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Abstract: Accurate prediction of river meander migration is crucial for 

effective river management and operation, particularly in light of climate 
changes and human-induced interventions. Existing models often rely on 

single-equation approaches, such as bank erosion rate versus excess bank 

velocity or excess bank shear stress, which limit their ability to 
comprehensively capture the complex dynamics of meander evolution. This 

study presents a novel two-equation model for predicting river meander 

migration, representing a significant advancement in the fields of 

geomorphology, hydrology and river engineering. The proposed model 
introduces two coupled equations that comprehensively determine the 

movement of a point on the channel centreline capturing both the change in 

the channel centerline radius of curvature (r) and the change in the arc angle 
(θ). This approach provides a more holistic representation of meander 

migration compared to previous methods, allowing for a better understanding 

of the underlying physical processes. Furthermore, the paper presents an 

equation to estimate the critical discharge required for the occurrence of neck 
and chute cutoffs at a meander bend, incorporating the influence of channel 

geometry and flow characteristics. This contribution enhances the 

understanding of the cutoff process and its implications for river 
morphology. To validate the effectiveness of the meander migration model, 

two distinct case studies are considered: (1) Prediction of thalweg 

wavelength meandering in the Nile River, Egypt, where the model 

successfully captured the observed meander characteristics, demonstrating 
its accuracy in predicting large-scale meander patterns; and (2) 

Determination of river channel radius of curvature in four rivers in Texas, 

USA, where the model accurately predicted the radius of curvature in these 
diverse river systems, showcasing its applicability across different scales and 

environments. These results highlight the model's ability to accurately 

predict meander migration and cutoff events, making it a valuable tool for 
river management and planning. 
 

Keywords: River Meander Migration, Meander Neck-Cutoff and Chute 

Cutoff, Excess Energy Theory, Energy Balance Theory, Response Theory 

For River Adjustment, Nile River (Egypt), Four Texas Rivers (USA)  

 

Introduction 

Throughout history, rivers have served as vital habitats 

for various aquatic organisms and wildlife such as fish, 

aquatic plants and aquatic birds. In addition rivers have 

been attractive locations for human settlements and 

civilizations, drawing people to live along their flood 

plains. However, the dynamic nature of rivers influenced 

by factors such as floods, droughts and the effects of global 

warming and climate change, leads to constant evolution 

and movement of river channels over time. Rivers exhibit 

lateral and downstream/upstream shifts, resulting in 

changes to their plan form, including the straightening of 

curved reaches (meander cut-off or meander decay) or the 

increasing curvature of meanders meander growth. These 

lateral shifts or contractions of river channels have 

significant impacts on river banks, flood plains and the 

surrounding environment, including existing structures 

such as river bridge crossings, intake water plants, roads, 

agricultural lands and buildings. The potential threats 
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posed by river shifting, shrinking and lateral movements 

necessitate a deep understanding and accurate prediction 

of river channel meandering evolution. 

In their study Briaud et al. (2001) highlight that rivers 

are dynamic systems where the flow of water can alter the 

elevation and lateral position of the riverbed and 

riverbanks. Meanders, in particular, are susceptible to 

changes in lateral location due to the centrifugal force that 

increases shear stress at the interface between water and 

soil. Predicting the movement of meanders is both 

challenging and crucial as such movements can lead to 

costly maintenance issues for nearby bridges. Briaud et al. 

(2001) provide an example from the Brazos River near 

Navasota, Texas, where a meander shifted over 300m 

towards a bridge abutment between 1910 and 1981, while 

another meander further downstream moved over 200m 

towards the Navasota River during the same period. 

Therefore, understanding and predicting the formation and 

ongoing processes of river channel meandering evolution 

are of paramount importance for efficient and successful 

river management, operation, protection and control. 

Existing models for predicting river meander migration 

often rely on single-equation approaches, such as bank 

erosion rate versus excess bank velocity or excess bank 

shear stress, which limit their ability to comprehensively 

capture the complex dynamics of meander evolution. This 

study presents a novel two-equation model for predicting 

river meander migration, representing a significant 

advancement in the field. Furthermore, the paper presents 

an equation to estimate the critical discharge required for 

the occurrence of neck and chute cutoffs at a meander 

bend, incorporating the influence of channel geometry and 

flow characteristics. This contribution enhances the 

understanding of the cutoff process and its implications for 

river morphology. 

Review of Existing Works 

Existing research on river meandering can be classified 

into several categories. First, there are empirical equations 

and regression-based equations that describe the plan form 

of river meanders, such as the regime theory geomorphic 

equations proposed by Leopold and Wolman (1960), 
Howard and Hemberger (1991), and Finotello et al. 

(2020). Second, various theories and doctrines have been 

put forth to explain and describe river meanders. For 

example, Leopold and Langbein (1966) suggested that 

meanders appear in the form that minimizes the work done 

by the river in turning, while Langbein and Leopold (1966) 

presented the theory of minimum variance, where a stream 

adjusts to increasing discharge by minimizing the total 

variance of its dependent variables. Other theories attribute 

meandering to perturbations in turbulent flows (Yalin, 

1971), the growth and decay of secondary currents (Chang, 

1984), the action of horizontal turbulence bursts on 
deformable banks (Da Silva, 2006), or excess energy 

(Hafez, 2022). Third, there are empirical equations that 

model meander migration, including the approaches 

proposed by Keady and Priest (1977); Hooke (1980); Brice 

(1982); Nanson and Hickin (1983). Fourth, time-sequence 
maps and extrapolation approaches have been used to 

study meander migration (Brice, 1982; Lagasse, 2001). 

Fifth, several meander migration models have been 

developed by researchers such as Ikeda et al. (1981); 

Howard and Knutson (1984); Seminara et al. (2001); Abad 

and Garcia (2006); Seminara (2006); Camporeale et al. 

(2007); Frascati and Lanzoni (2009); Pittaluga and 

Seminara (2011); Schwenk et al. (2015); Bogoni et al. 

(2017); Monegaglia and Tubino (2019). Finally, there is 

work specifically focused on meander cutoff, a complex 

process that involves factors such as the material 
composition of the riverbank, changes in incoming water 

and sediment, boundary conditions and vegetation 

(Hooke, 2004; Constantine et al., 2010; van Dijk et al., 

2012; Ielpi et al., 2021; Wu et al., 2023). 

The first two categories, empirical approaches and 

theories on river meandering, have been extensively 

discussed in Hafez (2022). This study primarily focuses on 

meander migration analytical modeling, presenting 

relevant findings from both empirical and theoretical 

approaches to meandering. Meander cutoff is briefly 

addressed as a highly complex process that warrants 

separate analysis and is beyond the scope of this study. The 
factors influencing cutoff in natural rivers are 

multifaceted, including the composition of riverbanks, 

changes in water and sediment inputs, boundary conditions 

and vegetation (Wu et al., 2023). 

Regarding meander migration, Monegaglia and Tubino 

(2019) argue that the geometry of the bankfull channel 

should change during the planform evolution of a 

meandering river for two main reasons. First, the elongation 

of a channel connecting two floodplain points leads to a 

subsequent reduction in channel slope (Zolezzi et al., 2009; 

Eke et al., 2014). Second, any variation in local slope 

triggers a counteracting mechanism resulting from the 

imbalance between sediment supply and sediment transport 

capacity. Blanckaert (2011) further emphasizes that the 

migration rate of meanders depends on multiple parameters, 

including the meander planform (which defines the 

evolution of centerline radius of curvature, width and 

influences of upstream and downstream bends), average 

flow depth, sediment characteristics, bank erodibility and 

roughness. The occurrence of channel straightening in a 

meander reach can be attributed to a change in fluvial style, 

marked by a significant increase in the wavelength towards 

a straight channel path, or through cutoff processes (such as 

neck cutoff or chute cutoff) depending on the relative 

magnitudes of the variables (Hafez, 2022).  

In the field of river meander migration, various models 
have been developed to study the complex processes of 

bank erosion and channel evolution. One influential model 
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introduced by Ikeda et al. (1981) presents a morphodynamic 

approach to bank erosion in sinuous channels. This model 

describes the lateral migration rate, denoted as ζ, at a point 

along the channel centerline. It is defined as the product of 
a bank erodibility coefficient, E0 and an excess bank 

velocity, Ub, which arises from perturbations in channel 

curvature and bar formation (Eq. 1): 

 

𝜁 =  𝐸0𝑈𝑏  (1) 

 

The excess bank velocity represents the difference 

between the depth-averaged near-bank velocity and the 

cross-sectionally averaged velocity. 

The work of Ikeda et al. (1981) has served as a source 

of inspiration for subsequent studies on meandering 
migration, with researchers such as Seminara et al. (2001); 

Seminara (2006); Camporeale et al. (2007); Frascati and 

Lanzoni (2009); Pittaluga and Seminara (2011); Ashraf 

and Liu (2013); Monegaglia and Tubino (2019) adopting 

and building upon their approach. However, Hafez (2022) 

points out a limitation of this model, namely that it requires 

an initial flow curvature or perturbation for sustained 

meandering. Linear stability theory for finite domains 

confirms the need for continuous perturbations for 

sustained meandering, Weiss et al. (2022). 

To model the lateral rate of hydraulic erosion, Motta et al. 

(2012) introduced Eq. (2), which relates the erosion rate, E*, 
to the excess shear stress in each bank-material layer: 

 

𝐸∗ =  𝑀∗  (𝜏∗

𝜏𝑐
∗⁄ − 1)  (2) 

 
The erosion-rate coefficient, M* and the critical shear 

stress, τc*, are key parameters in this relation. While the 

bank shear stress 𝜏∗is assumed to be equal to the near-bank 

bed shear stress predicted by a hydrodynamic model. 

Hafez (1995) showed significant differences between the 

bed and bank shear stresses using the two-equation (κ-ε) 

non-linear turbulence hydrodynamic model. Zhao et al. 

(2021) adopted Eq. (2) for bank erosion, but employed a 

different equation for bank accretion, introducing 

proportionality coefficients to probabilistically constrain 

channel width variations. 
Abad and Garcia (2006) developed the River 

Restoration Toolbox (RVR), a toolbox for simulating river 

meander migration based on physically based bank erosion 

methods. RVR Meander offers two methods for computing 

the river centerline migration: A classic approach based on 

near-bank excess velocity multiplied by a river migration 

coefficient and a physically based approach that accounts 

for fluvial erosion driven by exceedance of a critical shear 

stress and mass soil structure failure. However, the RVR 

model has certain limitations, including the use of a 

constant water discharge, neglect of bed aggradation or 
degradation, assumption of constant channel width, 

omission of cutoff processes and the constant application 

of specified parameters over time, which may not account 

for natural or man-made perturbations. 

While numerical models, including meander-dynamics 
models, are valuable tools for studying river meandering, 

their reliability depends on the availability of sufficient 
data for calibration. Typically, calibration involves 

adjusting soil parameters, such as the erosion-rate 
coefficient or the soil critical shear stress, to match known 

historic river centerlines with recent ones. The calibration 
process requires extensive flow data over long time 

periods, which may not always be readily available.  
Meander-dynamics models are commonly employed to 

investigate the long-term dynamics of river meandering 
over hundreds, if not thousands, of years. For instance, 

Schwenk et al. (2015) conducted a simulation spanning 
30,000 years to study the life cycle of a meander bend, 

while Camporeale et al. (2007) simulated meander 
evolution over a period of 3,000 years. However, these 

models heavily rely on data availability for calibration, 
posing a challenge when such data is not accessible 

(Hafez, 2022). In such cases, the reliability of these models 
diminishes and alternative approaches become necessary 

to predict the final equilibrium geometry of river 
meanders. The present approach stands out as one of the 

few viable options in such scenarios. 
Furthermore, existing models predominantly focus on 

bank erosion conditions but often overlook bank 
deposition processes, employing the same bank erosion 

coefficient (denoted as Eo or M*) without accounting for a 
separate coefficient to represent bank accretion. For 

instance, Monegaglia and Tubino (2019), whose meander 
migration model is similar to Eq. (1), assume that their 

bank migration equation implicitly assumes a certain rate 
of bank shifting scaled by the coefficient Eo, regardless of 

whether the bank is retreating or advancing. Similarly, 
Zhao et al. (2021) set both the erosion and deposition 

coefficients (in m/s) to 1×10−6 m/s. The erosion coefficient 
essentially acts as a placeholder for unknown physics and 

includes numerical aspects of the meander model 
implementation, making it a "fudge factor" in practice 

(Crosato, 2007).  
It is worth noting that in these models, the local 

migration rate is calculated perpendicular to the centerline 
direction (Sylvester et al., 2019; Zhao et al., 2021). The 

Ikeda et al. (1981) relation assumes that rivers migrate to 
maintain constant bankfull channel width, but does not 

provide underlying physics to support this assumption. 
Parker et al. (2011) question the validity of this 

assumption, particularly concerning the synchronization of 
inner-bank depositional processes with outer-bank 

erosional processes. 
The application of the meander migration model 

proposed by Ikeda et al. (1981) to real river cases has 

raised concerns regarding its accuracy and reliability. This 

issue is exemplified by the study conducted by Ashraf and 

Liu (2013), who utilized the RVR meander package 
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incorporating Ikeda et al. model (Eq.1). They aimed to 

calibrate the model by estimating the bank erosion 

coefficient (Eo) using four rivers in Texas, USA: The 

Brazos River, Nueces River, Sabine River and Trinity 
River. The calibration process involved determining Eo 

based on historical planform changes and measured long-

term migration rates. 

The calibration results revealed significant prediction 

errors, measured as the ratio of the area between simulated 

and observed centerlines to the length of the observed 

centerline. The Nueces River exhibited prediction errors 

ranging from 29.51-91.58 m, while the Brazos River 

showed errors ranging from 39.28-41.85 m. The Sabine 

River had errors ranging from 41.7-130.87 m and the 

Trinity River had errors ranging from 42.38-84.11 m. 

Moreover, the erosion coefficient varied not only between 

different rivers but even within the same river bend, 

exhibiting a wide range of values. For instance, in the 

Sabine River, the erosion coefficient varied from 3.66*10-

8-1.43*10-7, representing a four-fold difference. 

Interestingly, when Ashraf and Liu (2013) ran the 

model for different projection years using the minimum 

calibrated projection error coefficients, they obtained 

projection errors ranging from 0.11-0.26 times the channel 

width. The channel widths ranged from 129-171 m. 

Typically, the errors in the calibration process are expected 

to be smaller than in the verification process. However, in 

the case of Ashraf and Liu's application of Ikeda et al. 

model to the four USA Rivers in Texas, this was not the 

observed pattern. 

