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Abstract: This study presents a novel approach for characterizing the 

mechanics of flow in mildly meandering open channels, specifically focusing 

on the development of a new vertical distribution equation for transverse 

velocity. Unlike existing equations in the literature that rely on complex 

logarithmic or integral forms or infinite series forms, which are impractical 

for hydraulic engineers, the proposed equation employs ordinary power 
functions. This new formulation offers several advantages, including the 

consideration of previously neglected lateral forces resulting from wind and 

ship movement. Comparisons with available existing equations indicate a 

good agreement, highlighting the accuracy, sensitivity to roughness, and 

applicability of the developed transverse velocity equation. Notably, the 

analysis reveals that wind velocities can significantly increase transverse 

surface and bed velocities, emphasizing the importance of considering such 

factors in flow characterization. Moreover, the present approach yields 

higher transverse surface and bed velocities compared to a well-known 

existing equation. The equation for transverse velocity relies on two key 

assumptions. Firstly, it assumes a constant turbulent viscosity throughout the 
flow. Secondly, it relies on the condition that the topographic steering 

number is less than one, allowing for the approximation of mild curvature 

and meandering conditions. In addition, the developed transverse velocity 

equation is the only equation that offers derivation for an expression for the 

transverse boundary shear stress. This expression accounts for the effects of 

the centripetal force and the transverse pressure force, providing a 

comprehensive understanding of the flow dynamics in meandering channels. 

The study further presents distinct expressions for the deviation angles of the 

flow velocity and the bed shear stress, enhancing our understanding of the 

complex mechanisms governing flow behavior in meandering channels. 
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Distribution, Radial Boundary Shear Stress, Deviation Angle of the Flow 
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Introduction 

Meandering channels, characterized by their twisting, 

curving, bending, and meandering sections, are ubiquitous 

in rivers and alluvial open channels worldwide. These 

meandering patterns extend over a significant portion of the 

channel length, highlighting the need for in-depth 

investigations into meanders. It is rare to find straight 

alluvial channels longer than approximately 10-12 channel 

widths, emphasizing the prevalence and significance of 

meandering phenomena (Odgaard, 1986a). Meandering 

channels are dynamic landforms that emerge as a result of 

fluid mechanics and sedimentary processes (Weiss and 

Higdon, 2022). Hafez (2022) attributes river meandering to 

the imbalance between the valley slope and the regime 

channel slope, considering it the primary cause when 

sediment load is less than the load transport capacity and 

bank erodibility permits. 
Meandering is not limited to fluid systems such as 

natural rivers, channels, the Gulf Stream, and free-falling 
streams of viscous fluids. It is also observed in non-fluid 

systems, including derailed trains and jack-knifed trucks 
(Sahagian et al., 2022). The water flow discharge and 

sediment load play crucial roles in shaping and 
influencing river meander plan-forms (Hafez, 2022). 

Therefore, understanding the mechanics of flow and its 
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influence on sediment transport, channel morphology, and 
plan form is essential for comprehending the meandering 

phenomenon. The present study focuses on the mechanics 
of flow in curved meandering alluvial river channels, 

while the mechanics of sediment transport are addressed 
in a separate study. 

Despite numerous studies on the flow mechanics of 
river meandering and advancements in computer power 

for two- and three-dimensional computations, as well as 
measurement techniques, several fundamental issues 

regarding flow mechanics and sediment transport in 
meandering channels remain unresolved, even within the 

context of one-dimensional analysis. Ferreira da Silva and 
Ebrahimi (2017) highlighted significant discrepancies 

between computer model results and reality, emphasizing 
the need for a deeper understanding of the underlying 

physical processes and improved analytical descriptions. 
Early analytical works yielded equations for the 

transverse velocity distribution in meandering channels, such 
as those proposed by Rozovskii (1961); Kikkawa et al. 

(1976); Ascanio and Kennedy (1983). However, these 
equations often involve complex functions, such as 

integrals, logarithms, or infinite series, or rely on 
graphical functions, making them less attractive and less 

user-friendly. Furthermore, important factors such as 
wind effects on the transverse velocity vertical profile and 

the transverse boundary shear stress have not been 
adequately addressed in these equations. While 

investigations exist on wind effects, they have primarily 
focused on river plume dynamics rather than meandering 

channels (Elbagoury et al., 2023). 
Although pioneering works by Rozoviskii (1961); 

Engelund (1974); Kikkawa et al. (1976); Bridge (1977); 
Odgaard (1981; 1982; 1984; 1986a-b); Ascanio and 

Kennedy (1983); Chang (1983; 1984; 1988) significantly 
contributed to the understanding of flow mechanics in 

curved open channels and rivers, limited analysis has been 
conducted in a similar vein since then. Most of these 

investigations focused on one-dimensional open channel 
flow. In recent decades, researchers have turned to two- and 

three-dimensional numerical investigations (Gu et al., 2016; 
Krzyk and Cetina, 2018; Pradhan et al., 2018; Bai et al., 

2019; Thappeta et al., 2020; Zhou and Endreny, 2020). 
However, these studies often lack a comprehensive 

analytical framework and fail to provide equations that 
govern and explain the flow mechanics process. While 

valuable for understanding the influence of curvature on 
the velocity field, they are insufficient for thorough 

analysis. An exception is the two-dimensional water 
surface model by Molinas and Hafez (2000), which 

numerically investigates the effects of roughness, depth, 
and energy slope on the curving flow field around vertical 

wall abutments and develops an analytical expression for 
nose velocity amplification versus the friction factor. 

Despite the advancements in two- and three-

dimensional numerical models for curved flow fields, 

certain issues remain unresolved even within the one-

dimensional context, necessitating further developments. 

Similar situations exist, for example as by Nowroozpour et al. 

(2022) who suggest flow in alluvial, open-channel 

contractions requires further investigation as they 

observed that trends in the depth of contraction scour, 

especially live-bed scour, to deviate from the trends 

suggested by common guidelines.  

 In the context of one-dimensional investigations of 

transverse velocity in meandering channels, past works 

mostly consist of complex equations that are difficult to 

apply and adapt in numerical and analytical studies. 

Moreover, some assumptions made in previous studies 

can be improved upon. Most two-dimensional flow 

models adopt depth-averaged equations (e.g., He, 2018; 

Park and Ahn, 2019), which neglect vertical variations in 

velocity profiles and boundary shear stress. While these 

models are valuable for understanding the overall flow 

patterns, they do not provide detailed information on the 

flow mechanics within the channel cross-section. The 

depth-averaging process yields by definition net zero 

lateral velocity component along the fully developed flow 

region as can be seen in the graphical flow fields that the 

resultant velocity vector turns or curves more or less in 

the same manner as the turning or curving of the channel 

axis and walls. Molinas and Hafez (2000) avoided this 

situation by developing a 2D model along the water 

surface in which the lateral velocity component exists in 

the fully developed zone and at its maximum value 

contrary to being near zero in depth-averaged models. 

In the meantime, recent experimental investigations 

such as Pradhan et al. (2018); Bai et al. (2019) are focusing 

mostly on measurements of velocity. However, lack of in-

depth analysis has not guided these experimental 

investigations to produce useful empirical equations or 

useful measuring of the quantities that are really required in 

analytical and numerical studies such as transverse energy 

loss slope, transverse boundary shear stress, roughness in 

curved channels, transverse sediment transport …etc. In the 

experiments of He et al. (2021) two laboratorial sine-

generated channels, i.e., one with deflection angle = 30° 

and the other at 110° no flow velocities and also no 

transverse bed slopes were reported. Intensive field data 

collection of the geometric parameters of 1499 bends, Zhou 

and Tang (2022), using Landsat images in the Yimin River 

China, yet no hydraulic and sediment data were collected 

in order to relate them to the meander patterns. This 

addresses the lack of incomplete data sets necessary for 

development, testing, and validation. 
In this study, some of the fundamental assumptions in 

the pioneering works are revisited and modified in addition 

to presenting equations in an attractable and user-friendly 

form which allows their inclusion in analytical and 

numerical models. For example, a novel equation for the 
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vertical distribution of the transverse velocity in a curved 

open channel is developed. This equation, which uses 

typical or ordinary power functions, has the advantage of 

being attractive, easy to apply, inclusive of transverse wind 

and ship forces, easy to derive from it an expression for the 
lateral boundary shear stress, and easy for inclusion in 

analytical and numerical models. In addition, expression is 

developed for boundary shear stress deviation angle which 

differentiates it from the flow velocity deviation angle. The 

equation for transverse velocity relies on two key 

assumptions. Firstly, it assumes a constant turbulent 

viscosity throughout the flow. Secondly, it relies on the 

condition that the topographic steering number is less than 

one, allowing for the approximation of mild curvature and 

meandering conditions. 

To address the limitations and gaps in the current 
understanding of flow mechanics in meandering channels, 

this research tries to develop improved analytical 

frameworks useful for meandering analytical investigations 

and numerical models. These advancements should 

consider factors such as wind effects, applicable vertical 

variations in transverse velocity profiles, and reliable 

transverse boundary shear stress. 

In conclusion, meandering channels are complex 

systems influenced by fluid mechanics and sedimentary 

processes. While significant progress has been made in 

understanding flow mechanics in meandering channels, 

several fundamental issues remain unresolved as stated 
before. Further research is needed to develop improved 

analytical frameworks and numerical models that 

consider various factors and provide a comprehensive 

understanding of flow mechanics in meandering channels. 

This need motivated the present study in trying to improve 

the existing knowledge regarding transverse velocity 

vertical distribution, transverse boundary shear stress, and 

flow and boundary shear deviation angles. 

Review of Curved Channel Flow Mechanics 

The starting point for the analytical and numerical 

investigations of meandering channels is the equations of 

fluid motion in curved open channels. It is assumed here 

that the flows are subcritical and the pressure is 

hydrostatic, which is often the case under most field 

conditions. Under these conditions the equations of 

motion in the longitudinal and radial (transverse or lateral) 

directions are expressed, Chang (1988) and Fig. (1), as: 
 
𝜕 𝑢

𝜕 𝑡
+ 𝑢 

𝜕 𝑢

𝜕 𝑠
+ 𝑣 

𝜕 𝑢

𝜕 𝑟
+𝑤 

𝜕 𝑢

𝜕 𝑧
= −

𝑢 𝑣

𝑟
+𝑔 𝑆 + 

1

𝜌
 
𝜕 𝜏𝑠

𝜕 𝑧
  (1) 

 
𝜕𝑣

𝜕 𝑡
+ 𝑢 

𝜕 𝑣

𝜕 𝑠
+ 𝑣 

𝜕 𝑣

𝜕 𝑟
+𝑤 

𝜕 𝑣

𝜕 𝑧
= 

𝑢2

𝑟
−𝑔 𝑆𝑟 + 

1

𝜌
 
𝜕 𝜏𝑟

𝜕 𝑧
 (2) 

 
where, as in Fig. (1) u is the primary (longitudinal or 

main) flow local velocity, t is the time, s is the curvilinear 

coordinate along the channel main direction, v is the lateral 

(radial or transverse) local velocity, r is the radial direction 

measured from the center of curvature of the bend, w is the 

vertical local velocity, z is the vertical coordinate measured 

from the bed level upward, g is the acceleration due to 

gravity, S is the channel longitudinal slope, ρ is the fluid 

density, τs is the longitudinal local turbulent shear stress, Sr 
is the transverse water surface slope and τr is the radial or 

transverse local turbulent-shear stress. In Eq. (2) the term 

(u2/r) represents the centripetal force (per unit mass) while 

the term (g Sr) represents the radial pressure force (per unit 

mass) which is associated with the transverse water surface 

slope or inclination (Sr) due to the assumption of the 

hydrostatic pressure distribution. 

