should concentrate on generating geographical layers for
soil chemical characteristics such the soil C:N ratio,
which have been shown to affect C. lusitanica
productivity in the past (Mauritsson, 2018). Predicting
the site index for this species is probably going to be
better with the use of layers for continuous factors
characterizing soil fertility. Despite the model's

applicability across wide gradients, there wasn't enough
information available for about low rainfall and
extremely low temperatures both have a significant
negative impact on productivity, as demonstrated by a
prior model formed using data from young, heavily
stocked plots. In order to ascertain how rainfall affects
productivity on dryland sites and to validate the shape of
the air temperature relationship at low values, more
measurements from mature trees from cold and dry
locations should be made.

Model Testing, Fitting and Validation

The selected equations were evaluated for
prognostication, accuracy and precision using test data
that was suppressed. Three factors were used by Özçelik
and Cao (2017) to evaluate the equations in terms of R:
(a) bias (the mean of the variations between the projected
and observed volumes); (b) mean absolutes differences;
and (c) standard deviation differences, which are also
referred to as standard error of estimation (SEE). As
previously reported in other investigations, the study was
able to fully fit the association with a high model fit
(Kuria et al., 2019). Two techniques for evaluating
regression models based on statistical fitness or
prediction errors derived from ordinary residuals were
developed by (Alexander et al., 2015). The first
technique compares models using statistics obtained
directly from models derived from entire data sets,
whereas the second process uses a validation data set,
which usually comprises less than or half of the full data
set (Cawley and Talbot, 2010). The results are compared
with the real observations and the model is used to
forecast the behaviour of the forest where the test data
were obtained (Blanco et al., 2007).

The behaviour of the stands that generated the test
data is predicted by the model and the outcomes are
compared to the actual observations (Pretzsch, 2009).
From this result based on its R2 and standard error value,
the top model (model 4) was chosen after the first model
was formed. It demonstrates that model 4 was the top-
performing model and performed the best in practically
every fit criterion (Sharma et al., 2021). Dependable
models and input data are necessary for reliable
predictions (Blischke and Murthy, 2000). To ascertain a
yield prediction model's accuracy and validity, testing is
necessary (Haboudane et al., 2004). Nonetheless, the
model's precision is dependent on the sample's ability to
accurately reflect the forest, the quantity and duration of
remeasurements, the predictor variables' covariances and
the model's coefficients (Babcock et al., 2016). One
method of fitting field data to a pre-established
regression is one way to fit a yield prediction model from
forest data (Palanivel and Surianarayanan, 2019).
Comparing model simulation with growth and yield
measurements is the most effective method of validating
a process-based model (Zhou et al., 2005).The easiest
way to test a model is to use another set of forest data
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that wasn't used to produce the yield model (Weiskittel et
al., 2011). A model's validity and precision must be
assessed once it has been built and fitted to data
(Steyerberg et al., 2010). The standard error value and
coefficient of determination from the first model's
development in this study were utilized to establish that
model 4 was the best.

Conclusion and Recommendation
Developing forest management plan is basic activity

for sustainable forest production and utilization of forest
products. Forest inventory is very challenging and
resource demanding activity in forestry and it is a
common census that the use of precise forest yield
prediction models is preferable rather than direct
measurement. Accurate model was developed to estimate
volume for C. lusitanica species in the highlands of
Amhara region. A model that used both DBH and height
as independent variables is the most suitable for
individual tree volume prediction. Moreover, an
alternative model that used DBH alone as independent
variable is also developed. These findings demonstrate
how useful theme spatial layers are as motivating factors
for assembly productivity models. When compared to
national models that were previously formed using
observed point data for C. lusitanica, the accuracy of the
model provided in this paper was favorable.

The use of spatial layers to generate models is highly
supported by this accuracy and the compatibility of
important driving variables with those previously
reported for C. lusitanica. As more factors, like the
chemical characteristics of the soil, become available,
models formed from these layers should get better. This
method significantly lowers the cost of developing the
model and the comprehensive maps offer crucial
decision assistance for identifying the best locations for
species like C. lusitanica. General equations used for
yield prediction can lead either to over-estimation or
under-estimation. However, for countries having a wide
range of geographical and biophysical conditions and
diverse tree species like Ethiopia, the use of species- and
site-specific models are strongly recommended for
precise prediction. For forest management choices
concerning C. lusitanica plantations in Ethiopia, the
designed models must be properly documented and
included into forest information systems. Further
research is recommended to investigate the application of
the developed models to other forest areas where this tree
species is grown. A better approach would be to develop
region-specific models for all forest plantation areas in
Ethiopia.
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