To assess the precision and accuracy of various river 

migration prediction equations, Briaud et al. (2001) 

conducted a study using six case histories from four rivers 

in Texas, USA: The Brazos River, Nueces River, Trinity 

River and Guadalupe River. They evaluated prediction 

methods such as the Keady and Priest (1977) approach, the 

Hooke (1980) approach, the Brice (1982) approach, the 

Nanson and Hickin (1983) approach and the time-

sequence maps and extrapolation approach (Brice, 1982; 

Lagasse, 2001). The results showed that the Keady and 

Priest method was reasonably conservative, the Hooke 

method appeared overly conservative, the Brice method 

significantly underpredicted the measurements and the 

Nanson and Hickin method yielded mixed results. 

In summary, meander migration models play a crucial 

role in understanding the complex processes of river bank 

erosion and channel evolution. However, these models 

often rely on field data calibration and have limitations in 

terms of data availability and accuracy. The bank erosion 

coefficient and its relationship to water discharge and 

sediment load remain important considerations. Improving 

the reliability and accuracy of meander migration models 

requires further research and development to better capture 

the underlying physics and dynamics of bank erosion and 

deposition processes. 

Some researchers have employed minimization 

concepts of energy-related quantities to determine channel 

geometry, including plan form geometry. For example, 

Yang et al. (1981) used the unit stream power, Chang 
(1992) utilized stream power, Yalin (1992) employed the 

flow Froude number and Yalin and Da Silva (2001) 

utilized average velocity. Hafez (2000; 2001a-b; 2002) 

applied extremal methods to quantify changes in flow 

discharges and sediment loads for determining the 

geometry of straight alluvial river reaches. He employed a 

direct variational or extremal approach, which avoids the 

complexities associated with minimization techniques and 

computer programming. This approach will be utilized in 

the current study. The following paragraphs are going to 

discuss the direct variational or extremal approach by 
Hafez (2000). 

Hafez (2000) introduced a response theory that predicts 

the direction and magnitude of adjustments in alluvial 

rivers when transitioning from one regime to another. The 

theory is based on the tendency of alluvial channels to 

reach dynamic equilibrium after being disturbed by 

extreme conditions such as floods or dam construction or 

meander cutoff. Various extremal concepts are employed, 

including energy dissipation (such as stream power, unit 

stream power and energy slope), sediment efficiency, 

friction factor and Froude number. Initially, the theory 

focused on straight river sections and later expanded to 
incorporate additional extremal concepts, such as the 

extremal boundary shear stress (Hafez, 2001a), the effects 

of sediment loads on stream geometry (Hafez, 2001b) and 

the effects of water discharge and sediment changes on 

hydraulic geometry exponents (Hafez, 2002). The 

hydraulic exponents of the regime theory, which are 

typically considered constants, are derived in a more 

general manner that encompasses the classical reported 

values as shown in Hafez (2000; 2002). 

The response river theory, Hafez (2000), is described 

in detail herein due to its relevance to the current study. 
The theory is based on the following assumptions: (1) A 

rectangular and one-dimensional analysis, (2) A straight 

and wide channel, (3) At-a-station hydraulic geometry 

analysis and (4) First-order variations of the variables. 

The equilibrium conditions of a river channel depend 

on various factors, including channel discharge, roughness 

measure, energy slope, width, depth, sediment discharge 

and bed material size. Mathematically, this can be 

expressed as, Hafez (2000): 
 
𝛹 =  𝛹 (𝑄, 𝛷, 𝑆, 𝐵, 𝐷, 𝑄𝑠 , 𝐷𝑠) (3) 

 

Here, Ψ represents a variable that describes the 

equilibrium conditions of the river, such as energy slope or 

stream power, Q is the flow discharge, Φ represents a 

measure of channel roughness, such as the Manning 

roughness coefficient or Darcy Weisbach friction factor. S 

is the energy slope, B is the average width of the reach, D 
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is the average depth, Qs is the sediment discharge and Ds is 

a measure of bed material size. According to the response 

theory, if any of the variables in Eq. (3) change, the 

corresponding change in Ψ required to restore equilibrium 
should be zero, expressed as: 

 

𝛥𝛹 =  ∑ (
𝜕𝛹

𝜕𝑥𝑖 
)𝑖  𝛥𝑥𝑖 + 𝐻. 𝑂. 𝑇 = 0. (4) 

 

Here, xi represents any of the variables on the right-

hand side of Eq. (3), H.O.T. denotes higher-order terms 

and Δxi represents the change in the variable relative to its 

original value. For example, Δxi = x2-x1, where x2 is the 

value of the variable after an excitation, such as a flood or 
dam and x1 is the value before the excitation. 

An equivalent linear form of Eq. (4) is: 

 
ΔΨ

Ψ
 = 0 (5) 

 

Equations (4-5) is the general equation corresponding to 

an extremal condition (either maximum or minimum) of the 

function describing the equilibrium conditions of the river 

channel. This function can be stream power, energy slope, 
friction factor, sediment transport, or Froude number. 

The application of Eq. (5) according to Hafez (2000) is 

demonstrated to predict changes in width, depth and slope 

in straight reaches. For a very wide channel, the Darcy-

Weisbach friction factor is well known to be expressed as: 

 

𝑓 =  
8 𝑔 𝐷3 𝑆 𝐵2

𝑄2
  (6) 

 

Here, f represents the friction factor, g is the 
gravitational acceleration and all variables are assumed to 

be reach averages. 

To determine extremal conditions for the friction factor 

which means that the river channel adjusts any or all of the 

variables in the right hand side of Eq. (6) to impose 

extreme value of the friction factor function, the variation 

of its function is set to zero, resulting in Δf = 0 or 

alternatively Δf/f = 0. This can be expressed 

mathematically as: 

 

𝛥 𝑓 =  
𝜕𝑓

𝜕𝐷
 𝛥𝐷 + 

𝜕𝑓

𝜕𝑆
 𝛥𝑆 + 

𝜕𝑓

𝜕𝐵
 𝛥𝐵 + 

𝜕𝑓

𝜕𝑄
 𝛥𝑄 (7) 

 
By applying Eq. (7) and Eqs. (5-6), the following 

equation is obtained (Hafez, 2000 for detailed derivation): 
 

3 
Δ𝐷

𝐷
+ 

Δ𝑆

𝑆
+  

Δ𝐵

𝐵
 − 2 

Δ𝑄

𝑄
= 0 (8) 

 
Equation (8) in combination with flow continuity and 

flow resistance equations determine the adjustments in 

width, depth and slope of a river channel due to changes in 

flow discharge, assuming discharge is the only controlling 

or independent variable. The effects of sediment load 

discharge were later incorporated in Hafez (2001a-b). The 

response theory has been primarily applied to straight river 

reaches, but it will be herein extended to curved and 

meandering channels as well. Overall, Hafez's response 

theory provides a framework for predicting river 
adjustments based on extremal conditions and the concept 

of dynamic equilibrium. It considers various variables and 

their interactions to model the changes in width, depth and 

slope of alluvial rivers. 

In Hafez's ground-breaking work in Hafez (2000), the 

response theory demonstrated its effectiveness in 

predicting a range of river adjustments in various locations 

around the world. For instance, the theory successfully 

predicted the width of the channel flood, as well as the 

depths of scour and deposition at the Basilone Road Bridge 

on the Santa Margarita River in California, USA, during 

the 1978 event. Similarly, it accurately estimated the 

channel bed scour caused by floods in the San Dieguito 

River at Santa Fe, California in both 1978 and 1980. 

Furthermore, the theory was able to accurately describe the 

breach morphology, including width and depth 

dimensions, at the San Diego River during the 1978 flood. 

Additionally, the response theory proved its 

applicability to other scenarios. It successfully predicted 

the width changes in the stream-delta system of the San 

Elijo Lagoon resulting from the flushing event in 1975. 

The theory also accounted for the alterations in width 

caused by dam construction in rivers such as the Jemez 

River in New Mexico, the Arkansas River in Colorado and 

the Wolf Creek in Oklahoma, USA. It accurately captured 

the width adjustments resulting from the implementation 

of dam cut-offs in the Mississippi River, which led to 

significant changes from 1310 m in 1933 to approximately 

2000 m in 1975. Additionally, the theory successfully 

accounted for width changes due to variations in slope at 

the Chippewa River in Wisconsin, USA. 

Building on these achievements, Hafez's subsequent 

work in 2001 extended the application of the response 

theory to other notable cases. It accurately predicted the 

severe channel width change in the Santa Cruz River near 

Tucson, Arizona, caused by the 1983 flood. Furthermore, 

it successfully estimated the severe bed scour below 

Buford Dam on the Chattahoochee River in Georgia, USA. 

The response theory also demonstrated its 

effectiveness in international contexts. Successful 

predictions were made regarding the channel width 

changes resulting from floods in the Yellow River in 

China. Moreover, the response theory was employed to 

examine changes in the width of the Nile River in Egypt, 

specifically in the reach upstream of Cairo, subsequent to 

the construction of the Aswan High Dam. Additionally the 

theory accurately captured the channel width adjustments 

due to dam construction in various rivers across the United 

States. Overall, Hafez's response theory has proven to be a 
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valuable tool in predicting and understanding river 

adjustments in different environments worldwide. Its 

ability to account for a wide range of factors and scenarios 

makes it a valuable contribution to the field of river 

engineering and geomorphology. 

To incorporate sediment load effects on stream 

adjustments, Hafez (2001b) utilized the simplified 

sediment transport equation developed by Yang (1986). 

This equation expresses the stream power per unit weight, 

QS (where S represents the longitudinal slope), as follows: 
 

𝑄 𝑆 =  
1

𝑘
 
𝑄𝑠 𝐷50

0.5 𝐵 𝐷

𝑄
 (9) 

 
Here, Qs represents the bed material discharge, D50 

denotes the median sediment size and k is a coefficient. By 

applying the extremal condition Δ(QS) / (QS) = 0 to Eq. 

(9) and solving for the width term, the following result is 
obtained: 
 
Δ𝐵

𝐵
=  

Δ𝑄

𝑄
−  

Δ𝑄𝑠

𝑄𝑠
− 

1

2
 
Δ𝐷50

𝐷50
−  

Δ𝐷

𝐷
 (10) 

 
With the inclusion of sediment load effects in Hafez 

(2001b), the unexpected case of an increase in channel 

width due to dam construction in the Missouri River, USA, 

was successfully predicted in terms of both direction and 

magnitude using Eq. (10). 

In regime methods, channel width, depth and slope are 

expressed as functions of the channel forming discharge, 

often referred to as the bankfull discharge, as described by 

Lacey (1930, 1958); Leopold and Maddock (1953). These 

relationships were based on canals and rivers assumed to 

be in a regime or equilibrium state in India, Pakistan and 
the United States. The general form of these relationships 

is as follows: 

 

𝐵 = 𝑎 𝑄𝑏  ; 𝐷 = 𝑐 𝑄𝑓  ; 𝑉 = 𝑒 𝑄𝑚  ; 𝑆 = 𝑖 𝑄𝑗  ; 𝑎𝑛𝑑 𝑛 = 𝑡 𝑄𝑦 (11) 

 

Here, B represents the channel top width, D is the 

average depth, V denotes the average velocity, S represents 

the channel longitudinal slope and n is the Manning's 

roughness coefficient. The coefficients a, b, c, f, e, m, i, j, 

t and y are empirical values determined through regression 

analysis of field data. Leopold and Maddock (1953), using 

20 river cross-sections, reported mean values of "b" as 
0.26, "f" as 0.4 and "m" as 0.34. Lacey (1930; 1958) 

determined "b" as 0.5 and "j" as -1/6 based on data from 

canals assumed to be in a regime state in India and 

Pakistan. Blench (1952; 1970), following Lacey's 

approach, determined "b" as 0.5, "f" as 1/3, "m" as 1/6 and 

"j" as -1/6. Simons and Albertson (1960), using canals in 

India, Pakistan and other locations in Colorado, Wyoming 

and Nebraska in the USA, determined "b" as 0.5 and "f" as 

0.36. 

Applying the response theory technique, as described 

in Eq. (5), to the relationships in Eq. (11) yields: 

Δ𝐵

𝐵
= 𝑏 

Δ𝑄

𝑄
 ;  

Δ𝐷

𝐷
= 𝑓 

Δ𝑄

𝑄
 ;  

Δ𝑉

𝑉
= 𝑚 

Δ𝑄

𝑄
;  

Δ𝑆

𝑆
= 𝑗

Δ𝑄

𝑄
;  𝑎𝑛𝑑 

Δ𝑛

𝑛
=

𝑦 
Δ𝑄

𝑄
 (12) 

 

These relationships in Eq. (12) will be employed later 

in the present approach. 

One of the regime relationships that describe the 

meander wavelength, λ, Fig. (1), in relation to discharge is 
proposed by Dury (1964) as follows: 

 

𝜆 = 54.3 (𝑄𝑚𝑎)0.5 (13) 

 

Here, Qma represents the mean annual flood. Different 

researchers have obtained various coefficients in Eq. (13) 

depending on the definition of discharge, but the exponent 

value remains consistently around 0.5. For instance, 

Carlston (1965) reported 0.46, Ackers and White reported 

0.47 and Dury (1976) reported 0.55. Yalin (1971) and Da 

Silva (2006) expressed the wavelength in terms of the 

channel width as follows: 
 

𝜆 = 2 𝜋 𝐵 ≈ 6 𝐵  (14) 

 

The regime approach suggests that a single variable, 

such as discharge or width, is the sole controlling factor 

that influences channel adjustments. 

Hafez (2022) conducted research on the causes of river 

meandering and proposed that the imbalance between the 

valley slope (SV) and the regime channel slope (SR) is the 

primary factor, assuming that the sediment load is below 

the transport capacity and the bank erodibility allows for 
meandering. The study suggested that when a river reach 

encounters a steep valley slope, it tries to maintain energy 

balance by dissipating the excess energy through channel 

curvature. Mathematically, this can be expressed as the 

difference between the valley slope and the regime channel 

slope, which equals the transverse energy loss slope: 

 

S′′ =  SV − SR (15) 

 

where S'' is the transverse energy slope due to 

curvature-induced energy loss, SV is the steep valley slope 

and SR is the relatively flat regime channel slope. Hafez 
(2022) expressed the regime slope (SR) as a function of 

various parameters such as unit bed load discharge (qs), 

median bed size (dm), water unit weight (γ), channel 

hydraulic radius (R) and critical shear stress for incipient 

motion (τc). It should be noted that determining the regime 

channel slope (SR) using a sediment transport formula can 

be challenging for specific river reaches. However, Hafez 

(2022) proposed a simpler and more direct approach, 

which will be explained in subsequent sections. 