Assuming wide channels (in the central region) some 
assumptions could be made. It could be assumed in the 
central region that the vertical velocity w is small (w is of 
second order) and uniformity of all the variables could be 
assumed, i.e., derivatives with respect to r can be 
neglected. Assuming further mild curvature or a large 
relatively channel radius, r, the quantity (u v/r) could be 
assumed small and therefore neglected. In addition, 

steady flows (time derivatives are zeros) and fully 
developed conditions are assumed (uniform flow where 
all derivatives with respect to s are assumed zeros). Under 
these conditions, Eqs. (1-2) reduce to: 
 

𝑔 𝑆 + 
1

𝜌
 
𝜕 𝜏𝑠

𝜕 𝑧
= 0 (3) 

 
𝑢2

𝑟
−𝑔 𝑆𝑟 + 

1

𝜌
 
𝜕 𝜏𝑟

𝜕 𝑧
= 0 (4) 

 
Equation (3) gives a linear distribution of the 

longitudinal shear stress as: 
 
𝜏𝑠  =  𝜌 𝑔 (𝐷 – 𝑧) 𝑆 (5) 
 
where, D is the local flow depth. By assuming isotropic 

turbulence, Chang (1988), the turbulent shear stresses τs 

and τr can be expressed in terms of the isotropic eddy 

viscosity and the respective velocity gradient, that is: 
 
𝜏𝑠

𝜌
= 𝜈𝑇 

𝜕 𝑢

𝜕 𝑧
  (6) 

 
and: 
 

 
𝜏𝑟

𝜌
= 𝜈𝑇 

𝜕 𝑣

𝜕 𝑧
 (7) 

 

where, 𝜈𝑇  is the isotropic turbulent eddy viscosity. 
Among the first investigations of the lateral or 

transverse (radial) velocity, distribution is that by 

Rozovskii (1961). He assumed the following logarithmic 

longitudinal velocity distribution: 

 
𝑢

𝑈
= 1+ 

𝑔1 2⁄

𝜅 𝐶
 (1 + ln𝜂 ) (8) 

 

where, �̅� is the depth-averaged longitudinal velocity, κ is 

the von Karman constant (κ = 0.4 in clear fluid), C is the 

Chezy’s roughness coefficient, η = z/D is the relative 

depth and D is the local flow depth. 
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Fig. 1: Definition sketch for flow in a curved open channel, after 

Chang (1988) 

 
Rozovskii (1961) used Eq. (8) to derive the following 

formula for the transverse velocity in the case of smooth 

channel bottom: 

 
𝑣

𝑈
= 

1

𝜅2
 
𝐷

𝑟
 [𝐹1(𝜂) − 

𝑔1 2⁄

𝜅 𝐶
 𝐹2(η)] (9) 

 

where, 𝐹1(𝜂) and 𝐹2(𝜂) are functions of the relative depth 

which are given as: 

 

𝐹1(η) = ∫
2 lnη

η−1
 𝑑η (10) 

 

𝐹2(𝜂) =  ∫
ln2 𝜂

η−1
 𝑑η (11) 

 
In the case of the rough channel bottom, Rozovskii 

(1961) presented the following formula: 

 
𝑣

𝑈
= 

1

𝜅2
 
𝐷

𝑟
 [𝐹1(η) − 

𝑔1 2⁄

𝜅 𝐶
 {𝐹2(η) + 0.8 (1 + 𝑙𝑛 η )}] (12) 

 

The two functions F1(η) and F2(η) in Eqs. (10-11) 

which are evaluated through integration formulas and are 

also given in graphical forms, however, it is not practical 

for the hydraulic engineers to use them. This constitutes 

difficulty when the profile of the radial velocity is 

required in analytical investigations as was required in 

Chang (1983); Hafez (2023) for the evaluation of the 

transverse energy loss slope. Such difficulty also arises 

when requiring the vertical profile for the radial velocity 

in numerical models such as meander path models, Chang 

(1984); Odgaard (1986a) as input to the meander path 

model. In both Eq. (8) for the longitudinal velocity u and 

Eq. (12) for the transverse velocity v, the presence of ln 

(η) presents difficulty in evaluating the two velocity 

components and their derivatives at the bed (η = 0) as 

ln (η) and (1/η) are undefined at the bed where η = 0. 

The derivative of Eq. (9 or 12) is necessary to evaluate 

the transverse boundary shear stress; therefore it is not 

possible to use Rozovskii (1961) velocity profiles to 

evaluate the lateral bed shear stress. 

On the other hand, Kikkawa et al. (1976), using the 

stream function approach in the equations of motion, 

presented the vertical distribution for the transverse 

velocity as: 

 

𝑣 = 𝐹2(𝑟) 
𝑈

𝜅

𝐷

𝑟
 [𝐹𝐴 (𝜂) −  

1

𝜅
 
𝑈∗

𝑈
 𝐹𝐵  (𝜂)] (13) 

 

where, F(r) is the radial distribution of the depth-averaged 

main velocity (�̅�) normalized by U, U is the cross-

sectional averaged velocity and U* is the shear velocity of 

the cross-section. The two functions 𝐹𝐴  (𝜂) and 𝐹𝐵  (𝜂) are 

expressed in the form of logarithmic functions: 

 

𝐹𝐴 (𝜂) =  −15 [(𝜂)
2 ln(𝜂) − 

1

2
 (𝜂)2 + 

15

54
] (14) 

 

and: 
 

𝐹𝐵  (𝜂) =  
15

2
 [(𝜂)2 ln2(𝜂) −  (𝜂)2 ln(𝜂) + 

1

2
(𝜂)2 − 

19

54
] (15) 

 

Hafez (2023) adopted Kikkawa et al. (1976) 

transverse velocity profile as given in Eq. (13) for 

evaluating the transverse energy-loss slope. However, the 

derivation is very lengthy due to the complex structure of 

Eqs. (14-15). This is due primarily that not only the seven 

terms appearing in the transverse velocity expression of 

Eq. (13) are required for manipulation in the derivation by 

Hafez (2023) but also evaluation of their derivatives is 

required which is not an easy task. It is noted in Rozovskii 

(1961) Eq. 12 and Kikkawa et al. (1976), Eq. (13), that due 

to the presence of the logarithmic function ln (η), the 

lateral bed shear stress could not be evaluated from these 

velocity distributions as the logarithmic function is 

undefined at η = 0. This is a major shortcoming of these 

two widely known equations for the lateral velocity in 

meandering channels.  

Ascanio and Kennedy (1983) calculated the radial 

velocity assuming a linearly primary-flow shear stress, the 

power law for the main velocity, and an isotropic eddy 

viscosity. The power law is given as by Zimmerman and 

Kennedy (1978) as: 

 
𝑢

𝑈
= 

𝑚+1

𝑚
 η1 𝑚⁄  =  (1 + 𝑝) (

𝑧

𝐷
)
𝑝
 (16) 

 

where, m = (1/p) is an exponent in the primary-flow 
velocity power law and m is related to the Darccy 

Weibach friction factor and von Karman constant by: 

 

𝑚 =
1

𝑝
 =

1

𝜅
 √

𝑓

8
 (17) 

 

The power law was used in many meandering 

investigations such as Ascanio and Kennedy (1983); 

Chang (1983; 1984); Odgaard (1986a). Recently in a 
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different, although some similarity exists, Dey et al. (2023) 

adopted the power law for the stream-wise velocity in 

their investigation of flow over a downstream-skewed 

wavy bed in which flow curvature is in the vertical plane. 

Ascanio and Kennedy (1983) presented the following 

distribution for the transverse velocity: 

 

𝑣

𝑈
= 8 

𝐷

𝑟
 ∑

{
 
 

 
 (𝑚+1)4

𝑚2(𝑚+2)
 [

1

(3 𝑚⁄ +2+𝑗)(3 𝑚⁄ +1+𝑗)
− 

1

(1 𝑚⁄ +1+𝑗)(1 𝑚⁄ +𝑗) 

] 

𝜂1 𝑚⁄ − 
(𝑚+1)3

𝑚(𝑚+2)
 [
𝜂3 𝑚+1+𝑗⁄

3 𝑚⁄ +1+𝑗
− 

𝜂(1 𝑚⁄ +𝑗

(1 𝑚⁄ +𝑗
]}
 
 

 
 

∞
𝑗=0   (18) 

 

Clearly, the infinite series form in Eq. (18) and its 

complicated structure precludes its use in analytical and 

numerical investigations of curved open channels and 

derivation from it as an expression for transverse 

boundary shear stress. It is not clear how many terms are 

required for convergence of the infinite series in Eq. (18). 

 Some linearized versions of the radial velocity have 

been used to facilitate its use in several meandering 

investigations. For example, in evaluating energy 

expenditure in curved open channels Chang (1983; 1988) 

used a linearized form of the radial velocity profile based 

on Kikkawa et al. (1976), Eq. (13), in the form: 

 

𝑣 = 
2

𝜅
 (3.75− 

1.875

𝜅
 
𝑈∗

𝑈
) (𝑧 − 

𝐷

2
) 
𝑈

𝑟𝑐
 (19) 

 

where, rc is the radius of curvature of the channel centre line. 

Chang (1984) in his regular meander path model used 

a surface radial velocity, vs, from Kikkawa et al. (1976) 

equation by setting η = z/D = 1 in Eq. (13) and obtained: 

 

𝑣𝑠 = 
𝑈

𝜅
 
𝐷

𝑟𝑐
 [
10

3
− 

1

𝜅
 
5

9
 √

𝑓

2
] (20) 

 

where, f is the Darcy-Weisbach friction factor which has 

the advantage over the Chezy and Manning roughness 

coefficients because it is dimensionless. The lateral bed 

velocity (𝑣𝑏) could also be obtained from Kikkawa et al. 

(1976) equation by setting η = z/D = 0 and observing that 

the product η ln(η) is zero at η = 0, to obtain: 

 

𝑣𝑏 = 
15

54

 𝑈

𝜅
 
𝐷

𝑟𝑐
 [−15 + 

19

 4𝜅
 √

𝑓

2
] (21) 

 

Odgaard (1986a) in his meander flow model also 

assumed a linear vertical profile for the transverse 

velocity given as: 

 

𝑣 = 2 𝑣𝑠  (
𝑧

𝐷
− 

1

2
) = 2 

𝑈

𝜅
 
𝐷

𝑟𝑐
 [
10

3
− 

1

𝜅
 
5

9
 √

𝑓

2
] (

𝑧

𝐷
− 

1

2
)  (22) 

where, vs is the value of v at the water surface obtained 

from Eq. (20). Odgaard (1986a) concluded that Eq. (22) 

(Eq. (4) in Odgaard (1986a)) is in good agreement with 

the data profiles by Rozovskii (1961); Kikkawa et al. 

(1976); Odgaard (1982), as in Fig. (2). 
Due to the presence of the transverse velocity 

component, the resultant velocity vector assumes an angle 

of deviation, 𝛿𝑣, with the channel tangential direction. 

From Eqs. (8-9) by Rozovskii (1961), this angle at any 

depth could be given in the case of smooth bottoms as: 

 

tan𝛿𝑣(𝜂) = 
𝑣

𝑢
= 

1

𝜅2
 
𝐷

𝑟
 
𝐹1(η)− 

𝑔1 2⁄

𝜅 𝐶
 𝐹2(η)

1+ 
𝑔1 2⁄

𝜅 𝐶
 (1+𝑙𝑛η )

 (23) 

 

For two values of the Chezy coefficient (C = 60 and 

30), Rozovskii (1961) found that channel roughness has a 

minor effect on the deviation angle near the bed (𝛿𝑣𝑏) and 

obtained the following relation: 

 

 tan𝛿𝑣𝑏 ≈  11 
𝐷

𝑟
 (24) 

 

Equation (24) has been proved satisfactory with the 

laboratory and field data by Kondratʹev (1959). However, 

Engelund (1974) obtained tan (𝛿𝑣𝑏) = 7 D/r which may be 

due to the channel beds being rougher than those in Eq. 

(24). The dependency of flow deviation angle on channel 

roughness will be seen later in the results section using the 

present approach which casts some doubt on Eq. (24). Due 

to the existence of the ln (η) in Eq. (23) it is not possible to 

substitute η = 0 in order to obtain direct value for the flow 

deviation angle at the channel bed. This problem will be 

overcome in the present approach. 

 

 

 
Fig. 2: Experimental vertical profiles of the transverse velocity 

and the linear approximation by Odgaard (1986b), Eq. (4) 
in the figure is Eq. (22) herein, after Odgaard (1986a) 
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Neglecting the transverse force contributed by the bed 
due to friction and boundary shear stress, Rozoveskii 
(1957); Yen (1965) balanced the pressure force by the 
centripetal force and obtained an equation for the 
transverse water surface slope as: 
 

𝑆𝑟 =  
𝐶𝑟 𝑈

2

𝑔 𝑟
 (25) 

 
where, Cr is a correction factor that accounts for the 

nonlinear distribution of the u velocity and �̅� is the depth-

averaged velocity used to replace the local velocity u. For 

a wide channel by assuming Cr =1, �̅� = 𝑈 and rc = r, 
Chang (1988) simplifies Eq. (25) to: 
 

𝑆𝑟 =  
𝑈2 

𝑔 𝑟𝑐
 (26) 

 
where, U is the cross-sectionally averaged velocity. 
Equation (26) has been widely used such as by Rozovskii 

(1961); Yen (1965); Chang (1984); Odgaard (1986a) 
among others. 

Jansen et al. (1979) by using a radial velocity profile 

similar to Rozovskii (1961), Eq. (12), obtained the 
following equation for the radial component of the 

boundary shear stress (𝜏𝑜𝑟): 
 

𝜏𝑜𝑟 =  − 𝜌 𝐷 
𝑈2

𝑟
 [2(

𝑔1 2⁄

𝜅 𝐶
)
2

− 2 (
𝑔1 2⁄

𝜅 𝐶
)
3

]  (27) 

 
The negative sign indicates that the direction of the 

bed shear stress is inward toward the center of curvature. 
The tangential boundary stress is given by: 
 

𝜏𝑜𝑠 =  𝜌 𝑔 
𝑈2

𝐶2
 (28) 

 
Equations (27-28) are used to calculate the angle 

between the resultant bed shear stress and the channel axis 

(𝛿𝜏𝑏) by Jansen et al. (1979) as: 
 

tan𝛿𝜏𝑏 = 
𝜏𝑜𝑟

𝜏𝑜𝑠
= − 

2

𝜅2
 
𝐷

𝑟
 (1 − 

𝑔1 2⁄

𝜅 𝐶
)  (29) 

 
Ascanio and Kennedy (1983) balanced the moment 

due to the centrifugal acceleration by that due to the radial 
bed shear stress and obtained the relation: 
 

𝜏𝑜𝑟 =  𝜌 𝐷 
𝑈2

𝑟
 
1+𝑚

(2+𝑚)𝑚
 (30) 

 
where, “m” is given from Eq. (17). It is noted that Eq. (30) 
neglects the contribution by the transverse pressure force 
(transverse water surface slope, Sr) in spite that it is a key 
influencing factor in curved flows. 

The foregoing review asserts that in spite of the great 

efforts that existed in past works still significant 
improvements could be introduced as will be seen in the 
following section. These improvements aim to answer the 
following questions. 

Could it be there a transverse velocity vertical profile 
that is very convenient for inclusion in analytical and 
numerical models without having complex logarithmic 
integral or infinite series functions? To answer that an 
equation will be provided for the vertical profile of the 
transverse velocity which has ordinary power functions 
without the complexity of the logarithmic integral or 

infinite series functions. 
Could that velocity profile under fully developed flow 

conditions, be able to include effects of lateral surface 
wind forces and other surface forces? To answer that the 
developed transverse velocity equation has the capability 
of including lateral surface wind forces and other surface 
forces due to ship movements for example. 

Could that velocity profile also allow for convenient 
derivation of the transverse-boundary shear stress? Unlike 
existing equations in the literature, the developed equation 
herein, due to its flexible power function structure, allows 
the evaluation of the derivative of the transverse velocity 

equation to evaluate the transverse boundary shear stress. 
Could we find an expression for the boundary shear 

stress that balances all the forces including the centripetal 
and lateral pressure gradient forces? The developed 
expression for the transverse boundary shear includes 
both the centripetal and lateral pressure gradient forces. 

Could a differentiation be made between the different 
deviation angles of the resultant flow velocity and the 
boundary shear? A differentiation will be made here 
between these two deviation angles as a separate 
expression will be developed for each type. 

The following section will try to present answers to 

these important questions. 

Materials and Methods 

The present approach method rests on the integration of 

the transverse momentum equation, after making the 

necessary assumptions of steady and fully developed 

conditions, in the vertical direction and imposing the 

required boundary conditions. The boundary conditions 

include specifying the lateral shear stress force at the free 

surface and applying a condition of fully developed flow for 

the vertical profile of the transverse velocity. Evaluation of 

the derivative of the transverse velocity at the channel bed 

enables developing expression for the transverse boundary 

shear stress. Dividing the transverse bed velocity from the 

present approach by the longitudinal bed velocity results in 

expression for the deviation angle of the flow bed velocity 

while doing so for the transverse and longitudinal bed shear 

stresses provides an equation for the deviation angle of the 

bed shear stress. The equation for transverse velocity relies 

on two key assumptions. Firstly, it assumes a constant 

turbulent viscosity throughout the flow. Secondly, it relies 

on the condition that the topographic steering number is 

less than one, allowing for the approximation of mild 

curvature and meandering conditions. 
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Vertical Distribution of the Transverse Velocity 

The starting point is to combine Eqs. (4 and 7) in 
the following form assuming incompressible flow, 

fully developed flow conditions, and constant eddy 

(turbulent) viscosity: 

 

 
𝑑

𝑑𝑧
( 𝜈𝑇

𝑑𝑣

𝑑𝑧
) = 𝑔 𝑆𝑟  − 

𝑢2

 𝑟
 (31) 

 

where, 𝜈𝑇  is assumed as a constant turbulent eddy 

viscosity. 

In the context of turbulent flow in mildly meandering 

open channels, a constant turbulent eddy viscosity (νT) is 

assumed, which can be represented as νT = c U* D. In this 

way the turbulence is represented via the turbulent 

viscosity in terms of velocity scale (U*) and length scale 

(D). As the size of the eddies and flow circulation in the 

cross-sectional plane of meandering channels is 

comparable to the channel depth, the channel depth thus 

can be considered as an appropriate length scale. In the 

meantime, the shear velocity represents the bed shear 

stress which generates turbulence thus making the shear 

velocity suitable velocity scale of turbulence. This 

approach of constancy of turbulent viscosity is supported 

by Molinas and Hafez (2000), who utilized a constant 

turbulent viscosity with c = 0.0765, as suggested by 

Laufer (1951) in their investigation of turbulent flow in a 

two-dimensional channel. Similar assumptions were also 

employed by Rastogi and Rodi (1978) in their study on 

heat and mass transfer in open channels. Notably, Molinas 

and Hafez (2000) successfully predicted the two-

dimensional velocity field around vertical wall abutments 

by comparing their numerical model results with 

experimental data of Rajaratnam and Nwachukwu (1983); 

and Kheireldin (1995). Additionally, Talaa et al. (2002) 

achieved good agreement between their 2D numerical 

simulation of the heated side discharge problem and the 

experimental results of Makhail et al. (1975); Strazisar 

and Prahl (1973); and El-Ghorab (1999) by using a 

constant turbulent viscosity for flow and heat. It was 

shown by Hafez (1995) that detailed turbulence modeling 

is required for flows with corner effects and periodic wall 

roughness changes where the secondary currents are 

driven by the turbulence an-isotropy whereas the 

curvature-induced secondary currents herein are derived 

by the centripetal acceleration and transverse water 

surface slope, so turbulence is of secondary importance. 

Rodi (2000) extensively discussed the use of simplified 

turbulence models, highlighting their potential benefits. 

These simplified models, when applicable, offer 

computational efficiency, require less detailed input data, 

and involve fewer calibration parameters. Thangam and 

Speziale (1992); Hafez (1995) reported a large number of 

iterations for achieving convergence with their standard 

k-e turbulence model. However, simplified constant eddy 

viscosity models, such as those proposed by Tan (1992); 

Benque et al. (1982); Kimura and Hosoda (1997), require 

considerably fewer iterations to achieve convergence 

when solving engineering problems. 
The assumption of constant turbulent viscosity is 

supported by previous studies and has been successfully 

applied in more complex turbulent flows such as jet 

flows (Talaa et al., 2002), flows around abutments 

(Molinas and Hafez, 2000) and heat and mass (Rastogi and 

Rodi, 1978) further justifications are presented as 

follows. It will be demonstrated that the assumption of 
constant turbulent viscosity remains valid given the 

current state of knowledge. 

Two options exist for modeling the turbulent viscosity 

profile: Utilizing the parabolic turbulent viscosity profile 

or employing a turbulence model such as the k-ε model. 