To estimate the transverse energy expenditure in 

curved reaches (S''), Hafez (2022) employed either 
Rozovskii (1957); Chang (1992) approach, in the 

following equation form: 
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𝑆′′ =  𝛷(𝑅) (
𝐷

𝑟
)

2
 𝐹𝑟

2 (16) 

 

Here, Φ(R) is a friction function, D represents the 

channel depth, r is the channel radius of curvature 

(approximated as the radius of the best-fit circle to the 

meander path), r is rc in Fig. (1) and Fr is the Froude 

number. The friction function could be given either by Eqs. 

(17-18), respectively: 

 

𝛷(𝑓) =  
2.07 𝑓+ 4.68 √𝑓 −1.83 𝑓

3
2⁄

0.565+ √𝑓 
 (17) 

 

𝛷(𝐶) =  (12 √𝑔

𝐶
+ 30 

𝑔

𝐶2
) (18) 

 

These functions depend on roughness parameters such 

as Chezy's roughness coefficient (C) or the Darcy-

Weisbach friction factor (f) and are used to calculate the 

transverse energy expenditure. 

By applying Eq. (15) and utilizing Eq. (16) for S'', 

Hafez (2022) derived Eq. (19) to predict the channel radius 

of curvature (r): 

 

𝑟 =  𝐷 𝐹𝑟  √
𝛷(𝑓)

(𝑆𝑉− 𝑆𝑅)
=  𝐷 𝐹𝑟  √

𝛷(𝐶)

(𝑆𝑉− 𝑆𝑅)
 (19) 

 

Hafez (2022) further considered that by applying Eq. (19) 

at two consecutive times (t1 and t2) and at a given point 

along the channel in the streamwise direction (at 

distance s), the change in the channel radius of 

curvature over time (Δr(s)) can be obtained. This 

change represents the development of meanders over 

time at a specific location, which is analogous to bank 

changes. For lateral meander migration, Δr(s) also 

represents the shift of the lateral banks. 

Ielpi et al. (2021) conducted an analysis of 227 

meander cutoff events in the Humboldt River, Nevada, 

USA, which occurred between 1994 and 2019. Their study 

emphasized the significant influence of hydrographic 

stage, sinuosity and planform asymmetry of individual 

meanders in determining the timing and location of cutoff 

events. They found that upstream-skewed meanders were 

more prone to cutoff, potentially due to the increased 

impact of floodwater against the inner banks and necks of 

meanders during bankfull stages. 

In a separate study, Wu et al. (2023) performed 

experiments that indicated medium and high discharge 

played a significant role in neck-cutoff, with cutoff 

events primarily occurring during periods of high 

discharge. While both studies provided valuable 

insights into the mechanisms of meander cutoff, neither 

study quantified the critical discharge or flow 

conditions at which cutoff occurs. 

 
 
Fig. 1: Definition sketch of a river meander bend, after 

Odgaard (1986) 
 

Although these studies contributed to our 
understanding of meander cutoff processes, the 
determination of the specific discharge or flow conditions 
at which cutoff events take place was not addressed. It will 
be presented herein the threshold values or criteria that can 
help quantify the critical discharge or flow conditions 
leading to meander-cutoff. Such quantification would 
provide valuable information for predicting and managing 
meander cutoff events which are a sort of different type of 

channel migration in river systems. 
It is important to note that in order to describe the 

horizontal movement or migration of a point on a river 
centerline, its two-dimensional motion must be expressed 
using two coordinates, which require two equations. 
However, existing methods in the past have typically 
provided only one equation, which describes lateral bank 
erosion or migration. As a result, a complete two-
dimensional description of the movement is not offered by 
these methods. In this study, we aim to address this 
limitation by providing two equations that fully define the 
movement of any point on the centerline of a meander bend. 

For a point with two-dimensional polar coordinates (r, 
θ), we will provide an equation for the change in the radial 
coordinate (r) and another equation for the change in the 
arc angle (θ), thereby offering a complete description of 
the motion or migration in the two-dimensional horizontal 
plane. It is worth noting that θ represents the bend arc angle 
between the longitudinal (streamwise) and downvalley 
direction, which is also the angle between the radius of 
curvature line and the line perpendicular to the down-
valley axis. Positive rotation is considered counter-
clockwise for θ and vice versa. 

In this study, we utilize regime equations, the extremal 

methods within the framework of the response theory 
proposed by Hafez (2000) and the excess-energy theory 
proposed by Hafez (2022). This combination facilitates the 
development of relations for predicting the dynamics of 
river channel migration. The purely theoretical and 
physically-based approach of this study offers the 
advantage of not requiring extensive data sets for model 
calibration, as seen in excess-bank velocity or excess-shear 
stress models. Additionally, the proposed approach 
considers all the influencing variables on river meander 
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migration and avoids the need to rely on sediment transport 
formulas, which often have uncertainties associated with 
their use. 

The proposed purely theoretical and physically-based 

river migration model is based on two concepts: The 

minimum transverse energy loss slope (or minimum 

transverse power expenditure) and extremal channel 

sinuosity. These concepts provide two equations that are 

sufficient for a complete description of the movement of a 

point on the river centerline in two dimensions. The model 
offers several advantages: 

 

1. It predicts both lateral meander growth and the reverse 

tendency of meander cutoff 

2. It includes the effects of changes in various 

influencing variables on river migration, such as flow 

and sediment discharges, width, depth and roughness. 

This is different from most current models which 

focus on a single variable, such as excess velocity or 

excess shear stress 

3. It does not rely on empirical coefficients found in 
current models, such as the bank erosion coefficient. 

Although it is a theoretical model, it has been 

validated by successfully predicting the meander 

wavelength in the Nile River, Egypt and the river 

channel radius of curvature in four USA Rivers 

4. It accurately predicts the direction of river meander 

migration or the tendency for meander cutoff 

5. It establishes a connection between changes in 

channel width and channel migration 

6. It predicts the final equilibrium river channel 

planform, which occurs over long time scales, unlike 
current models that are primarily developed for small 

time scales 

7. The model quantifies the concept of the tendency of 

river channels to minimize work in turning and 

considers extremal sinuosity, which could be a key 

aspect of river channel migration 

8. It provides two equations for changes in radial 

distance and arc angle, thereby considering bend 

skewness and offering a complete description of 

motion in the two-dimensional horizontal plane 

9. The developed equations are dimensionless, making 

them independent of scale issues 
10. The model does not require channel width to be 

constant 

11. It can incorporate sediment load and bed 

aggradation/degradation effects 

12. It can also predict thalweg channel meandering 

 

Materials and Methods 

The total energy loss slope in curved meandering 
channel could be partitioned into two parts, the first is due 

to frictional resistance by the bed and banks (boundary 

friction) as in straight channels and the second is due to 

resistance caused by channel curvature in accordance with 

Chang (1992), i.e.: 
 
𝑆 =  𝑆′ + 𝑆′′ (20) 
 
where, S is the total energy loss slope due to both of 

boundary friction and curvature, 𝑆′ is the energy slope loss 

due to boundary friction by the bed and banks and S′′ is 
the energy loss transverse slope due to curvature. Chang 

(1992) followed by Hafez (2000) have shown that straight 

river channel sections attain dynamic equilibrium  by the 

tendency to minimize the longitudinal energy loss slope 

(𝑆′) and this condition is used as a closure equation to 

obtain an equation for determining the channel width. As 

both of S′ and S′′ are positive quantities by definition, the 

condition of minimum S implies that S′ and S′′are minimum 

too. The assumption of a minimum transverse energy loss 

slope S′′ , is similar to the postulate by Leopold and 

Langbein (1966) that river channels meander while doing 

the least work in turning.  

Equation (18) is easier to differentiate than Eq. (17) 

therefore it is combined with Eq. (16) as: 
 

𝑆′′ =  (12 √𝑔

𝐶
+ 30 

𝑔

𝐶2
) (

𝐷

𝑟
)

2
 𝐹𝑟

2 (21) 

 
Assuming a wide and rectangular channel cross 

section, the square of the Froude number, Fr, in Eq. (21) 

could be written as: 
 

𝐹𝑟
2 =  

𝑄2

𝑔 𝐵2 𝐷3
 (22) 

 
Substituting Eq. (22) into Eq. (21) yields: 

 

S′′ =  (12 
√g

C
+ 30 

g

C2
) (

D

r
)

2
 

𝑄2

𝑔𝐵2 𝐷3
=  𝛷(𝐶)

1

𝑟2
 

𝑄2

𝑔 𝐵2 𝐷
  (23) 

 
Now, according to “the Response Theory” by Hafez 

(2000), for the condition of the transverse energy loss 

slope to be a minimum this implies that: 
 
ΔS′′

S′′
= 0 (24) 

 
Applying Eq. (24) to Eq. (23) results in: 

 
(Φ(𝐶))′

Φ(𝐶)
 ∆𝐶 − 2 

∆𝑟

𝑟
+ 2 

∆𝑄

𝑄
− 2 

∆𝐵

𝐵
− 

∆𝐷

𝐷
= 0 (25) 

 
where: 
 

(Φ(𝐶))′ =  
𝑑 (Φ(𝐶))

𝑑𝐶
=  (−12 √𝑔

𝐶2
− 60 

𝑔

𝐶3
) (26a) 

 
Therefore; 

 

(Φ(𝐶))′

Φ(𝐶)
=  − 

2

𝐶
 

(√𝑔+5
𝑔

𝐶
)

(2√𝑔+5
𝑔

𝐶
)
 (26b) 

 
And: 
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(Φ(𝐶))′

Φ(𝐶)
 Δ𝐶 =  − 

2 (√𝑔+5
𝑔

𝐶
)

(2√𝑔+5
𝑔

𝐶
)

 
Δ𝐶

𝐶
=  − Ψ(𝑐) 

Δ𝐶

𝐶
 (26c) 

 
where: 

 

Ψ(𝐶) =
2 (√𝑔+5

𝑔

𝐶
)

(2√𝑔+5
𝑔

𝐶
)
  (26d) 

 
From the Chezy’s equation for wide rectangular 

channels (𝐶 = 𝑈/√𝐷 𝑆) the following equation can be 

obtained for ΔC/C: 

 
Δ𝐶

𝐶
=  

Δ𝑈

𝑈
− 

1

2
 
Δ𝐷

𝐷
− 

1

2

Δ𝑆

𝑆
 (26e) 

 

Now solving in Eq. (25) for the term containing the 

channel radius of curvature, r, yields: 

 

 
∆𝑟

𝑟
=  {− 

1

2
Ψ(𝐶) 

Δ𝐶

𝐶
+

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (27) 

 

Equation (27) gives the change in the channel radius of 

curvature on the left hand side of the equation due to 

changes in channel roughness, discharge, width and depth 

in the right hand side. Thus, Eq. (27) constitutes a meander 

migration model as it predicts the change in the channel 

radius of curvature due to changes in discharge, width, 

depth and roughness from flow regime to another flow 

regime, i.e., changes in regime over time. It should be 
noted that Eq. (27) is based on the assumption that the 

curved meandering river channel in its tendency toward 

dynamic equilibrium, it does so by minimizing the 

transverse energy loss slope which is analogous to doing 

the least work in turning. It is assumed for now that the 

meander bends are freely to move and migrate or in other 

words the banks are not restricting bank movements but 

bank resistivity will be considered and addressed later. The 

quantity Δ 𝑟 =  𝑟2 −  𝑟1  is the difference between the final 

channel radius of curvature and its initial value could be 
the radius of curvature after and before of a flood that 

caused lateral meander migration. The final value of r 

corresponds to final values of C, Q, B and D. The change 

in the variables could be for example due to the occurrence 

of a flood or a drought or the construction of a river 

structure such as a dam or change of the river reach from 

one regime to another regime due to roughness changes. 

Therefore, the incremental changes in the variables are 

understood to be variations with respect to time, i.e. time 

variations. 

Several other forms similar to Eq. (27) could be 

obtained in terms of other variables as follows. The Froude 
number in Eq. (22) could be also expressed for a wide and 

rectangular cross section as 𝐹 =  𝑈 √𝑔 𝐷⁄  and substituted 

in Eq. (21) to yield: 

 

𝑆′′ =  𝛷(𝐶) 
𝐷

𝑟2
 

𝑈2

𝑔
  (28) 

Applying Eq. (24) to Eq. (28) and solving for ∆𝑟/𝑟 

yields: 

 
∆𝑟

𝑟
=  {−

1

2
 Ψ(𝑐) 

Δ𝐶

𝐶
+

Δ 𝑈

𝑈
+  

1

2
 
∆𝐷

𝐷
 } (29) 

 

Equation (29) expresses the meander migration or bank 

displacement ∆𝑟 in terms of change or excess in the 

velocity, flow depth and friction. It can be regarded as a 

purely theoretical generalization of the well-known bank 

erosion or meander migration equation, Eq. (1), by Ikeda 

et al. (1981) which adopts spatial difference in velocity 

while Eq. (29) adopts time difference. It takes time for any 

excess in velocity to cause meander migration, so Eq. (29) 

appears more natural in expressing meander migration. 
Another equation could be developed by recognizing 

that the longitudinal boundary shear stress, τ, could be given 

for wide rectangular channels as: 𝜏 =  𝛾 𝐷 𝑆 where S is the 

longitudinal channel slope. When the shear stress is 

substituted via the channel depth, D, in Eq. (21) and 

application of Eq. (24) to the resulting equation, one obtains: 

 
∆𝑟

𝑟
=  {−

1

2
 Ψ(𝐶) 

Δ𝐶

𝐶
+

Δ 𝑈

𝑈
+ 

1

2
 

Δ𝜏

𝜏
− 

1

2
 
Δ𝑆

𝑆
 } (30) 

 

Equation (30) includes both of the excess (incremental 

change) velocity and excess (incremental change) 
boundary shear stress and therefore could be considered as 

a generalization but in time of both the excess velocity and 

excess boundary shear migration models. 

Alternatively, the quantity, transverse stream power or 

transverse power expenditure (𝑃′′) where 𝑃′′ =  𝛾 𝑄 S′′ 

could be also assumed to attain a minimum value as a 

condition of dynamic equilibrium during the stream 

adjustment to the imposed flow and sediment conditions. 

In a similar fashion as before, applying Δ𝑃′′ 𝑃′′ = 0⁄  

results in: 
 
∆𝑟

𝑟
=  {−

1

2
 Ψ(𝑐) 

Δ𝐶

𝐶
+

3

2

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (31) 

 
Equation (31) differs from Eq. (27) in the coefficient of 

the relative change in the discharge term (
∆𝑄

𝑄
) which is 1.5 

in Eq. (31) instead of being 1.0 in Eq. (27). 

Leopold and Wolman (1957) reports that the channel 

wave length, λ, is connected to the channel radius of 
curvature as: 
 
𝜆 ≈ 4.7 𝑟 (32) 
 

Regardless of the value of the constant in Eq. (32), or 

assuming: 𝜆 ≈ 𝑐 𝑟, where c is any constant, it can be 

concluded that: 
 
∆𝜆

𝜆
=  

Δ𝑟

𝑟
 (33) 

 

Equation (33) states that the relative changes (not the 

change itself) of the channel wave length and radius of 
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curvature are equal. This finding could be used to express 

the relative change in λ from Eq. (27) as: 
 
∆𝜆

𝜆
=  {−

1

2
 Ψ(𝑐) 

Δ𝐶

𝐶
+

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (34) 

 
Similarly Eq. (31) could be also used to find the relative 

change in λ assuming minimum transverse power 

expenditure, i.e.: 
 
∆𝜆

𝜆
=  {−

1

2
 Ψ(𝑐) 

Δ𝐶

𝐶
+

3

2

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (35) 

 
Equations (34-35) will be used to test the proposed 

approach here because measuring of the meander channel 

wave length is easier from aerial maps and satellite images 

than measuring of the channel radius of curvature 

especially in the case of the field data of the Nile River, 

Egypt. Guo et al. (2019) had to use smoothing and filtering 

techniques to calculate reliable radius of curvature free of 

noise at the Bai River, China. In the results section both of 

Eq. (27) for r and Eq. (35) for λ will be shown to agree 
very well with measured field data. 

To express time variation and dynamic river migration 

evolution with time, Eq. (27) can be written as: 
 
∆𝑟

𝑟
=  𝑘(𝑡) {−

1

2
 Ψ(𝑐) 

Δ𝐶

𝐶
+

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (36) 

 
where, 
 
𝑘(𝑡) =  {1 −  𝑒− 𝐸0 (𝑡− 𝑡0)} (37) 
 

The function k(t) in Eq. (36) is assumed as a time decay 

function as in Eq. (37), Eo is a bank erodibility coefficient 

as in Eq. (1), t0 is the initial time at which bank movement 

has been started and t is the time under consideration. At 

time = t0, Eq. (36) gives ∆𝑟 = 0 which means that bank 

erosion and meander migration have not started yet, while 

at time approaching infinity (t → ∞ or very large time 

value), ∆𝑟 becomes the final equilibrium bank erosion 

displacement at which Eq. (36) becomes equivalent to Eq. 

(27) and bank change is at its maximum. The time function 

in Eq. (37) can be also used as a multiplier in the rest of 

the equations: Eqs. (29-31), Eqs. (34-35) to reflect the 

dynamic river channel migration evolution with time. The 

same time decay function could be also applied to Eq. (19) 
in the context of the excess energy theory. 

To reflect spatial distribution of the bank displacement, 

for a single meander bend with arc length equal to M, the 

following distribution function k(s), where s is the 

curvilinear coordinate along the river channel axis starting 

from the beginning of the bend, could be assumed as: 
 

𝑘(𝑠) =  
𝑠 ( 

𝑀

2
− 𝑠)

𝑀2

16

 (38) 

 
At s = 0 and s = M/2, K(s) is zero which means that the 

start and middle points of the meander bend are assumed 

fixed in its location during the migration process. At s = M/4 

(bend apex), k(s) = 1, which means that bank displacement 

and meander migration is at maximum at the bend apex. 

Calibration with spatial data could be useful also. 
Applying both of the time decay function k(t) and the 

spatial distribution function k(s), to Eq. (27) yields the 

variation in time and space of a river migration dynamic 

model for bank movement as: 
 
∆𝑟

𝑟
= 𝑘(𝑠) 𝑘(𝑡) {−

1

2
 Ψ(𝑐) 

Δ𝐶

𝐶
+

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (39) 

 
where, k(t) is given by Eq. (37) while k(s) is given by Eq. 

(38). 

To account for bank resistivity to erosion and its 

limitation on lateral meander migration, a bank resistivity 

index, R, is used as follows: 
 
∆𝑟

𝑟
= (1 − 𝑅)𝑘(𝑠) 𝑘(𝑡) {−

1

2
 Ψ(𝑐) ∆𝐶 +

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (40) 

 
where, for completely free meandering R is set to zero 
while for completely very resistive banks (e.g. very stiff 

clay banks or banks with riprap) R is set to 1.0. Field 

measurements of the strength of the bank material could 

be used to determine R. 

The foregoing developed equations gave the change in 

the radial coordinate (r). Now attention is given to develop 

an equation that gives the change in the arc angle (θ), θ 

here is Θo in Fig. (1). The meander path or the centerline 

could be approximated by circular arcs for which the arc-

length (L) which is for a quarter of a bend = L/4 from basic 

mathematics is given by: 

 
𝐿

4
= 𝑟 𝜃 (41) 

 
Applying the differential operator to Eq. (41) yields: 

 
Δ𝐿

𝐿
=  

Δ𝑟

𝑟
+  

Δ𝜃

𝜃
 (42) 

 
From which: 

 
Δ𝜃

𝜃
 =  

Δ𝐿

𝐿
 − 

Δ𝑟

𝑟
 (43) 

 
Hafez (2022) developed an equation for the meander 

bend arc length, L, (called there as M) which could be 
given here as: 
 
L = 50.73 D f −0.45 (44) 
 

Applying the differential operator, as in Eqs. (5-44) 

yields the relative incremental change in L as: 
 
Δ𝐿

𝐿
=  

Δ𝐷

𝐷
− 0.45 

Δ𝑓

𝑓
 (45) 

 
Substituting Eq. (45) into Eq. (43) results in the relative 

change of the θ coordinate, as: 
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Δ𝜃

𝜃
 =  

Δ𝐷

𝐷
− 0.45 

Δ𝑓

𝑓
 − 

Δ𝑟

𝑟
 (46) 

 

where, the term Δr/r on the right-hand-side in Eq. (46) 

could be given from the previously developed equations 

such as Eqs. (27, 34, 35), or the most general form 

presented by Eq. (40). Now Eq. (40 and 46) which are 

linked together provide two independent equations that 

give the change in the radial distance r and the arc angle θ, 

respectively; thus giving complete determination of the 

motion of any point on the centreline of a meander bend 

with original coordinates (r, θ). This is not offered by any 

of the past methods to the best of the author’s knowledge. 

If Δθ is negative it means θ is decreasing and the meander 

bend is migrating downstream and when Δθ is positive it 

means upstream migration. In this way meander bend 

skewness could be modelled. Equation (46) is based on the 

geometrical constraint between r and θ as offered by Eq. 

(41). However the approach will be later improved by 

including an additional extremal concept namely extremal 

channel sinuosity. Due to the much involved mathematics 

this is presented at the end of the discussion section. 

In summary, the river plan form is represented by the 

river channel centreline and it could be given in terms of 

the polar coordinates (r, θ) at any time, t. Due to any 

changes in the influencing variables such as the flow 

discharge, channel width, channel depth, sediment load 

and roughness, the change or perturbation in r (i.e. Δr) and 

another perturbation in θ (i.e. Δθ) could be given according 

to the developed equations above such as Eq. (40 and 46). 

Thus the point (r, θ) will be (r + Δr, θ+Δθ) at a later time.  

It should be noted that the radial distance r could be 

given in several ways. One way is to approximate the 

meander centreline into circular arcs, another is to use 

Eq. (19) for r, or lastly is to use the well-known equation 

of the sine-generated curve, Leopold and Langbein 

(1966), as follows: 
 

𝜃 =  𝜃𝑜 cos(
2𝜋

𝐿
𝑠 ) (47) 

 

where, 𝜃𝑜 is the initial deflection arc angle and s is the 

curvilinear coordinate along the channel axis. Leopold and 

Langbein (1966); Langbein and Leopold (1966); Da Silva 
(2006) report that a natural regular meander is best 

idealized by the sine-generated-curve. The radius of 

curvature could be given from Eq. (47) as: 

 
1

𝑟
=  |

𝑑𝜃

𝑑𝑠
| (48) 

 

Applying Eqs. (48-47) gives an equation for the radial 

coordinate r as: 

 

𝑟 =  
1

2𝜋

𝐿
 𝜃𝑜 sin(

2𝜋

𝐿
𝑠 )

 (49) 

Now a brief analysis on the formation of meander 
cutoff is given. Formation of cutoffs whether it is a neck 
or chute cutoff is an important part of river migration 
dynamic evolution. A trial is made here to estimate the 
critical discharge at which a meander bend goes into a 
neck-cutoff and also a chute cutoff. Due to different 
conditions of water and sediment and the composition of 
riverbank material, the occurrence modes and processes 

of neck cutoff also vary, (Hooke, 2004). According to the 
causes of cutoff, neck cutoff can be divided into three 
modes: Bank collapse mode, punching mode and string 
groove mode, (Hooke, 2004). In the bank collapse 
mode, the reason for cutoff is that the banks on both 
sides of a neck section collapse, or the bank on one side 
collapses. In punching mode, the floodplain current 
scours and forms new grooves. In string groove mode, 
the first flood scours the floodplain to form a series of 
gullies and subsequent floods continue to scour along 
the formed series of gullies and can mainly be traced to 
the source, (Hooke, 2004). Constantine et al. (2010) 

report that chute cutoff is initiated during a flood by the 
incision of an embayment. 

Consider an existing meander bend assumed to go into 
a neck-cutoff process. It can be noted that neck-cutoffs 
occur when the initial meander or bend angle is greater 
than π/2, Fig. (2). To simplify the mathematics, the main 
river channel bend cross section is assumed rectangular in 
shape with a width of B, a depth of D and with a neck space 
(called neck width in the literature) of x. A high flood 
coming to the bend is assumed in the form of a horizontal 
water jet with discharge Q, average longitudinal velocity 
U and water density ρ. This jet would have a momentum 

force equal to F = (ρ Q U) according to basic fluid 
mechanics laws. For this jet to cause a neck cutoff it has to 
erode the volume of material in the neck region which 
assumed to have a length of x, width of B1 and depth of D1 
assuming for simplicity rectangular cross section. The 
neck-cutoff channel is assumed in general to have 
dimensions different from the upstream channel bend. The 
neck-region has material with a particle unit weight of γs 
and assumed saturated with water from previous floods. 
Effects of vegetation and other obstacles in the neck cutoff 
region could be considered via introducing momentum 
transfer efficiency factor η. 
 

 
 
Fig. 2: Neck- and chute-cutoffs 

 

    
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In investigating bridge pier scour by Hafez (2016a); 
also in investigating scour due to horizontal turbulent wall 
jets downstream of barrages and low-head hydraulic 
structures by Hafez (2016b); and in investigating plunge 
pool scour by Hafez (2018); an energy balance theory was 
introduced for local scour which is helpful in modelling 
the scouring process caused by the cutoff processes. The 
energy balance theory states that the final equilibrium 

scour volume geometry is obtained through the balance of 
the work done by the attacking fluid flow jet and the work 
needed to remove the scoured material volume away or out 
of the scoured region. The energy balance theory is applied 
first to the neck-cutoff case herein as follows.  

The flow jet would have to exert work equal to η. F. 
x/2 = η ρ Q U x/2. The work distance is x/2 because 
theoretically speaking the flow jet would move the 
upstream particles (the start of the neck-region) in the 
neck-region a distance x while it would move the 
downstream particles (at the end of the neck-region) a 
distance equal to one particle size which could be assumed 

practically as zero. Upon taking averaging of all the 
distances moved by all the particles the average distance 
would be x/2. From the laws of mechanics the work done 
by the group of forces is equal to the work done by the 
resultant of these forces. This gives another alternative to 
justification of the distance x/2 by considering moving out 
of the neck-region the center of mass of the neck volume 
which is located at x/2. The work done in moving out the 
particles in the neck-volume is the submerged weight of 
the neck-volume-material multiplied by the dynamic 
friction coefficient and then multiplied by the average 
distance of movement of x/2, i.e., equal to (γs- γ) B1 D1 x 

(tan ϕ) (x/2), where γs is the unit weight of the neck-
volume-material, γ is the water unit weight, ϕ is the angle 
of repose of sediment and tan ϕ is the dynamic friction 
coefficient. Equating the work due to the attacking flow jet 
to the work required in moving the scoured volume out of 
the neck region and solving for the discharge Q (called Qcr-

nk, i.e., the critical discharge for incipient of meander neck 
cutoff) results in: 
 

𝑄𝑐𝑟−𝑛𝑘 =  
(𝛾𝑠− 𝛾)

𝜂 𝜌
 
𝐵1𝐷1 𝑥

𝑈
= 𝑔 (𝑆𝑔 − 1)

𝐵1𝐷1 𝑥 tan(𝜙)

𝜂 𝑈
 (50) 

 
where, g is the gravitational acceleration and Sg is the 

sediment specific gravity (Sg = 2.65 for sand). With the 

velocity U= Q/(BD), Eq. (50) will be: 
 

𝑄𝑐𝑟−𝑛𝑘 =  
(𝛾𝑠− 𝛾)

𝜂 𝜌
 
𝐵1𝐷1 𝑥

𝑈
= √

𝑔

𝜂
 (𝑆𝑔 − 1) 𝐵 𝐷 𝐵1𝐷1 𝑥  tan(𝜙) (51a) 

 
Equation (51a) gives the critical discharge at which 

erosion of the neck-volume material would start and 
formation of a neck cutoff occurs. Equation (51a) could be 

simplified further by assuming rectangular neck cutoff 
channel cross section and that the cross section of the neck 
cutoff channel has width and depth equal to that of the 
original channel bend (i.e., B1= B and D1 = D) ; which 
simplifies Eq. (51a) to: 

𝑄𝑐𝑟−𝑛𝑘 = 𝐵 𝐷 √
𝑔

𝜂
 (𝑆𝑔 − 1) 𝑥 tan(𝜙) (51b) 

 
As a numerical illustration, for a channel bend with 

width = 20 m, depth = 3 m, with tan ϕ ≈ 0.4, η ≈ 1 .0 and 

for a neck-distance of x = 30 m, Eq. (51b) gives a critical 

discharge of 836 ≈ 840 m3/s at which meander cutoff 

would start. If there are vegetation or trees in the neck 

region by which η is assumed as 0.5, the critical discharge 
increases to about 1180 m3/s. When tan ϕ is in the range of 

0.4- 0.5, the meandering channel transverse bed slope 

equation by Bridge (1977) fits laboratory and natural 

point-bar profiles, so a value of tan ϕ ≈ 0.4 seems 

reasonable. However, it should be noted that ϕ depends on 

the size of the sediment particles and the degree of wetting 

which requires further investigations. According to Eq. 