However, it is crucial to recognize that the nature of flow 

in the longitudinal and lateral channel directions is 

fundamentally different. In the longitudinal direction, the 

flow exhibits characteristics of free shear layer flow or 

typical boundary layer flow, where flow shear forces are 

balanced by boundary friction forces. On the other hand, 

the lateral direction involves circulatory flow governed by 

the centripetal, transverse water surface slope, and 

transverse boundary friction forces. Consequently, the 

turbulence structure and levels vary between the 

longitudinal and lateral directions. Therefore, the 

turbulent viscosity should ideally be anisotropic, 

depending on the flow directions. The parabolic turbulent 

viscosity, derived from longitudinal flow relations and 

which was utilized by Ascanio and Kennedy (1983) in 

their transverse velocity equation (Eq. (18) thereafter), 

may not accurately represent the turbulence structure in 

the cross-sectional direction of the meandering channel. 

The constancy of a variable quantity is a common 

assumption in nearly all hydraulic studies. Roughness in 

alluvial channels changes from point to point due to 

variation in bed sediment grain sizes which in nature is 

not uniform. The Manning, Chezy and Darcy-Weisbach 

roughness equations which are some of the most used 

equations in hydraulic and hydrologic flow modeling 

assume constant roughness coefficient all over the whole 

cross-section. Almost all sediment transport bed load 

equations are one-dimensional adopting average or 

constant longitudinal velocity which also implies constant 

roughness. Even in two and three-dimensional flow 

models, the roughness coefficient is assumed constant 

within an element or grid cell. As elements or grid cells 

usually have dimensions in the order of meters when 

modeling natural alluvial channels, assuming constant 

roughness within an element becomes an approximating 

assumption of constancy in space. In addition, roughness 

and bed-load equations are developed under steady-state 

conditions and assumed applicable to unsteady conditions 

and this is also an approximating assumption but 
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constancy is assumed in time. The bottom line is that 

approximating assumptions have been always used in 

nearly all hydraulic studies so it is not uncommon to make 

an approximating assumption of constant turbulent 

viscosity keeping in mind that there is no other alternative 

considering the current state of knowledge. While it is 

recognized that these approximations have their limitations, 

it is crucial to acknowledge that alternatives to the 

assumption of constant turbulent viscosity are currently 

limited. Given the state of knowledge and the practical 

constraints in hydraulic studies, the assumption of constant 

turbulent viscosity remains a widely employed and justified 

approach. Researchers and practitioners continue to work 

towards improving these models and exploring alternative 

approaches, but in the absence of comprehensive 

alternatives, the assumption of constant turbulent viscosity 

remains a practical and reasonable choice. 
The condition of the mildly curving and meandering 

channel is that the topographic steering number proposed 

by Hafez (2023) for delineation between mild and sharp 

bends is less than unity. The topographic steering number 

according to Hafez (2023) = 
(𝑟2
19− 𝑟1

19)

19 𝑟𝑐
18  (𝑟2− 𝑟1)

 where r2 and r1 

are the outer and inner channel radius of curvature, 

respectively. This number is the ratio of the transverse 

energy slope loss in a sharp bend to that in a mild bend. 

When it is unity, it indicates that the condition in the 

considered bend is that of a mild bend. 

Integrating Eq. (31) twice while solving for the 

transverse velocity yields: 
 

𝑣 = 
1

𝜈𝑇
 (

𝑔 𝑆𝑟  
𝑧2

2
−

 
𝑈2 (𝑝+1)2

𝑟 𝐷2𝑘 (2𝑝+1)(2𝑝+2)
 (𝑧)2𝑝+2  + 𝑐1 𝑧

) + 𝑐2  (32) 

 
Two boundary conditions are required to evaluate the 

two constants in Eq. (32). The first is at the water surface 

to specify the lateral surface shear stress or other surface 

forces and the second is for ensuring fully developed flow 

conditions. The first boundary condition at the surface 

could be expressed as: 

 

 𝜈𝑇 
𝜕 𝑣

𝜕 𝑧
|
𝑧=𝐷

= ± 
𝜏𝑟𝑠

𝜌
  (33) 

 

where, 𝜏𝑟𝑠 is the external radial surface shear stress acting 

on the water surface which could be due to the wind force 

or ship's lateral movement or any lateral surface forces 

and in the absence of these forces it could be assumed 

zero. It is noted that the (±) is inserted in front of the 

surface shear stress as the wind and also ship movement 

can be in either the inward or outward lateral directions. 

Applying Eqs. (32-33) and solving for c1 yield: 
 

𝑐1 = (− 𝑔 𝑆𝑟  𝐷 + 
𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷 ± 

𝜏𝑟𝑠

𝜌
)  (34) 

Substituting Eq. (34) for c1 into Eq. (32) results in: 

 

𝑣 = 
1

𝜈𝑇
 (
𝑔 𝑆𝑟 ( 

𝑧2

2
−  𝐷 𝑧) + 

𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 

(𝐷 𝑧 − 
𝑍2𝑝+2

𝐷2𝑝 (2𝑝+2)
) ± 

𝜏𝑟𝑠

𝜌
𝑧
)+ 𝑐2 (35) 

 

It is noted from Eq. (35) that c2 is equal to the lateral 

bed velocity, 𝑣𝑏, which is the lateral velocity at z = 0. It 

should be noted that the no-slip velocity boundary 

condition exists but it could be assumed to occur at the 

bottom of the immobile bed. It is the lower edge of the 

bed-load layer in which the sediment particles are 

assumed stationary or non-moving, i.e., at z = -zb, v = 0, 

where zb is the thickness or height of the bed-load layer. 

Therefore, it is understood herein that the theoretical bed 

lies at z = 0 with slip velocity which is the upper edge of 

the moving bed-load layer, and the zero velocity or no-

slip velocity is assumed at the lower edge of the bed-load 
layer at z = -zb. 

Fully developed flow conditions along the vertical 

water column dictate that: 

 

∫ 𝑣 𝑑𝑧 = 0 
𝐷

0
 (36) 

 

Substituting Eq. (35) into Eq. (36) and integrating yield: 

 

{
1

𝜈𝑇
 (

𝑔 𝑆𝑟 ( 
𝑧3

6
−  𝐷

𝑧2

2
) + 

𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 

(𝐷 
𝑧2

2
− 

𝑍2𝑝+3

𝐷2𝑝 (2𝑝+2) (2𝑝+3)
) ± 

𝜏𝑟𝑠

𝜌

𝑧2

2

) + 𝑐2𝑧}|

0

𝐷

= 0 (37) 

 
Substituting the limits of integration in Eq. (37) and 

solving for c2 yield: 

 

 𝑣𝑏 =  𝑐2 = 𝑣|𝑧=0 =
1

𝜈𝑇
 (

𝑔 𝑆𝑟 ( 
𝐷2

3
)

− 
𝑈2𝐷2 (𝑝+1) (𝑝+2)

2 𝑟 (2𝑝+3)
∓ 

𝜏𝑟𝑠

𝜌

𝐷

2

) (38) 

 

It is emphasized that the radial velocity at the bed (𝑣𝑏) 

is equal to the constant c2. This allows Eq. (35) to be 

written as: 

 

𝑣 = 
1

𝜈𝑇
 (
𝑔 𝑆𝑟 ( 

𝑧2

2
−  𝐷 𝑧) + 

𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 

(𝐷 𝑧 − 
𝑍2𝑝+2

𝐷2𝑝 (2𝑝+2)
) ± 

𝜏𝑟𝑠

𝜌
𝑧
)+ 𝑣𝑏 (39) 

 

where, 𝑣𝑏 is given as by Eq. (38). 

The lateral surface velocity is given from Eq. (39) by 

substituting z = D which results in: 

 

𝑣𝑠 = 
1

𝜈𝑇
 (− 

𝐷2

2
𝑔 𝑆𝑟 + 

𝑈2 (𝑝+1) 𝐷2

2 𝑟 
 ± 

𝜏𝑟𝑠

𝜌
𝐷) + 𝑣𝑏 (40) 

 

Equations (38-40) have the advantage that they 

include effects of the wind forces and forces due to lateral 
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ships’ movement while these factors are absent in the 

existing transverse velocity profiles. They also have the 

most convenient form of being composed of power 

functions avoiding the complexity that could arise from 

the logarithmic or integral functions or power series that 
exist in Rozovskii (1961); Kikkawa et al. (1976); and 

Ascanio and Kennedy (1983). 

Transverse Boundary Shear Stress 

The transverse boundary or bed shear stress is given as: 

 

𝜏𝑜𝑟 =  𝜌 𝜈𝑇 
𝜕 𝑣

𝜕 𝑧
|
𝑧=0

 (41) 

 

It is noted from Eq. (32) that 𝜏𝑜𝑟 =  𝜌 𝑐1 which could 

be expressed according to Eq. (34) for c1 as: 

 

𝜏𝑜𝑟 = 𝜌 𝐷 (
𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 −  𝑔 𝑆𝑟  ) (42) 

 

Equation (42) expresses that the transverse boundary 

shear stress balances the centripetal and the radial 

pressure forces unlike that in Eq. (30) by Ascanio and 

Kennedy (1983) who only considered balancing the 

centripetal force. 

Flow Velocity and Boundary Shear Stress Deviation 

Angles 

The surface velocity deviation angle, 𝛿𝑣𝑠, could be 

given according to Eq. (16) by substituting z = D and with 

Eq. (40) yielding: 

 

 tan 𝛿𝑣𝑠 =  
𝑣𝑠

𝑢𝑠
=  

1

𝑈 (𝑝+1)
 (

− 
𝐷2

2 𝜈𝑇
𝑔 𝑆𝑟 +

 
𝑈2 (𝑝+1) 𝐷2

2 𝑟 𝜈𝑇 
 ± 

𝜏𝑟𝑠

𝜌 𝜈𝑇
𝐷
) + 

𝑣𝑏

𝑈 (𝑝+1)
 (43) 

 

In this study distinction is made between the near bed 

resultant flow velocity deviation angle and the resultant 

bed shear stress deviation angle as follows. The flow bed 

velocity deviation angle, 𝛿𝑣𝑏 , using Eq. (38) for vb, could 
be given as: 

 

tan𝛿𝑣𝑏  =  
𝑣𝑏

𝑢𝑏
= 

1

𝑢𝑏 𝜈𝑇
 (

𝑔 𝑆𝑟 ( 
𝐷2

3
)

− 
𝑈2𝐷2 (𝑝+1) (𝑝+2)

2 𝑟 (2𝑝+3)
∓ 

𝜏𝑟𝑠

𝜌

𝐷

2

) (44) 

 

The resultant bed shear stress deviation angle, using 

Eq. (42) for τor, could be given as: 

 

tan 𝛿𝜏𝑏 =  
𝜏𝑜𝑟

𝜏𝑜𝑠
=  

𝜌 (
�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

𝜌 
�̅�2 𝑓

8

=  
8 (

�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

 𝑈2 𝑓
  (45) 

 

There are several ways for determining ub appearing 

in Eq. (44) such as from the vertical distribution of the 
longitudinal main velocity or from a bed-load formula and 

the thickness of the bed-load layer. One way is to use the 

well-known logarithmic velocity distribution over the 

rough boundary which is given as: 
 
𝑢

𝑢∗
= 8.5+ 5.75 log(

𝑧

𝑘𝑠
) (46) 

 
where, u* is the local shear velocity, ks is a representative 

roughness height of the bed surface. Assuming near the 

bed surface that z = ks results in an approximate value for 

the bed main velocity, ub, as: 
 

𝑢𝑏 

𝑢∗
≈ 8.5, or 𝑢𝑏  ≈ 8.5 𝑢∗ 

 
Or more generally: 

 
𝑢𝑏  ≈ 𝑐𝑢𝑢∗ (47) 
 
where, cu is a coefficient that depends on the flow 

conditions and it will be assumed herein as 8.5. 