(51a) if the new neck-cutoff channel has dimensions less 

than the original river bend dimensions then the critical 

discharge for cutoff occurrence would be less. 

If the discharge is much higher than the critical value, 

the attacking jet would have more eroding force and more 
energy to move much more material than the material 

found in the neck-cutoff region. In that case the neck- 

cutoff distance will increase and could be given according 

to Eq. (51a) as: 
 

𝑥 =  
 𝜂 𝑄2

𝑔 (𝑆𝑔−1) tan(𝜙) 𝐵1𝐷1 𝐵 𝐷
 (51c) 

 
The discharge Q in Eq. (51c) is the flood discharge 

coming to the bend which is supposed to be much higher 

than the critical discharge for incipient of neck-cutoff. As 

an illustration, for a discharge of 2000 m3/s (which is more 

than the critical discharge of 840 m3/s) and with the same 

values for the other variables as in the last example, the 

length or distance of the newly formed neck cutoff would 

be about 171.6 m or ≈ 172 m which is about six times the 

neck-cutoff distance found before under critical discharge 
conditions of 840 m3/s.  

For chute cutoffs, it can be assumed that they occur 

when the initial bend angle is less than π/2, Fig. (2). Cases 

at the Sacramento River, Ca, USA, discussed in 

Constantine et al. (2010) show that chute cutoff 

approximately connects the two ends of the bend which 

means that the length of the chute cutoff could be assumed 

as the wavelength, λ, i.e., x ≈ λ as in Fig. (2). In this case 

the critical discharge for incipient chute cutoff (𝑄𝑐𝑟−𝑐ℎ) 

could be given from Eq. (51a) by assuming x ≈ λ as: 
 

𝑄𝑐𝑟−𝑐ℎ =  √
𝑔

𝜂
 (𝑆𝑔 − 1) 𝐵 𝐷 𝐵1𝐷1 𝜆  tan(𝜙) (52) 

 
Equation (52) could be used to investigate existing 

chute-cutoffs which could have a known length λ and 

known chute channel dimensions (assumed initially equal 

to that of the original bend) to estimate the chute-cutoff 

forming discharge 𝑄𝑐𝑟−𝑐ℎ  from Eq. (52). The relation λ ≈ 
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6B could be used in Eq. (52). Using the values from the 

previous example yields a chute cutoff discharge equal to 

1672.4 ≈ 1672 m3/s. Further research is needed to 

determine the threshold between the neck- and chute-
cutoff and to determine the start and end points of the 

chute-cutoff channel. Field data could be used to calibrate 

Eq. (51 and 52) by introducing a coefficient which 

accounts for the effects of the simplifying theoretical 

assumptions made such as rectangular channel cross 

section, vegetation and the assumption that: tan ϕ is 0.4.  

Results and Discussion  

Results 

This study examines two field cases where the 
developed equations from the present approach are 
compared with measured field data. These two cases are 
chosen due to existing of a complete data set as finding a 

complete data set is very challenging and often is rare.  One 
case focuses on the Nile River in Egypt to estimate the 
meander wavelength, while the second case estimates the 
meander radius of curvature for four rivers in Texas, USA. 
The Nile River case is particularly interesting due to a 
significant change in meander wavelength caused by the 
construction of a major dam: the Aswan High dam. The 
advantage of this data is that it includes changes in flow 
discharge, channel width and channel depth, which are 
related to the variations in meander wavelength. Most 
meander migration studies typically report data on a single 
variable, such as velocity or shear stress. To address the 

lack of hydraulic and roughness data required for 
meandering investigations, Chang (1992); Hafez (2022) 
have emphasized the necessity of theoretical and analytical 
work preceding data collection efforts. This approach 
helps avoid limitations imposed by data characteristics that 
may hinder the study outcomes. Often, researchers collect 
data first and then attempt to identify relationships among 
the variables. However, this practice limits the study 
outcomes to the type, quality and volume of available data. 

The Nile River in Egypt spans a distance of 
approximately 1160 km and is divided into four reaches 
between Aswan in the south to Cairo in the North by 

existing dams and barrages, as shown in Fig. (3) (NRI, 
1992). The construction of the Aswan High Dam (AHD) 
in 1968 led to significant changes in the flow 
characteristics downstream of the dam, including a 
considerable reduction in flow discharge and sediment 
load due to dam storage of sediment. For example, the 
mean monthly maximum discharge downstream of AHD 
decreased from 8400 m3/s in the pre-AHD conditions to 
2560 m3/s in the post-AHD conditions. This dramatic 
change in peak flows and subsequent alterations in river 
regime had substantial effects on the planform geometry 
of the Nile, particularly the meandering pattern as shown 

in Tables (1-2). Before the construction of AHD, during 
flood seasons, all barrage gates were open to allow high 

flood flows, which maintained a relatively constant river 
regime over the years, resembling a natural state. After 
AHD, the barrage gates were partially opened to 
accommodate only the discharge required for agricultural, 
domestic and industrial needs, which was significantly 
lower than pre-AHD conditions. 

The thalweg meander wavelengths, as defined in 

Fig. (4), were measured from hydrographic maps dating 

back to 1982 for six approximately 20 km reaches (Table 1). 

Reaches with well-defined meander patterns, as depicted in 

Fig. (5), were selected for analysis where it can be seen the 

near equality of the river channel and thalweg meandering. 

Moving downstream, Table (1), the thalweg wavelength 

decreased from a maximum of 4500 m upstream of Isna 

Barrage to a minimum of 2500 m downstream of Asyut 
Barrage. However, it then increased to 3300 m upstream of 

Delta Barrages near Cairo. The decrease and subsequent 

increase in thalweg wavelength in the downstream direction 

align with the changes in peak discharge, which also 

decrease and then increase (NRI, 1992). 
 

 
 
Fig. 3: Schematic layout of the Nile River, Egypt with existing 

hydraulic structures of dams and barrages, after NRI (1992) 
 

 
 
Fig. 4: Definition of thalweg meander, after NRI (1992) 



Youssef Ismail Hafez / American Journal of Environmental Sciences 2025, Volume 21: 12.38 

DOI: 10.3844/ajessp.2025.12.38 

 

25 

Table 1: Approximate 1982 thalweg meander wavelength 

Reach 
Name 

Reach 
classification 

Reach 
location 
(km) 

Thalweg 
meander 
wavelength (m) 

Idfu First reach 110-130 4500 

Shanhoria Second 
reach 

244-264 4000 

Girga Third reach 398-420 3000 

Hawata Fourth reach 596-620 2500 

Beni 
Mazar 

Fourth reach 727-750 2700 

Geziret el 

Makatfiya 

Fourth reach 856-876 3300 

        

 
Table 2: Measured regime characteristics of the Nile River, 

Egypt (Pre-AHD), NRI (1992) 

Reach 

Number 

Mean 

monthly 
maximum 
discharge 
(m3/s) 

Channel 

width 
(m) 

Channel 

depth 
(m) 

Meander 

wavelength 
(m) 

1 8400 878 9.96 5268 

2 8180 794 11.12 4764 

3 7640 924 11.2 5544 

4 7460 1025 9 6150 

In this study, the meandering thalweg line is chosen 

instead of the channel centerline, in contrary to previous 

studies. This decision is motivated by the fact that in 

natural meandering rivers, defining the channel centerline 

at midpoints across the channel width can result in 

irregular lines due to variations in spatial channel widths 

and the presence of islands and bars. Defining the thalweg 

line, which represents the deepest points along the river 

course (as shown in Fig. 4), is more convenient as it 

corresponds to the flow path and represents a unique case 

of flow curvature considered in this study. 

Due to the lack of pre-Aswan High Dam (AHD) 

hydrographic mapping the thalweg wavelength for that 

period is unknown (NRI, 1992). However, it can be 

estimated using the relationship λ = 6B (Eq. 14), as 

shown in Table (2), which also includes the discharge, 

width and depth for each reach under pre-AHD 

conditions. Table (3) presents the same data but for the 

post-AHD conditions. Note that in Table (3), the thalweg 

meander wavelength in the three sub-reaches located in 

the fourth reach is averaged. 

The success of the relation λ = 6B (Eq. 14) in predicting 

the post-AHD thalweg wavelength, with a 

predicted/measured ratio ranging from 0.85 to 1.18, supports 

its use in estimating the pre-AHD thalweg wavelength.

 

 
 

Fig. 5: Nile River in Egypt thalweg and river channel meander, after NRI (1992) 
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Table 3: Measured regime characteristics of the Nile River, Egypt (Post-AHD), NRI (1992) 

Reach 

Number 

Mean monthly maximum 

discharge (m3/s) 

Channel 

width (m) 

Channel 

depth (m) 

Measured Meander 

wavelength (m)  

Calculated Meander 

wavelength (m) 

Ratio of calculated to 

measured wave length 

1 2560 634 6.83 4500 3804 0.85 

2 2350 569 5.7 4000 3414 0.85 

3 2110 588 5.9 3000 3528 1.18 

4 1690 538 4.89 2830 3228 1.14 

 

The calculation of the thalweg meander wavelength for 
the post-AHD condition of the first reach is provided in 

detail and a similar procedure can be followed for the other 

three reaches. The relative changes in discharge, width and 

depth are calculated as follows, with subscripts 1 and 2 

denoting the pre- and post-AHD conditions, respectively: 
 
∆𝑄

𝑄
=  

𝑄2− 𝑄1

𝑄1
=  

2560−8400

8400
=  −0.695 (53) 

 
∆𝐵

𝐵
=  

𝐵2− 𝐵1

𝐵1
=  

634−878

878
=  −0.278 (54) 

 
∆𝐷

𝐷
=  

𝐷2− 𝐷1

 𝐷1
=  

6.83−9.96

9.96
=  −0.314 (55) 

 
To use Eq. (34) and find the post-AHD thalweg 

wavelength, which will be compared against measured 

values, information is required about the first term on the 

right side involving the relative change in roughness in 

terms of Chezy's coefficient. It was found by NRI (1992) 

that the water surface slopes are nearly the same for the 
pre- and post-AHD conditions. For example, reach 1 has 

pre- and post-AHD measured slopes of 0.05 m/km. As the 

differences are nill, it can be assumed that roughness 

changes are negligible for the computations. Substituting 

the values obtained from Eq. (53-55) into Eq. 34 yields: 
 
∆𝜆

𝜆
= {0 − 0.695 − (−0.278) − 0.5 (−0.314)} =  −0.26  (56) 

 
For a value of λ1, according to Table (2) for the first 

reach, of 5268 m, the predicted post-AHD thalweg 

wavelength is: 
 
𝜆2 = (1.0 + 

∆𝜆

𝜆
) 𝜆1 = (1.0 − 0.26) (5268) = 3898 ≈ 3900 𝑚  (57) 

 
It is worth noting that Δλ/λ = Δ(λ/2)/(λ/2), so the 

equations remain valid whether the thalweg wavelength, 

as shown in Fig. (3), appears to be half of the typically 

defined channel wavelength. The computed value of 3900 

m obtained from Eq. (57) is compared to a measured value 

of 4500 m, resulting in a relative error of approximately -

13%. The ratio of the computed to measured thalweg 

wavelength is 0.87, while Eq. (14) also yields a close ratio 

of 0.85. Table (4) presents the thalweg wavelength 
computations for all the reaches using Eq. (34) and Eq. 

(35). Table (5) shows that Eq. (34) performs better in 

reaches number 1 and 2 while Eq. (35) preforms better in 

reaches number 3 and 4. Such situation is addressed in the 

discussion section.  

The second case involves four rivers in Texas, USA: 
The Brazos River, the Nueces River, the Trinity River and 
the Guadalupe River (Briaud et al., 2001). Table (6) 

illustrates the significant changes that occurred in the 
channel width and radius of curvature of these rivers. 
Although the discharge data were presented graphically in 
terms of mean monthly discharges, it is well-known that river 
morphology changes are primarily associated with high flood 
flows, for which maximum flow data were not provided. 
Hence, we will rely on the regime theory relationship between 
discharge and width to address this limitation. In this case, 
width is considered a proxy for discharge and channel size, as 
discharge data are lacking. The width-discharge exponent, b, 
in Eq. (12) is assumed to be 0.5, based on studies by Lacey 

(1930; 1958); Blench (1952; 1970); Simons and Albertson 
(1960). Consequently, we assume: 
 
Δ𝐵

𝐵
= 𝑏 

Δ𝑄

𝑄
 = 0.5 

Δ𝑄

𝑄
 (58) 

 
From Eq. (58), we can conclude that: 

 
Δ𝑄

𝑄
= 2

Δ𝐵

𝐵
 (59) 

 
Since no information was provided about the depth and 

the slope remains constant in all cases, both the depth and 
roughness terms in Eq. (31) are neglected, assuming that 
their contributions cancel each other out. Substituting Eq. 

(58) into Eq. (31) yields: 
 
∆𝑟

𝑟
=  {

3

2
(2 

∆𝐵

𝐵
) − 

∆𝐵

𝐵
 } =  2 

∆𝐵

𝐵
 (60) 

 
We will first address the cases where the radius of 

curvature is directly proportional to the river channel 

width, as shown in Table (7). The remaining cases will be 

analyzed separately, as they require distinct treatment or 
analysis. For illustrative purposes, we will present the 

detailed example of meander change in the Brazos River 

at SH 105 (Case 1) between the years 1910 and 1958. The 

relative change in channel width during this period can be 

calculated using the data from Table (6): 
 
∆𝐵

𝐵
=

𝐵2− 𝐵1

𝐵1
=  

𝐵1958− 𝐵1910

𝐵1910
=  

98−109

109
=  −0.101 (61) 

 
Applying Eq. (60) gives a predicted Δr/r = -0.202. 

Therefore, Δr = (Δr/r) * r1 = (-0.202) * 747 ≈ -150.89 m, 

which is approximately -151 m. The measured Δr is 600-
747 = -147 m. The predicted radius of curvature in 1958 is 

calculated as r2 = r1 + Δr = 747-150.89 ≈ 596 m, while the 

measured radius in 1958 is 600 m, resulting in a very small 

relative error of about -0.7%. Unfortunately, the channel 

depth and friction data were not reported, which prevents 

the application of Eq. (46) to determine the change in the 

arc angle θ. The results of predicting six additional cases 

are presented in Table (7). 
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Table 4: Computation of thalweg meander wavelength of the Nile River, Egypt for the 1982 Post Aswan High Dam conditions 

Reach ΔQ/Q ΔB/B ΔD/D 

Δλ/λ 
From 
Eq. (33) 

Estimated pre-
AHD λ1 (m) 

Computed λ2 
(m) according 
to Eq. (34) 

Computed λ2 
(m) according 
to Eq. (35) 

1982 
Measured 
λ2 (m) 

1 
2 
3 
4 

-0.695 
-0.713 
-0.724 
-0.774 

-0.278 
-0.283 
-0.364 
-0.475 

-0.314 
-0.487 
-0.473 
-0.389 

-0.260 
-0.187 
-0.124 
-0.106 

5268 
4764 
5544 
6150 

3900 
3875 
4856 
5498 

2068 
3337 
2852 
3131 

4500 
4000 
3000 
2830 

 
Table 5: The thalweg meander-wavelength of the post-AHD, the Nile River, Egypt. E1: Ratio of calculated by Eq. (14) to measured 

wave length 

Reach 
Number Measured λ (m)  

Calculated λ Eq. 
(14) (m) E1* 

Computed λ 
Eq. (34) (m) E2** 

Computed λ 
Eq. (35) (m) E3*** 

1 4500 3804 0.85 3900 0.87 2068 0.46 

2 4000 3414 0.85 3875 0.97 3337 0.83 

3 3000 3528 1.18 4856 1.62 2852 0.95 

4 2830 3228 1.14 5498 1.94 3131 1.11 

E2**: Ratio of calculated by Eq. (33) to measured wave length; E3***: Ratio of calculated by Eq. (34) to measured wave length 
 
Table 6: Summary of Case History Data for the four USA Rivers, Texas, Briaud et al. (2001) 

Case History Year Channel width, B, (m) Radius of curvature, r, (m) Free surface slope (m/m) 

Brazos 1910 109 747 0.00018 

At SH 105 1958 98 600 0.00018 

(case 1) 1981 84 453 0.00018 

  1988 89 558 0.00018 

  1995 133 460 0.00018 

Brazos 1910 107 1733 0.00018 

At SH 105 1958 107 1173 0.00018 

(case 2) 1981 120 746 0.00018 

Nueces 1958 134 365 0.0009 

At US 90 1969 122 300 0.0009 

(case 3) 1995 70 391 0.0009 

Trinity 1971 125 182 0.00008 

At FM 787 1976 73 182 0.00008 

( case 4) 1983 112 ?? 0.00008 

  1988 132 201 0.00008 

  1999 155 276 0.00008 

Guadalupe 1959 50 88 0.00037 

At US 59 1981 58 88 0.00037 

(case 5) 1988 54 100 0.00037 

  1995 92 125 0.00037 

Guadalupe 1959 42 137 0.00037 

At US 59 1981 33 125 0.00037 

(case 6) 1988 67 108 0.00037 

  1995 75 104 0.00037 
 
Table 7: Equation (60) Prediction of the radius of curvature at four USA Rivers in Texas 

Case History Period 
Measured 
ΔB/B 

Calculated 
Δr/r  

Measured r at 
end of period 
(m) 

Eq. (60) Predicted r 
at end of the period 
(m) 

Briaud et al. (2001) 
Predicted r at end of 
the period (m) 

Brazos At SH 105 
(case 1) 

1910-1958 
1958-1981 
1981-1988 

- 0.101 
- 0.143 
+ 0.060 

- 0.202 
- 0.286 
+ 0.120 

600 
453 
558 

596 
429 
507 

- 
530 
408 

Nueces At US 90 
(case 3) 

1958-1969 - 0.090 - 0.180 300 299 - 

Trinity At FM 
787 ( case 4) 

1971-1988 
1971- 1999 
 

+ 0.056 
+ 0.240 

+ 0.112 
+ 0.480 

201 
276 

202 
269 

- 
- 

Guadalupe At US 
59 (case 5) 

1959-1988 
 

+ 0.080 + 0.160 100 102 88 
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Now special treatment is given to the rest of the special 

cases in Table (6). In these treatments some assumptions 

had been made in a way to match the observed data in as 

much as possible which could be considered as a sort of 

calibration process. This will aid in understanding river 

migration dynamic behaviour.  

For the years 1988-1995 at Brazos River at SH 105 

(Case 1), Table (6) shows that while the width increased 

from 89 to133 m the radius of curvature decreased from 

558 to 460 m., i.e., large increase in width of 44 m with a 

large decrease in the radius of curvature of 98 m. The term 

ΔB/B = (133-89)/89 = 0.494. If it is assumed that width is 

proportional to discharge to a power of 3/2 this leads to 

ΔB/B = 3/2 ΔQ/Q from which ΔQ/Q = 2/3 ΔB/B. 

Substituting this relation into Eq. (27) for the case of 

minimum transverse energy loss slope yields: 
 
Δ𝑟

𝑟
=  

Δ𝑄

𝑄
− 

Δ𝐵

𝐵
=  

2

3
 

Δ𝐵

𝐵
− 

Δ𝐵

𝐵
=  

−1

3
 
Δ𝐵

𝐵
 (62) 

 
Substituting the value of ΔB/B = 0.494 into Eq. (62) 

yields Δr/r = - 0.165 and with r1 = 558 m, this results in Δr 

= (Δr/r) * r1 ≈ - 92 m and the predicted 1995 radius (r2 = 
r1 + Δr) becomes 466 m while the measured value is 460 

m while Briaud et al. (2001) predicted a value of 663 m 

using the map sequence method. 

At the second bend at Brazos River at SH 105 (Case 2) 

from 1910 to 1958, channel width did not change while 

dramatic decrease in the radius of curvature occurred from 

1733 to 1173 m, i.e., with a decrease of -560 m. From the 

monthly discharge data it is noted the 1958 had flow of 

1500 m3/s but unfortunately there was no data records for 

the 1910 flows. A question arises: Could the historic river 

channel forming discharge in 1910 be estimated based on 
the morphological data changes in the radius of curvature? 

The measured Δr/r = (1173-1733)/1733 = - 0.32. Adopting 

Eq. (27), with ΔB = 0, neglecting ΔD and ΔC results in that 

ΔQ/Q = (2/3) Δr/r = - 0.213. Therefore Q1 = (1+ΔQ/Q) Q2 

= (1- 0.213) * 1500 ≈ 1906 m3/s. Based on the given 

graphical data, three high flows of 1700 m3/s in 1920, 1500 

m3/s in 1958 and 1400 m3/s in 1990 appear to be the 

dominant maximum flows in this period. As discharge is 

proportional to the radius of curvature and since the 

maximum radius of curvature reported to be in the year 

1910 it is expected that the year 1910 flow to be higher 

than 1700 m3/s which occurred in 1920. If the minimum 
transverse energy loss slope is assumed, i.e. ΔQ/Q = Δr/r, 

the 1910 flow would be about 2205 m3/s. This case could 

be useful in determining historic flows based on changes 

in channel morphology. 

The case at Brazos River at SH 105 (Case 2) from 1958 

to 1981 is unique. The channel width in this period (23 

years) increased from 107 to 120 m (about 12% increase) 

whereas the radius of curvature decreased dramatically by 

426 m from 1173 to 746 m (36% decrease). The relative 

change in width ΔB/B = 0.121 according to the 1958 and 

1981 widths and as such change is not significant in spite 

of the very large change in radius of curvature it can be 

assumed that the banks are relatively cohesive. The 1958 

flow is 1500 m3/s while the 1981 is about 600 m3/s, so 
ΔQ/Q = - 0.6. The depth and velocity hydraulic regime 

exponents are taken according to Williams (1978) as f = 

0.53 and m = 0.37 which represents conditions of cohesive 

but not vertical banks. The slope variation with discharge 

exponent can be taken according to Leopold and Maddock 

(1953) as 0.8 (this value for downstream hydraulic 

geometry is assumed valid herein). Substituting these 

values in Eq. (26d) gives ΔC/C= 0.505 ΔQ/Q. As it was 

found in the period from 1910 to 1958 that the minimum 

transverse energy loss slope is valid, this assumption will 

be also assumed to hold from 1958 to 1981. The Chezy’s 
roughness coefficient could be assumed for rough bed 

conditions to have a value of C = 30, this value will make 

the left term of Eq. (26d) as:  

 
(Φ(𝐶))′

Φ(𝐶)
 Δ𝐶 =  (−1.2) ∗ ΔC/C =  (−1.2) (0.505) ΔQ/Q =

(− 0.606) ΔQ/Q  (63) 

 

Equation (27) while substituting with the above values 

becomes: 

 
Δ𝑟

𝑟
=  {−0.6 − 0.121 −  

1

2
 (0.53)(−0.6) +

 
1

2
 (−0.606)(−0.6)} =  −0.38 (64) 

 

With 1958 radius of curvature r1 = 1173 m and using 

Eq. (64) yields the predicted the 1981 radius of curvature 

equal to about 727.3 m versus a measured value of 746 m, 

with a relative error of about 2.5% while Briaud et al. 

(2001) predicted a 1981 radius of 905 m.  

The case at Nueces River at US 90 (Case 3) had the 

width decreased from 122 m in 1969 to 70 m in 1995, 
while the radius of curvature increased from 300 m in 1969 

to 391 m in 1995. Thus the term ΔB/B = (70-122)/122 = - 

0.42. The flow discharges at the two years are practically 

zero however other flows must have formed the planform 

geometry. Before 1969, three high flows of 70, 100 and 90 

m3/s in 1954, 1958, 1965, respectively, with an average of 

86.6 m3/s and before 1995 another three high flows of 105, 

95 and 75 m3/s in 1972, 1974 and 1982 respectively with 

an average 91.7 m3/s. If we consider the averages of these 

high flows then ΔQ/Q = (86.6-91.7)/91.7 = - 0.055. 

Substituting these values in Eq. (31) yields: 

 
∆𝑟

𝑟
=  {

3

2

∆𝑄

𝑄
−  

∆𝐵

𝐵
 } =  {1.5 ∗ (−0.055) − (−0.42)} = 0.338  (65) 

 

With 1969 radius of 300 m and using Eq. (65), the 1995 

radius becomes ≈ 401m while the measured one is 391 m 

with relative error of about 2.6%. Briaud et al. (2001) 

predicted a 1995 width of 146 m which is very low.  
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Table 8: Prediction of the radius of curvature at four USA Rivers in Texas 

Case History Period 
Measured 
ΔB/B 

Calculated 
Δr/r  

Measured r at 
end of period 
(m) 

Briaud et al. 
(2001) Predicted 
r at end of 
period (m) 

Predicted r 
at end of 
period (m) Assumptions  

Brazos At SH 
105 (case 1) 

1988-1995 0.494 -0.165 460 663 466 b =1.5, 

Minimum S′′ 

Brazos At SH 
105 (case 2) 

1958-1981 0.121 -0.38 747 905 727.3 f= 0.53, m 

=0.37, S ∝
 𝑄−0.8 C =30 

Minimum S′′ 

Nueces At US 
90 (case 3) 

1969-1995 -0.42 0.338 391 146 401 Minimum γ 

Q S′′ 

Guadalupe At 
US 59 (case 5) 

1988-1995 + 0.704 + 0.235 125 88 123.5 b = 0.75, 

Minimum S′′ 

Guadalupe At 
US 59 (case 6) 

1959-1981 -0.210 -0.105 125  122.6 b =1.0, 
Minimum γ 

Q S′′ 

Guadalupe At 
US 59 (case 6) 

1981-1988 1.03 -0.142 108 121 107.3 b =1.16, 

Minimum S′′ 

Guadalupe At 
US 59 (case 6) 

1988-1995 0.119 -0.04 104 91 103.7 b =1.5, 

Minimum S′′ 

 

The last four special cases at the Guadalope River have a 

width exponent (b) different from 0.5 as seen in Table (8) and 

three of them adopt the minimum transverse energy loss 

slope. Although Briaud et al. (2001) use two field data sets 

in the calibration process while the present approach uses 

only one field data set, it can be seen from Table (8) the 

present approach predictions are much better than those by 

Briaud et al. (2001). 

Discussion 

It should be noted that the present approach developed 

equations such as Eq. (27) does not require initial 

perturbation or initial flow curvature of an initial straight 

channel to initiate meander migration. All is required are 

changes in the flow discharge, width, depth and roughness 

at which the river migrate or meander in order to minimize 

the transverse energy loss slope or minimize the transverse 

stream power. It is understood that the channel is initially 

at equilibrium regime which is disturbed due to changes in 

the flow discharge, sediment load, depth, width and 

roughness. Sediment load changes affect the longitudinal 

channel energy slope which in turn affects roughness, 

therefore roughness changes are indirect effect to changes 

in sediment and of course water flow changes. Past 

methods offer only one equation such as Eq. (1) or 

condition for determining bank movement, i.e. they 

provide one degree of freedom which cannot describe 

completely movement of a point in two-dimensional 

horizontal plane. The proposed approach provides two 

equations or two degrees of freedom as can be seen from 

Eqs. (40 and 46) by which complete description of 

movement of a point in two-dimensional horizontal plane 

is possible.  

It is noted from Table (4) at the Nile River that the 

absolute value of the relative change in ΔQ/Q and ΔB/B 

increase going in the downstream direction, while that for 

ΔD/D increases but then decreases. The overall effect of 

these variations is that the absolute values of Δλ/λ decrease 

down the river course. Because the pre-AHD wavelengths 

are not following the post-AHD wavelengths trend of 

decrease then increase the predicted wavelengths by Eqs. 

(34 and 35) could not follow that trend. Equation (34) 

predictions agree well with the measurements for the first 

and second reaches while Eq. (35) predictions agree well 
for the second, third and fourth reaches. 

It is noted from Table (5) that at the first reach Eq. (34) 

gives the best predictions with measured to calculated 

wavelength of 0.87 followed by Eq. (14) with a very close 

ratio of 0.85 while Eq. (35) highly gives a very low ratio 

of 0.46. At the second reach, Eq. (34) gives the best ratio 

of 0.97 while Eq. (14) and Eq. (35) performs also well with 

ratios of 0.85 and 0.83, respectively. At the third reach Eq. 

(35) ratio of 0.95 is the best followed by ratio of 1.18 by 

Eq. (14) while Eq. (34) has a very high ratio of 1.62. For 

the fourth reach Eq. (34) continues to give a high ratio of 

1.94 (i.e., computed value is almost as twice as measured 

value) while Eq. (35) and Eq. (14) have a very close ratios 

of 1.11 and 1.14, respectively. Thus the first and second 

reaches thalweg meandering wavelengths are best 

predicted by Eq. (34) which is based on the minimum 

transverse energy slope.  