Alternatively, the deviation angle of the resultant 

boundary shear stress could be used for determining the 

deviation angle of the resultant flow velocity. The 

equation of the deviation angle for the resultant bed shear 

stress has much confidence due to knowledge with 
reasonable accuracy of the lateral and longitudinal 

boundary shear stresses. For the bed velocity deviation 

angle Eq. (44), the requirement of the longitudinal bed 

velocity as an input introduces some uncertainty. To 

overcome this it is assumed that the bed shear stress is 

proportional to the square of the flow bed velocity. The 

same proportionality would be assumed to be applicable 

to the deviation angle. It can be stated that: tan𝛿𝜏𝑏 =

 
𝜏𝑜𝑟

𝜏𝑜𝑠
≈ 

𝜌 𝑣𝑏
2

𝜌 𝑢𝑏
2 = 

𝑣𝑏
2

𝑢𝑏
2 
= (tan𝛿𝑣𝑏)

2. Thus it can be assumed 

the bed velocity angle is proportional to the square root of 

the boundary shear stress angle as: 
 

tan𝛿𝑣𝑏  =  √ tan 𝛿𝜏𝑏 =  √
8 (

�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

 𝑈2 𝑓
 (48) 

 
where, (tan 𝛿𝜏𝑏) is given as by Eq. (45). Comparing 

Eq. (48 and 24), it can be seen that Eq. (48) has the 

advantage of including the main velocity and roughness 
effects which are absent in Eq. (24). It should be noted 

that Eq. (24), in spite of its wide use, is based on the 

transverse velocity for smooth beds while natural rivers 

have rough beds. 

Methods for Evaluation of the Developed Equations 

Transverse velocity data exist but, unfortunately, 
the bends might be either very sharp bends as curved 
laboratory channels of a U shape with a central angle 
of 180°, or no measurements of the vertical distribution 
of the transverse velocity, or no reporting data exist for 
the roughness conditions of the curved channel 
(Blanckaert, 2010; Pradhan et al., 2018; Bai et al., 
2019; He et al., 2021). 
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To evaluate the accuracy of the developed equation for 
transverse velocity and in the absence of existing data to 
do that, we conducted tests using a hypothetical channel. 
The channel had a Manning's roughness coefficient of 
0.013, a width of 10 m, a depth of 2.0 m, a slope of 0.0001, 
and a channel center line radius of curvature of 50 m. 
Based on these parameters, the average longitudinal 

velocity was determined to be 0.976 m/s, with a flow 
discharge of 19.51 m3/s. The friction factor was found to 
be 0.0118 and the corresponding Chezy's coefficient 
indicated a smooth bed roughness of 81.6. To investigate 
roughness effects, additional values of Manning's 
roughness coefficients of 0.025 and 0.05 were taken. 

For the analysis, we assumed a rectangular channel 
with substantial width, where the depth-averaged velocity 
was considered equal to the cross-sectional average 
velocity. Additionally, the depth-averaged shear velocity 
(u*) was approximated as equal to the cross-sectional 
shear velocity (U*). The depth-averaged turbulent 

viscosity was calculated when using Eq. (39) as u* D/15 
≈ 0.067 u* D, which represents the depth-averaged value 
of the widely recognized parabolic turbulent viscosity 
vertical distribution proposed by Fischer et al. (1979) as 
𝜈𝑇 =  κ 𝑢∗ 𝑧 (1 –  𝑧/𝐷). 

Finally, we address the influence of lateral surface 

forces, such as lateral wind shear stress. As an illustrative 

example, we consider the cross-section and hydraulic data 

of Muddy Creek, Wyoming, as reported by Dietrich and 

Smith (1983). Unfortunately, no wind-induced transverse 
velocity data were available in the literature for direct 

comparison with our approach. To the best of our 

knowledge, such data for transverse velocity in meandering 

channels are currently unavailable. For the Muddy Creek 

case, the mean water depth, width, depth-averaged velocity, 

discharge, longitudinal water surface slope, and river 

centreline radius of curvature were determined as 0.40 m, 

4.0 m, 0.55 m/s, 1.1 m3/s, 0.0014 and 8.0 m, respectively. 
In our analysis, we assumed lateral wind blowing inward or 

outward with a wind shear stress of 0.5 Pa. This value 

corresponds to a wind speed of 10 m/s, assuming an air 

density of 1.2 kg/m3 and a drag coefficient of 0.0042. 

Results 

Table 1 presents the results obtained by applying Eqs. 
(13, 19, 22 and 39) with Manning's roughness coefficients 

of 0.013 and 0.025 to calculate the vertical profile of the 
transverse velocity. Figures 3-5 depict the lateral velocity 

profiles for different roughness values: 0.013, 0.025, and 
0.05, respectively. Figures 6-7 illustrate the effects of 

varying Manning's roughness coefficients on the 
transverse surface velocity and the transverse bed 

velocity, respectively, using the same hydraulic data as the 
previous examples. The Manning's roughness coefficient 

varied incrementally from 0.01-0.1 to cover a wide range 
of values observed in natural channels. Figure 8 

demonstrates the variation of transverse boundary shear 
stress with respect to Manning's roughness coefficient, 

while Fig. 9 shows the deviation angle of the boundary 
shear stress as a function of channel roughness. Figure 10 

illustrates the effects of inward and outward wind shear 
stress of 0.5 Pa on the vertical profile of the transverse 

velocity when the comparison is made against the no-
wind profile. 

 
Table 1: Vertical profiles for the transverse velocity (m/s) using different analytical equations for Manning’s roughness (n) = 0.013 and 0.025 

 Transverse velocity (m/s) for n = 0.013  Transverse velocity (m/s) for n = 0.025 

 ------------------------------------------------------------------- ------------------------------------------------------------------ 
z/D Eq. (13) Eq. (19) Eq. (22) Eq. (39) Eq. (13) Eq. (19) Eq. (22) Eq. (39) 

1.00 0.315 0.348 0.315 0.328 0.159 0.173 0.159 0.171 
0.95 0.311 0.314 0.283 0.324 0.157 0.155 0.143 0.169 

0.90 0.301 0.279 0.252 0.313 0.151 0.138 0.127 0.163 
0.85 0.284 0.244 0.220 0.295 0.143 0.121 0.111 0.154 
0.80 0.261 0.209 0.189 0.271 0.131 0.104 0.095 0.141 
0.75 0.232 0.174 0.157 0.241 0.116 0.086 0.079 0.125 
0.70 0.199 0.139 0.126 0.207 0.099 0.069 0.063 0.107 
0.65 0.161 0.105 0.094 0.167 0.079 0.052 0.048 0.086 
0.60 0.119 0.070 0.063 0.123 0.058 0.035 0.032 0.063 
0.55 0.073 0.035 0.031 0.076 0.035 0.017 0.016 0.038 

0.50 0.025 0.000 0.000 0.027 0.011 0.000 0.000 0.012 
0.45 -0.025 -0.035 -0.031 -0.025 -0.014 -0.017 -0.016 -0.014 
0.40 -0.076 -0.070 -0.063 -0.078 -0.040 -0.035 -0.032 -0.042 
0.35 -0.127 -0.105 -0.094 -0.131 -0.065 -0.052 -0.048 -0.069 
0.30 -0.177 -0.139 -0.126 -0.183 -0.090 -0.069 -0.063 -0.096 
0.25 -0.226 -0.174 -0.157 -0.234 -0.114 -0.086 -0.079 -0.121 
0.20 -0.272 -0.209 -0.189 -0.281 -0.136 -0.104 -0.095 -0.145 
0.15 -0.312 -0.244 -0.220 -0.324 -0.155 -0.121 -0.111 -0.167 
0.10 -0.347 -0.279 -0.252 -0.361 -0.171 -0.138 -0.127 -0.186 

0.05 -0.371 -0.314 -0.283 -0.389 -0.182 -0.155 -0.143 -0.200 
0.00 -0.382 -0.348 -0.315 -0.404 -0.187 -0.173 -0.159 -0.209 
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Fig. 3: Vertical profiles for the transverse velocity using 

different analytical equations for n = 0.013 
 

  
Fig. 4: Vertical profiles for the transverse velocity using 

different analytical equations for n = 0.025 
 

  
Fig. 5: Vertical profiles for the transverse velocity using 

different analytical equations for n = 0.05 
 

  
Fig. 6: Effects of Manning’s roughness coefficient on the lateral 

surface velocity 

  
Fig. 7: Effects of Manning’s roughness coefficient on the lateral 

bed velocity 
 

  
Fig. 8: Variation of the transverse-boundary shear stress versus 

Manning's roughness coefficient. 
 

  
Fig. 9: Deviation angle of the boundary shear stress variation 

against channel roughness 
 

  
Fig. 10: Effects of inward and outward wind shear stress of 0.5 

Pa on the transverse velocity vertical profile 
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Table 2: Effects of roughness on the surface flow velocity 
deviation angle 

Manning’s  Surface Velocity Surface velocity 

roughness  deviation angle deviation angle 
coefficient from Eq. (43) from Eq. (43) 
(n) in radians in degrees 

0.001 0.312 17.3 
0.015 0.303 16.8 
0.002 0.294 16.4 
0.025 0.285 15.9 
0.003 0.277 15.5 
0.035 0.270 15.1 
0.004 0.263 14.7 
0.045 0.256 14.4 
0.005 0.250 14.0 
0.055 0.243 13.7 
0.006 0.238 13.4 
0.065 0.232 13.1 
0.007 0.227 12.8 
0.075 0.222 12.5 
0.008 0.217 12.2 
0.085 0.212 12.0 
0.009 0.208 11.8 
0.095 0.204 11.5 
0.001 0.200 11.3 
 

Table 2 presents the effects of roughness on the 
surface flow deviation angle, while Table 3 examines the 
impact of bed roughness on the deviation angle of the 
near-bed resultant flow velocity. Additionally, Table 4 
compares the deviation angles for the resultant flow 
velocity (Eq. 48) and the resultant boundary shear stress 
(Eq. 45) against channel roughness. 

Discussion 

In the discussion section, we thoroughly analyze the 
applications of the present approach and compare them 

with the equations derived from previous methods, as 

presented in the results section. Figure 3, for the case 
of n = 0.013, illustrates the similarity between the two 

linear profiles in Eq. (19) according to Kikkawa et al. 

(1976) and Eq. (22) according to Odgaard (1986a), while 

the two nonlinear profiles in Eq. (13) by Kikkawa et al. 
(1976) and Eq. (39) by the present approach also exhibit 

close resemblance, albeit with noticeable differences, 

particularly at the bed and surface levels. This indicates 
that the straight-line approximation is not entirely 

accurate, especially at the bed. Furthermore, the two linear 

profiles are zero at mid-depth, while the two nonlinear 

profiles deviate from zero at that point. It is worth noting 
that the velocities predicted by Eq. (39) are slightly higher 

than those predicted by Eq. (13) throughout the entire 

depth, especially at the bed. 
In Fig. 4, for the case of n = 0.025, the overall trend is 

similar to that observed for n = 0.013, except that the 
differences at the channel bed become more pronounced, 
with the velocity predicted by Eq. (39) being the highest. 
As roughness increases (n = 0.05), Fig. 5 demonstrates 
significant discrepancies between Eq. (39) of the present 

approach and the remaining equations, which coincide 
with each other. For instance, Eq. (39) predicts a lateral 
surface velocity of 0.087 m/s, whereas Eq. (13) by 
Kikkawa et al. (1976) predicts 0.074 m/s, resulting in an 
absolute relative difference of 17.6%. Similarly, for the 
lateral bed velocity, Eq. (39) predicts -0.104 m/s, while 
Eq. (13) predicts -0.081 m/s, with an absolute relative 

difference of 28.4%. 
Considering that the phenomenon of secondary 

currents in meandering channels is inherently nonlinear, 

as indicated by the governing flow equations, it can be 
inferred that the nonlinear Eq. (13) by Kikkawa et al. 

(1976) and Eq. (39) by the present approach) provide a 

more accurate representation compared to the linear ones. 

Comparing the present approach Eq. (39) with that of 
Kikkawa et al. (1976), it can be concluded that the present 

approach performs better based on the results presented in 

Figs. 3-5, as well as Table 1, for several reasons. Firstly, 
the present approach equation exhibits sensitivity to 

channel bed roughness, while in Kikkawa et al. (1976) 

equation, the tangent line or derivative of the transverse 

velocity profile at the bed, which is related to the 
transverse boundary shear stress, appears to be very high 

or nearly vertical, indicating an extremely large or infinite 

transverse boundary shear stress. In contrast, the present 
approach equation shows a finite slope of the tangent line 

at the bed, which is more realistic for roughness values 

commonly observed in meandering channels. Furthermore, 
at a Manning roughness of 0.05, which is close to the 

roughness values found in meandering channels, Kikkawa 

et al. (1976) equation coincide with the linear velocity 

profile, as illustrated in Fig. 5. Additionally, the present 
approach equation yields higher bed and surface 

transverse velocities than the equation proposed by 

Kikkawa et al. (1976), which ensures a more conservative 
estimation when considering the effects of transverse 

velocity on bank erosion and point-bar formation. 

It is important to note, as evident from Table 1, Figs. 3-5, 

that the lateral bed velocity predicted by the present 
approach Eq. (39) is higher than the lateral surface 

velocity. This disparity arises due to the enforcement of 

fully developed flow conditions by the present approach, 
as demonstrated by Eq. (36). The transverse velocity is 

influenced by two mechanisms: The constant transverse 

water slope force and the centripetal force, which varies 

along the depth due to the nonlinear profile of the u 
velocity. The constancy of the transverse water surface 

slope force causes the lateral bed velocity to surpass the 

lateral surface velocity, as its effect extends throughout 
the entire depth, unlike the centripetal force, which 

diminishes when moving closer to the bed surface. 

However, this observation does not impact the calculation 
of the transverse boundary shear stress, which is obtained 

via Eq. (41), irrespective of the boundary condition used 

for the lateral velocity, whether it is a no-slip condition 

or the enforcement of fully developed conditions using 
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Eq. (36). The lateral boundary shear stress affects the 
transverse bed slope and the transverse bed-load transport. 

Therefore, the equations developed for these parameters, 

based on the developed equation for the lateral boundary 
shear, remain independent of the lateral velocity boundary 

condition specified in Eq. (36). 
Notably, all the Eqs. (13, 19, 22 and 39) exhibit an 

increase in lateral velocity and, consequently, the strength 
of the secondary currents with an increase in the ratio of 

the depth to centreline curvature radius (D/r) or a decrease 
in r/D. This observation aligns with the findings of three 

experiments conducted by Li et al. (2022) under different 
flood frequencies, which investigated the influence of the 

r/D ratio on the distribution and characteristics of 
secondary flow, turbulence, and momentum transport 

using acoustic Doppler velocimetry. The experiments 
revealed that the intensity of the secondary flow decreased 

as the value of r/D increased. This finding is consistent 
with Eq. (39) and supports the previous equations, which 

indicate a decrease in transverse velocity with increasing 
r/D. 

It should be noted that the data in Fig. (2) include the 
dimensionless transverse velocity against the 

dimensionless vertical distance without specifying many 
necessary flow parameters such as the longitudinal depth-

average velocity, the channel radius of curvature, and the 
roughness coefficient. This precluded using the data in Fig. (2) 

for comparison purposes. In addition, published 
experimental data are typically for very sharp meander 

bends with a 180° central bend angle while the approach is 
for mild bends which often exist in nature. In the meantime 

as Odgaard (1986a) stated that his linear transverse velocity 
equation is in good agreement with the data in Fig. (2), it is 

seen that comparison of the present approach equation to 
this linear equation and to the other past equations, which 

are also tested against data, is the best possible way for 
testing the developed equation. This is similar in 

mathematics to the well-known transitive property: If A is 
similar to B and B is similar to C, then A is similar to C. 

Figure 6 illustrates the impact of roughness, 
represented by variations in Manning's roughness 

coefficient, on the transverse surface velocity according 
to Kikkawa et al. (1976) (Eq. 20) and the present approach 

(Eq. 40), while disregarding the surface shear stress 
caused by wind. At a low roughness value of n = 0.01, the 

lateral surface velocity ratio of the present approach to 
Kikkawa et al. (1976) is 1.03. This ratio increases to 

approximately 1.20 at n = 0.06, indicating a 20% increase, 
and further rises to 1.38 at n = 0.1, representing a 38% 

increase. Both equations exhibit a steep decrease in 
surface velocity as roughness increases until 

approximately n ≈ 0.04, after which the velocity profiles 
tend to flatten. The lateral surface velocity is of great 

importance due to its influence on bank erosion and lateral 
meander migration. Thus, from a design perspective of 

bank erosion protection works, the present approach 

equation is considered to be more conservative and safer 
than Kikkawa et al. (1976) equation. It is worth noting 

that both equations assume a constant turbulent viscosity. 
In Fig. 7, the effect of roughness variation represented 

by Manning's roughness coefficient on the transverse bed 
velocity is shown for Kikkawa et al. (1976) Eq. (21) and 

the present approach Eq. (38), while neglecting the 
surface wind shear stress. At a low roughness value of 

n = 0.01, the ratio of the present approach to Kikkawa et al. 
(1976) lateral bed velocity is 1.04. This ratio increases to 

about 1.36 at n = 0.06, indicating a 36% increase. The 
difference becomes highly significant at n = 0.1, where 

the ratio reaches 1.81, representing an approximately 81% 
increase. The lateral bed velocity is crucial due to its 

effects on the transverse bed slope, transverse sediment 
movement, and point-bar formation. Thus, considering 

the influence of lateral bed velocity on the transverse bed 
slope and lateral sediment transport, the present approach 

equation is considered to be more conservative and safer 
than Kikkawa et al. (1976) equation. 

Table 2 presents the influence of channel bed 
roughness, represented by Manning's roughness coefficient 

(n), on the deviation angle of the surface flow velocity, as 
given by Eq. (43) in the present approach. It is evident that 

roughness has a dampening effect on the deviation angle, 
with the surface flow deviation angle being 17.3 degrees at 

n = 0.01. As roughness increases, the deviation angle 
decreases to 13.4 degrees at n = 0.06 and further decreases 

to 11.3 degrees at n = 0.1, representing a significant 35% 
decrease. The surface flow transverse velocity is important 

in determining the flow attacking angle of the outer bank 
that influences bank scour. 

Moving to Table 3, it can be observed that at a low 
roughness value of n = 0.01, the flow bed-velocity 

deviation angle, computed using Eq. (44) in the present 
approach, reaches approximately 59 degrees. However, as 

roughness increases, the deviation angle starts to decrease 
and reaches 9.1 degrees at a high roughness value of n = 

0.1. This small deviation angle indicates that the resultant 
bed velocity becomes nearly parallel to the channel axis 

direction. It should be noted that Eq. (24) by Rozovskii 
(1961) provides a deviation angle, independent of bed 

roughness, of 23.7 degrees. This corresponds to the 
prediction made by Eq. (44) in the present approach for 

roughness coefficients between 0.035 and 0.040. As 
expected, the range of deviation angles for the bed velocity 

is much broader compared to the surface velocities, 
primarily due to the significant influence of channel bed 

roughness on bed velocities. Furthermore, since the energy 
slope was kept constant in the considered hypothetical 

channel, the bed velocity remained consistent across all 
values of the roughness coefficient, owing to the constancy 

of the shear velocity. The flow bed-velocity deviation angle 
highly influences sediment movement along the bed 

transverse slope and point-bar formation. 
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Table 3: Effects of roughness on the flow bed-velocity deviation-angle 

    Bed velocity Bed velocity 
Manning’s    deviation angle deviation angle 

roughness Average main Lateral bed Longitudinal bed  from Eq. (44) from Eq. (44) 
coefficient (n) velocity in m/s velocity in m/s velocity in m/s in radians in degrees 

0.001 1.268 -0.526 0.318 1.653 58.8 
0.015 0.846 -0.350 0.318 1.100 47.7 
0.002 0.634 -0.262 0.318 0.823 39.5 
0.025 0.507 -0.209 0.318 0.657 33.3 

0.003 0.423 -0.174 0.318 0.547 28.7 
0.035 0.362 -0.149 0.318 0.468 25.1 
0.004 0.317 -0.130 0.318 0.408 22.2 
0.045 0.282 -0.115 0.318 0.362 19.9 
0.005 0.254 -0.104 0.318 0.326 18.0 
0.055 0.231 -0.094 0.318 0.296 16.5 
0.006 0.211 -0.086 0.318 0.271 15.1 
0.065 0.195 -0.079 0.318 0.249 14.0 

0.007 0.181 -0.074 0.318 0.231 13.0 
0.075 0.169 -0.069 0.318 0.215 12.2 
0.008 0.159 -0.064 0.318 0.202 11.4 
0.085 0.149 -0.060 0.318 0.190 10.7 
0.009 0.141 -0.057 0.318 0.179 10.1 
0.095 0.134 -0.054 0.318 0.169 9.6 
0.001 0.127 -0.051 0.318 0.161 9.1 

 

In summary, Table 2 demonstrates the dampening 

effect of roughness on the deviation angle of surface flow 

transverse velocity. As roughness increases, the deviation 

angle decreases, indicating a more aligned flow with the 

channel axis. Similarly, Table 3 highlights the 

relationship between roughness and the deviation angle of 

bed velocities. Higher roughness values are associated 

with smaller deviation angles, implying a flow that is 

more parallel to the channel axis. These findings 

emphasize the significant influence of roughness on both 

surface and bed velocities, with the former being less 

affected due to the constancy of shear velocity. 