It can be stated that the wave lengths in the second, 

third and fourth reaches are well predicted by Eq. (35) 

which is based on the minimum transverse stream power. 

Several factors can be attributed to the discrepancy 

between the computed and measured wavelengths among 

which are data accuracy and the theoretical assumptions. 
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For example, the mean maximum monthly discharge data 

which was reported in NRI (1992) might be different from 

the meandering channel forming discharge. The 

negligence of the roughness term might be another factor 

and some doubt exists about the NRI (1992) reporting that 

roughness remains essentially indifferent before and after 

the construction of AHD dam. Also flows in the third and 

fourth reaches are increasing in the downstream direction. 

The pre-AHD estimated wavelengths based on Eq. (14) 

might be also a reason for the discrepancies. In addition, 

another factor is that the river has insufficient room to form 

a natural meandering pattern within the geomorphic 

confines of the overall channel, NRI (1992). As the river 

reaches are subjected to different hydraulic, hydrological 

and geologic conditions, every reach might be 

experiencing different extremal concept. It was shown 

using natural river field data that different extremal 

hypotheses or concepts are applicable to different rivers 

and sometimes two concepts or more are applicable to the 

same river reach, Hafez (2000; 2001a-b; 2002). This has 

to do with the size of the stream which could be expressed 

in terms of the stream longitudinal stream power, γQS. 

This distinction is left for future research. 

Thus, it can be stated that the first and second reaches 

experience minimum transverse energy slope loss while 

the third and fourth reaches experience minimum 

transverse energy stream power. Of course, Eq. (14) is 

based on field data so it could be considered as a data in 

itself as well. Da Silva (2006) reports Eq. (14) is based on 

a very large number of field and laboratory measurements 

carried out mostly by Japanese researchers (Hayashi 

(1971; Task Committee on The Bed Configura, 1973). 

Even discrepancy among the data exist in the literature as 

Richards (1982) suggests that λ = (12.34) B. The Regime 

equation by Dury (1964), Eq. (13) did not perform well 

where the ratio of computed to measured wavelengths 

went as low as 0.61 and 0.66 at the first and second 

reaches, respectively. In spite of the challenge of data 

accuracy in this case, the results are very satisfactory. 

It was shown that Eq. (29) could be a more general 

form of the classical bank erosion model based on excess 

velocity while Eq. (30) could also be a generalization but 

in time of the classical bank erosion model based on excess 

shear stress. Equations such as Eqs. (27, 29-30) are all 

dimensionless and in the form of a linear perturbation 

resulting from applying some extremal concept to an 

energy-related equation which represents river regime in 

balance. The well-known classical Ikeda et al. (1981) bank 

erosion model is considered a seminal work in the area of 

river dynamic migration resulting from a linear perturbation 

of the flow hydrodynamics and sediment governing 

equations. There are some analogies between Ikeda et al. 

(1981) approach and the present approach. This can be 

understood by comparing to numerical methods where the 

finite difference method approximates the governing 

differential equation while the finite element 

approximates the solution to the governing differential 

equation. The present approach approximates the 

solution which represents river regime dynamics in 

meandering rivers and as such is similar to the Finite 

Element method while Ikeda et al. (1981) approximates 

the governing equations whose solution represents river 

migration dynamics and as such is similar to the Finite 

Difference method. 
The connection between the excess energy theory, 

Hafez (2022) and the present approach could be explained 

as follows. The excess energy theory derived equation, Eq. 

(15), has been shown to explain the causes of river 

curvature and meandering. Thus the quantity representing 

the transverse energy slope: S′′ =  (SV −  SR ) explains the 

causes of river meandering while its minimization (i.e., 

S′′ = (SV − SR ) → 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ), explains river 

meandering migration dynamics. Thus S′′ explains 

meander initiation while the minimization of S′′ explains 

meander migration dynamics or equivalently (SV − SR ) 

explains meander initiation while minimization of (𝑆𝑉 −
 𝑆𝑅 ) explains meander evolution and dynamics with time. 

Inspection of Eqs. (27 and 31) reveals several 

important qualitative and quantitative observations. But 

first, it should be noted that the quantity Δr when it is 

increasing (Δr is positive, i.e., +) that means that the river 

reach radius of curvature increases and is going toward 

channel straightening or ultimately toward meander cut-
off. Conversely, if Δr is negative or is decreasing that 

means that the channel reach radius of curvature is 

decreasing and curvature or the degree of meandering is 

increasing. To facilitate the matter further, Eq. (26d) is 

substituted into Eq. (27) resulting in:  
 

∆𝑟

𝑟
=  {− 

(√𝑔+5 
𝑔

𝐶
)

(2√𝑔+5 
𝑔

𝐶
)
 
Δ𝐶

𝐶
+

∆𝑄

𝑄
− 

∆𝐵

𝐵
− 

1

2
 

∆𝐷

𝐷
 } (66) 

 
Assuming hypothetically that the channel width, depth 

and roughness are constants, while the discharge is the 

only varying and controlling variable. In this case Eq. (66) 

indicates that Δr is directly proportional to ΔQ. This means 

that when Q increases (ΔQ is +); Δr is + and consequently 

r is increasing, i.e., going into channel straightening or 
ultimately into meander cut-off. This means that the 

migrating river channel is absorbing the energy caused by 

increased discharge by increasing channel slope while 

keeping the same channel cross sectional dimensions. The 

opposite is true as reduction of Q leads to decrease in Δr 

and consequently increase in channel sinuosity and 

meandering degree which occur downstream of dams due 

to reduced flows as in the Nile River case. If the channel 

width (B) is the only variable such as when channel 

widening occurs due to bank erosion, then Δr is inversely 

proportional to ΔB, i.e., when ΔB is increasing Δr is 
decreasing and vice versa. Ferreira Da Silva and Ibrahimi 

(2017) stated that alluvial meandering streams are usually 
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rather wide objects (≈ 10 < B/D < ≈ 120). When depth is 

the only variable (such as through dredging processes) Δr 

is inversely proportional to ΔD, which indicates increase 

in channel depth (channel deepening) leads to more 
sinuous and meandering conditions while going into 

shallow depths lead to straightening conditions. It should 

be noted that roughness is inversely proportional to the 

Chezy’s coefficient C, for example C = 60 is at smooth 

beds while C = 30 is at rough beds, Rozovskii (1957). Thus 

when roughness increases ΔC is negative and when 

roughness decreases ΔC is positive. Therefore, Δr is 

directly proportional to channel roughness and inversely 

proportional to the value of Chezy’s C. This means that an 

increase in channel roughness would lead to channel 

straightening while a decrease in roughness increases the 
degree of curvature and meandering. All of these 

observations about the direction of change are in line with 

field observations by past investigations such as by 

Knighton (2014); Chang (1992). 

With the aid of the regime equations such as those in 

Eq. (12), quantitative analysis that shows the effects of 

variation of more than a single variable could be done as 

follows. First, the discharge Q and the width B are assumed 

as the only variables while roughness and depth are 

assumed constants. A value of b equal to 0.5 is assumed in 

Eq. (12), i.e., ∆𝑄 𝑄⁄ = 0.5 ∆𝐵 𝐵⁄  which is substituted into 

Eq. (34) resulting in: 

 
∆𝜆

𝜆
=  

∆𝑟

𝑟
=  {

∆𝑄

𝑄
− 0.5 

∆𝑄

𝑄
 } = 0.5 

∆𝑄

𝑄
 (67) 

 

Equation (67) indicates that when the channel width 

increases due to increase in the discharge, the radius of 

curvature is proportional to the width. In that case, small 

width channels are more meandering while wider channels 

tend toward straight and cutoff condition. This last case is 

in contrast to the case of changing width only that was 

discussed above which highlights the difference in 

considering single and combined variables. Equation (67) 

also indicates that 𝜆 ∝  𝑄0.5  which is supported in that 

Dury (1964) reports 𝜆 ∝  𝑄0.5 , Carlston (1965) reports: 

𝜆 ∝  𝑄0.46  and Ackers et al. (1970) reports 𝜆 ∝  𝑄0.47 . 

As ΔQ/Q = 2 ΔB/B, Eq. (67) indicates that: 

 
∆𝜆

𝜆
=  

∆𝐵

𝐵
 ;  𝑜𝑟 𝜆 ∝ 𝐵 (68) 

 

The relation 𝜆 ∝ 𝐵 is in line with Yalin (1971) 

hypothesis that 𝜆 = 2 𝜋 𝐵.  

In a similar fashion when assuming the discharge and 

depth are only varying, with a depth exponent f = 1/3, this 

results in that Δ𝜆 𝜆 =  (2 3)⁄⁄  Δ𝑄 𝑄 ; 𝑜𝑟 𝜆 ∝  𝑄2 3⁄⁄ .  

If the discharge, width and depth vary while b = 0.5 and 

f = 1/3, this results in that: 

Δ𝜆 𝜆 =  (1 6)⁄⁄  Δ𝑄 𝑄 ; 𝑜𝑟 𝜆 ∝  𝑄1/6⁄ . In summary, there 

is no unique constant relation between the meander wave 

length and discharge or width and the variation of the 

meander wavelength depends on the number of controlling 

variables (e.g., Q, B, D and C) and the intensity and 

magnitude of their variation.  

It should be noted that in Eqs. (4 and 5) linear 

perturbation was applied, however, in the present approach 

nonlinear perturbation starting from quadratic perturbation 

is possible in principle but the mathematics involved will 

be more complex, so it is left for future research. 

It should be noted that in the case of the Nile River in 

Egypt, it was assumed that the relation 𝜆 = 6 𝐵 is valid for 

the pre-AHD conditions. However, other researchers had 

different form such as Richards (1982), who performed 

regression analysis between wavelength and channel width 

in the literature and found that 𝜆 = 12.34 𝐵 or simply: 𝜆 =
12 𝐵. In addition, the roughness term was neglected. The 

two assumptions made before that 𝜆 = 6 𝐵 and neglecting 

roughness effects are replaced herein by another two 

assumptions which are that 𝜆 = 12 𝐵 and existence of 

roughness. It can be argued that the pre-AHD Nile was in 

a natural state during the flood season as all barrage gates 

were open. However, the post-AHD Nile has the barrage 

gates partially closed all over the year and the flood water 

and sediment are stored in the AHD’s lake making the flow 

regime of the post-AHD Nile regulated by passing from 

the dam only the needed water for generating electricity, 

agricultural, industrial and domestic water requirements. 

Thus there is no assurance that if the relation 𝜆 = 6 𝐵 is 

valid for the post-AHD that it should also be valid under 

pre-AHD conditions as the river flow and sediment 

regimes differ in both cases. Regarding roughness it is 

assumed that its effect exist but due to lack of data it will 

be assumed that the roughness term offsets the width and 

depth terms leaving only the discharge term. In this case 

Eq. (34), which assumes minimum transverse energy loss 

slope, becomes: 
 
∆𝜆

𝜆
=  

∆𝑄

𝑄
 (69) 

 

Or: 

 

𝜆2 =  (1 + 
∆𝑄

𝑄
) 𝜆1 (70) 

 

For the third reach 𝜆1 = 12 𝐵1 = 12 (924) = 11088 

m and ΔQ/Q as before is -0.724. Upon substitution of these 

values into Eq. (70) it results in value of predicted λ2 = 

3063 m while the measured value is 3000 m making an 

excellent agreement.  

For the fourth reach, 𝜆1 = 12 𝐵1 = 12 (1025) =
12300 m and ΔQ/Q as before is -0.774. Upon substitution 

of these values into Eq. (70) it results in value of predicted 

λ2 = 2829 m while the measured value is 2830 m making 

again an excellent agreement.  
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The last two examples improved significantly the 

performance of Eq. (34) in the third and fourth reaches 

where the ratio of computed to measured wave length is 

almost 1.0 while it was before1.62 and 1.94 as seen in 

Table (5). Now a question arises as which assumptions 

should be followed? The answer is simple which is that in 

real-life applications data often exist and through which 

some sort of calibration process will determine which 

concept is more appropriate, i.e. whether it is the minimum 

transverse energy loss slope or transverse stream power 

and also which terms and coefficients should be adopted 

as seen also in the case of the four USA Rivers. Due to lack 

of some data in the case of the Nile River some 

assumptions had to be made.  
The present approach theoretical developed equations 

(e.g., Eqs. (27, 34-35)) can all be cast in the following 

general form as: 

 
∆𝑟

𝑟
=  

∆𝜆

𝜆
=  {𝑎𝐶  ∆𝐶 + 𝑎𝑄  

∆𝑄

𝑄
+ 𝑎𝐵  

∆𝐵

𝐵
+ 𝑎𝐷  

∆𝐷

𝐷
 } (71) 

 
where, the a’s are coefficients which could be determined 

through multiple regressions using field data. In doing so, 

the theoretical approach could be thus converted into a 

semi-empirical approach based on field data. Although the 

analytical model was applied for a long term river 

meandering changes either at the Nile River in Egypt or 

the four USA Rivers in Texas, it could also be applied for 

short transient changes as seen in Eq. (40). 

Table (7) shows prediction of seven cases at the four 

USA Rivers (Texas) in which channel width increased or 

decreased and so did the radius of curvature. Table (7) 

shows successful predictions by the present approach, Eq. 
(60), while Briaud et al. (2001) predictions are in less 

agreement with the data although they reported success in 

prediction of the radius of curvature. The large errors 

associated with the sequence maps and extrapolation 

method is attributed mainly to the assumption of a constant 

meander migration rate (dR/dt). 

In the cases shown in Table (8) it is noted that the 

relative change in the radius of curvature (Δr/r) is almost 

twice as the relative change in the channel width (ΔB/B) 

and both have the same trend of the direction of change 

whether a decrease or increase. Case (1) at the Brazos 
River spanned 78 years in which the channel radius of 

curvature decreased from 600 to 453 m then increased to 

558 m and these changes are well captured by Eq. (60) of 

the present approach. Because Briaud et al. (2001) 

approach has to use two field data sets (1910 and 1958 in 

this case) it had to start predictions afterward starting from 

the year 1981. Although their method of sequence maps 

and extrapolation is based on using actual measured data 

their prediction were not that accurate compared to Eq. 

(60) not only in magnitude (one prediction had error in r 

of 150 m and another 77 m) but also in direction of change 
as the radius of curvature predicted by them to have a 

decreasing trend between the years 1981 and 1988 in 

contrary to the measured data which showed increasing 

trend. The concept of minimum transverse stream power 

as represented by Eq. (60) succeeded in all of the seven 
cases with excellent agreement with the data and the 

assumption that b = 0.5 worked out well. Mathematically 

speaking the present approach developed equations, due to 

the linearization process, should have the variables change 

over a short period of time and is therefore suitable for 

short time transient analyses. However, the method 

worked very well for very long term predictions such as 

from 1910-1958 at the Brazos River (i.e., 48 years). This 

is could be justified by that river responses could have a 

long time scale as far as changes are concerned. 