Figure 8 illustrates the variation of lateral boundary 

shear stress against roughness. It is evident that Eq. (30) 

by Ascanio and Kennedy (1983) predicts significantly 

higher values compared to Eq. (27) by Jansen et al. (1979) 

and Eq. (42) from the present approach. The higher values 

predicted by Eq. (30) can be attributed to its omission of 

the contribution of the transverse water surface, which 

plays a significant role in balancing the centripetal force. 

It should be noted that while Eqs. (27 and 42) exhibit a 

nearly straight line form, and Eq. (30) follows a 

descending curve-like shape. However, at high roughness 

values, the three equations converge and the differences 

become smaller. Due to the omission of the contribution 

from the transverse water surface, Eq. (30) can be 

excluded from the comparison. Unfortunately, a direct 

comparison between Eqs. (27 and 42) is not possible due 

to the unavailability of data. 

Figure 9, presents the deviation angle of the resultant 

bed shear stress from the channel axis according to Eq. (29) 

by Jansen et al. (1979) and Eq. (45) from the present 

approach. It is evident that the values predicted by Eq. 

(29) are significantly higher than those of Eq. (45). At 

n = 0.01, Eq. (29) predicts deviation angles approximately 

three times higher than Eq. (45) and this ratio decreases to 

about two times at n = 0.1. In terms of deviation angles in 

degrees, Eq. (29) predicts angles of 24.8 degrees, 19.4 

degrees, and 7.4 degrees at n = 0.01, 0.04 and 0.1, 

respectively. On the other hand, Eq. (45) predicts deviation 

angles of 8.8 degrees, 6.4 degrees, and 4.1 degrees at the 

same roughness coefficients, respectively. Similar to the 

previous case, a direct comparison between Eqs. (29 and 

45) is not possible due to the unavailability of data. 

To summarize, Fig. 8 demonstrates that Eq. (30) 

overestimates the lateral boundary shear stress due to its 

omission of the contribution from the transverse water 

surface. While Eqs. (27 and 42) show different shapes, 

they converge at higher roughness values. Unfortunately, 

a direct comparison between Eqs. (27 and 42) was not 

feasible due to data limitations. Equation (29) predicts 

significantly higher bed-shear stress angles compared to 

Eq. (45) according to Fig. 9, indicating the influence of the 

choice of the equation on the estimated deviation angles. 

However, a direct comparison between Eqs. (29 and 45) 

could not be made due to the unavailability of data. 

Table 4 provides valuable insights into the deviation 

angles of the resultant flow velocity, as determined by Eq. 

(48), and the boundary shear stress, as calculated using 

Eq. (45). It is evident that the deviation angle for the 

resultant flow velocity is higher than that of the boundary 

shear stress and both exhibit a consistent decreasing trend 

with increasing channel roughness. 
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Table 4: Deviation angles for the resultant bed shear, and flow velocity 

 Resultant bed shear deviation Resultant flow tan 𝛿𝜏𝑏    tan𝛿𝑣𝑏    
Manning’s roughness angle from Eq. (45) velocity deviation angle from Eq. (45) from Eq. (48) 
coefficient (n) in degrees from Eq. (48) in degrees (dimensionless) (dimensionless) 

0.001 8.8 21.5 0.156 0.394 
0.015 8.3 20.9 0.146 0.382 
0.002 7.9 20.4 0.138 0.371 
0.025 7.4 19.9 0.130 0.361 
0.003 7.1 19.4 0.124 0.352 
0.035 6.7 18.9 0.118 0.343 

0.004 6.4 18.5 0.112 0.335 
0.045 6.1 18.1 0.107 0.328 
0.005 5.9 17.8 0.103 0.321 
0.055 5.6 17.4 0.099 0.314 
0.006 5.4 17.1 0.095 0.308 
0.065 5.2 16.8 0.091 0.302 
0.007 5.0 16.5 0.088 0.296 
0.075 4.8 16.2 0.085 0.291 
0.008 4.7 16.0 0.082 0.286 

0.085 4.5 15.7 0.079 0.281 
0.009 4.4 15.5 0.077 0.277 
0.095 4.3 15.3 0.074 0.273 
0.001 4.1 15.0 0.072 0.269 

 

Notably, at a low roughness value of approximately 

n = 0.01, the deviation angle for the resultant flow velocity 

is comparable to arctan (11 D/r), which is approximately 

23.8 degrees according to Eq. (24) by Rozovskii (1961). 

This indicates that Eq. (24) does not account for the effects 

of roughness, while the present approach, represented by 

Eq. (48), takes roughness into consideration. 

In the range of roughness values commonly observed 

in natural river channels, such as n between 0.025 and 

0.045, the deviation angle of the velocity ranges from 

about 20 degrees to 18 degrees. This further supports the 

notion that Eq. (24) fails to incorporate the influence of 

roughness, whereas Eq. (48) in the present approach 

adequately considers roughness effects. 

To summarize, Table 4 highlights that the deviation 

angle of the resultant flow velocity, as determined by Eq. 

(48), exceeds that of the boundary shear stress calculated 

using Eq. (45), while both angles decrease as channel 

roughness increases. The comparison with Eq. (24) by 

Rozovskii (1961) emphasizes that Eq. (24) overlooks 

roughness effects, whereas Eq. (48) in the present 

approach appropriately accounts for roughness. 

The approach employed in the present study utilizes 

the logarithmic law of velocity distribution to compute the 

near-bed main or longitudinal velocity while assuming the 

power law to be applicable throughout the depth in the 

transverse velocity equation, as represented by the term 

u2/r. This choice can be explained as follows: 

It is widely recognized that the power law velocity 

profile is consistent with experimental observations in 

the outer 90% of the boundary layer, typically in the 

range of 0.1 < z/D < 1.0, as established by Roberson and 

Crowe (1985). In this region, the power law accurately 

represents the velocity distribution. 

On the other hand, the logarithmic law of velocity 

distribution is valid near the wall for values of zu*/ν 

(where ν is the kinematic viscosity) ranging from 

approximately 30-500. Therefore, it is employed to 

accurately determine the near-bed main velocity. 

In the transverse velocity equation, the contribution of 

the longitudinal velocity is represented by the term u2/r, 

which corresponds to the centripetal acceleration. Near 

the bed, the main velocity (u) is relatively small, resulting 

in a further decrease in the term u2/r due to squaring the 

near-zero velocity. Consequently, the main velocity near 

the bed has minimal significance in terms of its influence 

on the transverse velocity distribution. However, when 

calculating the near-bed main velocity itself, the 

logarithmic distribution becomes important and is utilized 

to accurately capture the velocity near the bed. 

In summary, the present approach combines the 

logarithmic law of velocity distribution to compute the 

near-bed main velocity and the power law to describe the 

transverse velocity distribution. This choice is supported 

by the applicability of the power law in the outer boundary 

layer and the validity of the logarithmic law near the wall. 

While the main velocity near the bed has a limited impact 

on the transverse velocity distribution, it is crucial to 

accurately determine the near-bed main velocity using the 

logarithmic distribution. 

Equation (48) offers a distinct advantage over Eq. (44) 

in that it does not require knowledge of the near-bed 

velocity, which can be a challenging task to obtain 

accurately. This advantage is significant because 
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acquiring precise information about near-bed velocity can 

be difficult in practice. 

When comparing the predictions of Eqs. (44 and 48) 

for the resultant flow velocity deviation angle, it is 

apparent that the angles predicted by the latter equation 

exhibit a narrower range, ranging from 21.5-15.0 degrees. 

In contrast, the range of angles predicted by Eq. (44) spans 

from 58.8-9.1 degrees. This indicates that Eq. (48) 

provides more consistent and constrained results for the 

deviation angles. 

Both Eqs. (44 and 48) have an advantage over Eq. (24) 

in that they account for the effects of main velocity and 

roughness, which are crucial factors in flow and sediment 

investigations. The inclusion of these factors is essential 

for accurate modeling and testing purposes. However, the 

suitability of each equation for specific applications 

should be determined through testing and comparison 

with available data. 

It is worth noting that both Eqs. (44 and 48) can be 

utilized in equations such as the one proposed by Bridge 

(1977) for transverse bed slope and the equation presented 

by Parker (1984) for bed-load deviation angle. These 

equations, which rely on the inclusion of main velocity 

and roughness effects, can benefit from the use of either 

Eqs. (44 or 48), depending on the specific requirements 

and available data. 

In conclusion, Eq. (48) offers an advantage over Eq. (44) 

by not relying on near-bed velocity information. The 

deviation angles predicted by Eq. (48) exhibit a narrower 

range compared to Eq. (44). Both Eqs. (44 and 48), 

incorporate main velocity and roughness effects, thus 

providing an improvement over Eq. (24). The suitability 

of each equation should be evaluated based on empirical 

testing and comparison with relevant data. These 

equations can be applied in various sediment and flow 

investigations, including equations proposed by Bridge 

(1977); Parker (1984). 

It is important to recognize that the present approach 

primarily focuses on one-dimensional analysis, where the 

equation of motion in the lateral direction (Eq. 4) is 

integrated vertically along the z-axis. There are several 

cases where comprehensive analyses in the stream-wise 

and transverse directions require knowledge of the fully 

developed transverse velocity profile as a boundary 

condition. For instance, meander-path models like those 

proposed by Chang (1984); Odgaard (1986b) rely on 

accurate transverse velocity profiles. Similarly, in 

analyses involving the lateral direction (r), such as 

calculating lateral depth and sediment grain size 

distributions as in Bridge (1977); Odgaard (1984; 1986a-b), 

equations integrated in the vertical direction (z) have been 

utilized. This suggests that the developed equations in this 

study can be valuable in analyses related to the streamwise 

and transverse directions. 

Similarly, a quasi-nonlinear approach can be 
employed, assuming mild curvature conditions (Rc >> B) 

and that the topographic steering number is less than 1, 
which allows for neglecting second-order terms (e.g., 

velocity combinations like (u, v), (u, w), (v, w)). It should 
be noted that the characterization of mild curvature 

condition via the condition Rc >> B has no definitive limit 
or quantitative characteristics while the topographic 

steering number criterion offers such definitive and 
quantitative characterization. This simplifies the 

equations of motion significantly, as demonstrated in Eqs. 
(3-4). The resulting equations involve the local flow depth 

and the local depth-averaged velocity, both of which may 
vary with the radial direction (r). Consequently, 

integration of these resulting equations with respect to r 
becomes feasible by utilizing relations for the lateral 

variations of D(r) and U(r), assuming a topographic 
steering condition as discussed in Blanckaert (2010); 

Hafez (2023). 
In summary, while the present approach primarily 

focuses on one-dimensional analysis, it is noteworthy 
that the developed equations can be applied to analyses 

involving the streamwise and transverse directions. 
Additionally, a quasi-nonlinear approach can be adopted 

by neglecting second-order terms under mild curvature 
conditions, resulting in simplified equations that depend 

on the radial direction. The integration of these 
equations is facilitated by considering lateral variations 

of flow depth and depth-averaged velocity, which can be 
achieved through a topographic steering condition as 

discussed in Hafez (2023). 