As can be seen in Table (8), the special cases in the four 

USA Rivers in Texas have either of: The direction of 

channel radius of curvature change is in reverse to the 

direction of width change or that the magnitude of the 

relative width change (ΔB/B) is much more than the 

relative change in the radius of curvature (Δr/r). Of course, 

these unusual conditions require special treatments as can 

be seen in the assumptions listed in Table (8). As the 

magnitude of width change is high in almost all cases it 

was natural that the width exponent (b) to have values 

higher than b = 0.5 which was taken in the previous regular 

cases. For example, the width exponent b took values of 

0.75, 1.0, 1.16 and 1.5. In five cases the minimum 

transverse energy slope loss equation was assumed 

applicable while in two cases the minimum transverse 

stream power assumed applicable. Both of the current 

approach and the method of sequence maps and 

extrapolation adopted by Briaud et al. (2001) used 

calibration process, however, the present approach 

predictions are far more superior and in excellent 

agreement with the field data. It is worth mentioning here 

that Ashraf and Liu (2013) applied Ikeda et al. (1981) 

meander migration model to three of the four rivers 

discussed here, namely: Brazos River, Nueces River and 

Trinity River and had difficulty in their calibration process. 

As stated earlier, for the Nueces River at the U.S. 90 

crossing, the prediction error ranged from 29.51-91.58 m, 

for the Brazos River (S.H. 105 Bridge) it ranged from 

39.28-41.85 m and for the Trinity River (F.M. 787 Bridge) 

it ranged from 42.38 to 84.11 m. Indeed these errors are 

very high for a calibration process.  

It can be stated therefore that predictions by the 

present approach theory is far more superior than both of 

Ikeda et al. (1981) meander migration model and the 

sequence maps and extrapolation method by (Brice, 1982); 

Lagasse 2001). This is in spite that the present approach is 

theoretical and in case of using a calibration process it 

demands much less data than these two other methods. The 

field cases discussed here especially the USA Rivers point 

out to an important issue which is that width changes have 

a very direct impact on river meander migration and 
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changes in the channel radius of curvature. This is due to 

the link between width changes and bank resistivity and 

that also width reflects the stream size and could be a 

surrogate to discharge. However, this is so due to lack of 

data for other variables such as channel depth and 

roughness as pointed out by Hafez (2022) who showed the 

necessity of having all the controlling variables in addition 

to the width in order to obtain a complete and reliable 

analysis and successful predictions. Indeed having 

hydraulic and roughness data in addition to the geometric 

data, that has to be more complete and inclusive of all the 

relevant variables, will aid in more testing of the proposed 

approach and gives more insight into the mechanics of 

meander migration. 
Now an alternative equation to Eq. (46) is presented for 

determining the change in the angle θ based on the concept 

of extremal channel sinuosity. Channel sinuosity is given 

by Hafez (2022) based on the excess energy theory as: 

 

Ω = 1 + (
D

r
)

2
 𝐹𝑟

2 1

SR
 Φ(C) (72) 

 

where, Ω is the channel sinuosity and SR is the river 

channel regime slope, i.e., the equilibrium channel slope 

(e.g., given as in Eq. (78 or 81) thereafter). For very large 

r values, Ω approaches unity which is the value of a 

straight channel path. Therefore, Eq. (72) has a minimum 

value of unity and because of its nonlinear character it is 

expected to have a maximum value dictated by the 

relative magnitude of the variables appearing in the 

equation. Thus, Eq. (72) could have both of a maximum 

and minimum, i.e., at extremum or having extremal 

conditions. The quantity (Ω -1) could be considered as 

the excess sinuosity in which a straight line or path would 

have a zero value. 

At extremal channel sinuosity ΔΩ/Ω = 0 or 

alternatively Δ(Ω-1) / (Ω - 1) = 0. Applying this condition 

to Eq. (72) yields: 

 

2 
Δ𝐷

𝐷
− 2 

Δ𝑟

𝑟
+ 2 

Δ𝐹𝑟

𝐹𝑟
−  

Δ𝑆𝑅

𝑆𝑅
− Ψ(𝐶)

Δ𝐶 

𝐶
= 0 (73) 

 

Substituting Δr/r from Eq. (42) into Eq. (73) yields: 

 

2 
Δ𝐷

𝐷
− 2 (

Δ𝐿

𝐿
− 

Δθ

𝜃
) + 2 

Δ𝐹𝑟

𝐹𝑟
−  

Δ𝑆𝑅

𝑆𝑅
− Ψ(𝐶)

Δ𝐶 

𝐶
= 0 (74) 

 

Solving for Δθ/θ in Eq. (74) results in: 

 

 
Δθ

𝜃
=  − 

Δ𝐷

𝐷
+ 

Δ𝐿

𝐿
− 

Δ𝐹𝑟

𝐹𝑟
+

1

2
 

Δ𝑆𝑅

𝑆𝑅
+

1

2
Ψ(𝐶)

Δ𝐶 

𝐶
 (75) 

 

Substituting ΔL/L from Eq. (45) into Eq. (75) yields: 

 
Δθ

𝜃
=  −0.45 

Δ𝑓

𝑓
− 

Δ𝐹𝑟

𝐹𝑟
+

1

2
 

Δ𝑆𝑅

𝑆𝑅
+

1

2
Ψ(𝐶)

Δ𝐶 

𝐶
 (76) 

Applying the differential operator as in Eq. (5) to the 

Froude number in Eq. (22) and substituting the resulting 

expression into Eq. (76) yields: 

 
Δθ

𝜃
=

Δ𝐵

𝐵
+ 

3

2
 
Δ𝐷

𝐷
−

Δ𝑄

𝑄
− 0.45 

Δ𝑓

𝑓
+

1

2
 

Δ𝑆𝑅

𝑆𝑅
+

1

2
Ψ(𝐶)

Δ𝐶 

𝐶
 (77) 

 

The relative change in the regime channel slope could 

be given using Lacey (1958) equation which reads as: 

 

SR =  
(1.6 𝑑𝑚

1
2 ⁄

)
5

3⁄

1830 Q
1

6⁄
 (78) 

 

where, dm is the median bed-material size in millimeters 

and Q is the flow discharge (cfs). 

Applying the differential operator as in Eq. (5) to Eq. 

(78) yields: 

 
Δ𝑆𝑅

𝑆𝑅
=  

5

16
 
Δ𝑑𝑚

𝑑𝑚
− 

1

6
 
Δ𝑄

𝑄
 (79) 

 

Substituting Eq. (79) into Eq. (77) gives the final 

equation for the change in θ as: 

 
Δθ

𝜃
=

Δ𝐵

𝐵
+ 

3

2
 
Δ𝐷

𝐷
−

13

12

Δ𝑄

𝑄
− 0.45 

Δ𝑓

𝑓
+

5

32
 
Δ𝑑𝑚

𝑑𝑚
+

1

2
Ψ(𝐶)

Δ𝐶 

𝐶
 (80) 

 

Hafez (2022) presents an alternative equation for SR as: 

 

𝑆𝑅 =  

𝜏𝑐 ± √𝜏𝑐
2+ 4(

𝑑𝑚
4 3⁄

 𝑞𝑠

0.173
)

2𝛾 𝑅
 (81) 

 

where, τc is the critical shear stress for incipient motion, qs 

is the unit bed load discharge, dm is the median bed size in 

mm, γ is the water unit weight and R is the channel 

hydraulic radius (equals the water depth D for very wide 

channels). Equation (81) has much more complex structure 
than Eq. (78) making its use a little harder.  

Equation (80) expresses the change in the angle θ in 

terms of changes in the channel width, depth, flow, median 

bed material size and roughness. Unfortunately, it is hard 

to find data to test Eq. (80) even qualitatively as past 

studies do not focus on changes in the angle θ. It is noted 

that the approach used to derive Eq. (80) combined the 

geometrical constrain between r and θ as given by Eq. (42), 

the sinuosity equation as given by the excess energy 

theory, the meander path arc length based on data and 

finally the extremal hypothesis of extremal channel 

sinuosity. Such a collection reflects the complexity of the 

process of river migration dynamics. Note that extremal 

condition means either minimum or maximum which is the 

case for channel sinuosity function which could attain both 

of minimum and maximum. As channel sinuosity is 

defined as valley slope over channel slope, its use here 

include the effect of the valley slope which represents the 

geological conditions of meander formation. According to 



Youssef Ismail Hafez / American Journal of Environmental Sciences 2025, Volume 21: 12.38 

DOI: 10.3844/ajessp.2025.12.38 

 

34 

Mackin (1963), any account of winding (meandering) 

rivers in terms of the slope of a valley floor or other surface 

leaves out a factor that would be very important to a 

geologist: The origin of that valley floor or surface. 

Evolving, mobile rivers, as opposed to quasistatic 

channelized flows, create the valley floors and surfaces 

upon which they flow at any moment in time. From this 

geological viewpoint, an explanation for the pattern of any 

evolving river must include something about the historical 

development of that river, (Baker, 2013). Therefore, 

inclusion of the excess energy theory equation which 

considers valley slope supports the arguments by Mackin 

(1963); Baker (2013). 
Bed aggradation/degradation effects can be included 

via the change in the depth term as follows. The channel 

flow depth (D) could be written as D = Zw - Zb, where Zw 

is water surface elevation while Zb is the bed elevation in 

an average sense. Performing incremental differentiation 

as in Eq. (5) on this relation yields: 
 
∆𝐷

𝐷
=  

∆𝑍𝑤

𝑍𝑤
−  

∆𝑍𝑏

𝑍𝑏
  (82) 

 

The change in the bed level could be given such as by 
the Exner equation as: 

 

(1 − 𝑒) 
∆𝑍𝑏

∆𝑡
+ 

∆𝑞𝑠

∆𝑠
= 0 (83) 

 

Or: 

 

∆𝑍𝑏 =  − 
1

(1−𝑒)
 

∆𝑡

∆𝑠
 ∆𝑞𝑠 (84) 

 

where, e is the porosity of the bed layer, t is time (T), qs is 

the unit bed load rate (L2/T), s is stream-wise coordinate 

(L), T is a time dimension and L is a length dimension. In 

this way imbalances of the sediment load leads to bed 

rising/lowering or bed aggradation/degradation; and 

through substituting Eq. (84) into Eq. (82) sediment 

changes are affecting meander migration process. 

It can be stated that the change in the radius of 

curvature (r) affects the lateral extent of the meander bend 

while the change in θ affects the bend upstream and 

downstream movements and skewness. Support to the 

hypothesis of extremal channel sinuosity could be given in 

the finding by Guo et al. (2019) that the field data suggest 

that meander bends without external forcing such as 

engineering works tend to evolve from downstream-

skewed low-sinuosity bends to upstream-skewed high-

sinuosity bends before cutoff. They further add that how 

skewing evolves as bends develop remains incompletely 

understood. Their analysis shows that, on 20 reaches of 

nearly pristine alluvial meandering rivers, downstream 

skewing dominates when the bends are relatively straight, 

but upstream skewing increasingly dominates as bend 

sinuosity increases. Equation (80) which could predict 

upstream and downstream skewness based on extremal 

sinuosity could be helpful in such type of analyses. 

Now, both of Eq. (40 and 80) offer a complete 

description of the movement of a point located on the river 

channel centreline in a two-dimensional horizontal plane. 

As pointed out before that theoretical work should furnish 
the floor and precede field and experimental data 

collection, therefore Eq. (40 and 80) give a useful 

guideline for the type of data collection which is important 

for investigating meandering river migration dynamics. 

The suggested approach could be considered as a 

generalization in time of Ikeda et al. (1981) seminal excess 

velocity bank erosion model, or to the excess shear stress 

model and also a generalization of the geomorphic regime 

theory equations. 

Conclusion 

In conclusion, we have demonstrated the conceptual 

development of a dynamic model for meander migration 

that provides two equations to describe the movement of a 

point on a river axis in a two-dimensional horizontal plane 

(r, θ) or (x, y). The model is based on the fundamental 

assumption that lateral meander migration can be 

attributed to the minimization of transverse energy loss 

slope or transverse stream power, while 

downstream/upstream bend migration is influenced by 

extremal channel sinuosity. Building upon the extremal 

technique introduced by Hafez (2000) for straight river 

reaches, we have successfully extended the theory to 

curved meandering river reaches. 

By applying a differential increment technique or linear 

perturbation to the equations of transverse energy loss 

slope or transverse stream power, we obtained an equation 

that describes the incremental change in the channel radius 

of curvature. This equation incorporates variations in flow 

discharge, flow width, flow depth and channel roughness, 

linking all the controlling variables of the meander 

migration process. Furthermore, the equation can be used 

to determine the relative change in meander wavelength. 

We also applied the differential incremental operator to the 

developed equation for channel sinuosity and meander 

bend arc length, as established by Hafez (2022), resulting 

in an equation for the relative change in the arc angle. 

The proposed model allows for the determination of 

critical flow discharge for incipient meander-neck-cutoff 

and chute cutoff, employing a methodology similar to the 

energy balance theory developed for scour analysis by 

Hafez (2016a). The flexibility of the model equations 

enables their integration with regime theory equations that 

relate channel variables to flow discharge. While the 

model equations can be considered a generalization of 

Ikeda et al. (1981) meander migration model, based on 
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excess bank velocity or excess bank shear stress, this 

generalization is primarily from a temporal perspective 

rather than spatiality. 

One of the key advantages of the analytical model is its 

simplicity and ease of application, eliminating the need for 

complex computer programming. It can accommodate 

spatial and temporal variations in lateral meander 

movement, offering a comprehensive analysis. The 

model's equations have demonstrated their predictive 

capability, successfully estimating the thalweg wavelength 

at the Nile River in Egypt and accurately predicting 

changes in the river channel radius of curvature for four 

rivers in Texas, USA. These predictions outperformed 

those made using Ikeda et al. (1981) meander migration 

model, as well as the sequence maps and extrapolation 

method proposed by Brice (1982); Lagasse (2001). 

This study emphasizes the importance of collecting 

hydraulic and roughness data, in addition to geometric data 

acquired through remote sensing, for a thorough analysis 

of meander migration. By incorporating these 

comprehensive datasets, a more complete understanding 

of the process can be achieved, leading to improved 

predictions and management strategies. 
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