Figure (10) provides valuable insights into the impact 

of inward and outward wind shear stress on the transverse 

velocity vertical profile for a wind shear stress of 0.5 Pa. 
This value, of the wind shear stress, amounts to a wind 

speed of 10 m/s, while an air density of 1.2 kg/m3 and a 

drag coefficient of 0.0042 are assumed. At the water 
surface, the transverse surface velocity is calculated at 

0.23 m/s in the absence of wind stress. However, when the 

wind stress is directed inward, opposing the centripetal 

force, the transverse surface velocity decreases to 0.18 
m/s. Conversely, when the wind stress is directed 

outward, aligned with the centripetal force, the transverse 

surface velocity increases to 0.29 m/s. These changes in 
transverse velocity due to wind stress correspond to 

significant percentage variations, with a 22% decrease 

observed for inward wind stress and a 26% increase for 
outward wind stress. 

Furthermore, the effect of wind stress on transverse 

bed velocity is noteworthy. It is observed that the decrease 

in transverse bed velocity matches the increase in 
transverse surface velocity, resulting in an 18% 

percentage change. This symmetry in the effects of wind 

stress on the transverse velocity at the surface and bed 
highlights the important role of wind stress in influencing 

these variables. 
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Notably, if the outward wind shear stress is halved to 

a value of 0.25 Pa (equivalent to a wind speed of 

approximately 7 m/s), the increase in transverse surface 

velocity is reduced to 13% and the increase in transverse 

bed velocity is reduced to 11%. This demonstrates the 
sensitivity of transverse velocities to variations in wind 

stress and underscores the significance of accurately 

measuring wind data in field studies. Accounting for wind 

stress effects on velocity and other dependent variables is 

crucial in order to understand and interpret field data 

accurately. It also elucidates potential differences 

observed between laboratory and field data, as wind 

effects can contribute to such discrepancies. 

In summary, Fig. (10) provides compelling evidence 

of the influence of wind shear stress on the transverse 

velocity profile. It illustrates significant changes in 
transverse velocities at the water surface and bed due to 

inward and outward wind stress. The data highlights the 

importance of considering wind stress effects by 

accurately measuring wind data in field studies. The 

profile comparison in Fig. (10) further demonstrates that 

the no wind velocity profile lies between the profiles 

corresponding to inward and outward wind directions. 

Table (5) offers a valuable comparison between 

previously developed transverse velocity equations and 

the equation derived in the present study. The results 

clearly indicate that the transverse velocity equation 

proposed in this approach, Eq. (39), outperforms the other 
equations in terms of practicality, ease of use, 

mathematical simplicity, and its construction using 

ordinary power functions. Moreover, Eq. (39) enables the 

calculation of transverse bed velocity and transverse 

boundary shear stress and allows for the incorporation of 

lateral forces such as wind and ship movements. 

The implications of the proposed approach and the 

derived equations are significant in the field of river 

engineering and management. By considering lateral 

forces induced by wind and ship movements, the 

characterization of flow in meandering channels becomes 

more accurate and comprehensive. This enhanced 

understanding of flow behavior can inform the design and 

maintenance of river systems, particularly in regions 

where wind and ship activities play a vital role. 

As an alternative to the adoption of a constant 
turbulent viscosity, applying a turbulence model such as 

the two-equation k-ε model necessitates solving for the 

flow velocity field first; which is then used as an input for 

the turbulence model. However, this sequential solution 

process introduces challenges. Two boundary conditions 

are required to solve for the transverse momentum 

equation, such as Eq. (2). At the free surface, either a zero 

shear stress condition or a specified shear stress due to 

wind can be specified. At the bottom, two options exist, 

both related to the transverse velocity at the boundary. 

The first option is the no-slip velocity condition, but it 
requires knowledge of the thickness of the transverse bed 

load layer, which has not been fully developed yet. The 

second option is to specify the transverse bed velocity at 

the top edge of the transverse bed load layer (movable 

boundary velocity condition or virtual wall function 

boundary condition approach as in Hafez (1995), which is 

typically unknown. Hence, the system remains unclosed, 

and certain assumptions must be made. 

Considering the challenges associated with solving the 

transverse velocity field and the dependence of turbulent 

viscosity on the unknown transverse bed velocity, the 

assumption of constant turbulent viscosity can be adopted 
as a first approximation. Since assumptions are necessary 

and the ability to determine which assumption is superior 

is limited, the assumption of constant turbulent viscosity 

provides a reasonable starting point. In fact, knowledge of 

the transverse bed velocity, which can be provided by the 

present approach, is required to determine the turbulent 

viscosity field. Therefore, neither a reliable nor accurate 

turbulent viscosity expression exists for the curved flow 

in the channel cross-section nor a turbulence model can 

be applied for determining the turbulent viscosity unless 

the transverse bed velocity can be specified a priori. 
 
Table 5: Transverse velocity equations comparison table 

 Rozovskii (1961), Kikkawa et al. (1976), Ascanio and Kennedy Present approach, 

Description Eq. (12) Eq. (13) (1983), Eq. (18) Eq. (39) 

-Equation structure Integral Logarithmic Infinite series Ordinary power 

of form    function 

-Number of equations 3 equations: Eqs. (9-11) 3 equations: Eqs. (13-15) Infinite One 

-Practicality to the  Less practical Less practical Extremely Practical 

hydraulic engineer   less practical 

-Possibility of calculating No Yes NA Yes 

lateral bed velocity 

-Inclusion of transverse No No No Yes 

surface forces (e.g. wind) 

-Transverse Boundary  No No No Yes 

shear stress 

-Fully developed NA NA Yes Yes 

vertical profile 
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In summary, the accurate determination of turbulent 

viscosity for curved flow in the channel cross-section 

remains a challenge and no reliable expression or 

turbulence model exists for this purpose. The application 

of a turbulence model to determine turbulent viscosity is 

particularly challenging due to the requirement of 

specifying the transverse bed velocity in advance. 

However, obtaining the precise value of the transverse bed 

velocity is a complex task that currently lacks a robust 

solution. Therefore, the accurate estimation of turbulent 

viscosity in curved flow scenarios, as well as the 

application of turbulence models, is contingent upon the 

availability of a known transverse bed velocity, which 

remains a significant limitation in the field. 

In conclusion, this study presents a novel contribution 

to the study of flow mechanics in meandering open 

channels. The developed equations for transverse 

velocity, transverse boundary shear stress, and deviation 

angles provide a comprehensive framework for 

understanding flow behavior in meandering channels. By 

incorporating previously neglected lateral forces such as 

wind forces, the proposed approach improves the 

accuracy and applicability of flow characterization. These 

findings have practical implications in hydraulics and 

river engineering and management, enabling better-

informed decisions for the design and maintenance of 

meandering channels. 

Conclusion 

In conclusion, this study has significantly advanced 

our understanding of flow mechanics in curved 

meandering open channels by addressing gaps in 

previous methods and introducing novel equations. The 

developed equations consider important influencing 
variables, with a particular focus on channel roughness 

and lateral forces such as wind stress, and offer several 

advantageous properties. They are user-friendly, 

suitable for both analytical and numerical investigations, 

and represent a major improvement over the complex 

logarithmic, integral, or infinite series forms found in 

existing literature. 

A key contribution of this study is the introduction of 

a new vertical distribution for transverse velocity using 

ordinary power functions. This simplicity allows for 

easier calculation of the transverse bed velocity and lateral 
boundary shear stress, overcoming the limitations 

associated with undefined logarithmic functions at the bed 

level. The developed equation for transverse velocity 

relies on two key assumptions. Firstly, it assumes a 

constant turbulent viscosity throughout the flow. 

Secondly, it relies on the condition that the topographic 

steering number is less than one, allowing for the 

approximation of mild curvature and meandering 

conditions. The proposed transverse velocity equation 

enables the calculation of the derivative of the velocity 

profile, providing an expression for the transverse 

boundary shear stress. Additionally, by substituting z = 0 

directly into the equation, the transverse bed velocity can 

be obtained. The accuracy of the developed transverse 
velocity profile has been demonstrated through 

comparisons with established velocity profiles. 

Importantly, the new velocity profile incorporates 

considerations for lateral wind shear stress and other 

lateral surface forces, which were not accounted for in 

previous velocity distributions. This inclusion provides a 

more comprehensive understanding of flow behavior in 

meandering channels and enhances the accuracy of 

predictions. 

The analysis also highlights the significant impact of 

wind shear stress, with a wind stress of 0.5 Pa 
(corresponding to a speed of 10 m/s) resulting in a 

substantial 26% increase in transverse surface velocity 

and an 18% increase in transverse bed velocity. The 

expression for transverse boundary shear stress considers 

both the centripetal force and the transverse pressure force 

resulting from the transverse water surface slope. 

Furthermore, derived expressions for flow velocity 

deviation angle and bed shear stress deviation angle offer 

a clear distinction between the two angles, incorporating 

roughness, main velocity, water average depth, and 

channel radius of curvature. 

The developed expression for lateral boundary shear 
stress can be effectively integrated into existing models to 

improve the calculation of transverse bed slope and lateral 

bed load rate. This advancement has the potential to 

enhance our understanding and prediction of sediment 

transport in curved meandering open channels. 

Overall, the findings of this study and the developed 

equations significantly contribute to our knowledge of 

flow mechanics in curved meandering channels. They 

offer improved accuracy, usability, and the ability to 

account for essential variables that were previously 

overlooked. These advancements have important 

implications for river engineering and management, 

providing a more comprehensive framework for the 

design and maintenance of meandering channels. 

Notation 

The following symbols are used in this study: 

 

𝐹1(𝜂)  =  ∫
2 ln 𝜂

𝜂 − 1
 𝑑𝜂 

𝐹2(𝜂)  =  ∫
ln2 𝜂

𝜂 − 1
 𝑑𝜂 

𝐹𝐴 (𝜂)  =  −15 [(𝜂)
2 ln(𝜂) − 

1

2
 (𝜂)2 + 

15

54
] 

𝐹𝐵  (𝜂)  =  
15

2
 [(𝜂)2 ln2(𝜂) −  (𝜂)2 ln(𝜂) + 

1

2
(𝜂)2 − 

19

54
] 

�̅�  = The depth-averaged longitudinal velocity 
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𝑣𝑏 = The lateral bed velocity (at z = 0) 

𝛿𝑣  = An angle of deviation of the resultant velocity 

  vector the channel tangential direction 

𝛿𝑣𝑏  = The flow bed velocity deviation angle 

𝛿𝑣𝑠  = The surface velocity deviation angle 

𝛿𝜏𝑏 = The angle between the resultant bed shear stress 

  and the channel axis 

𝜈𝑇   = The isotropic turbulent eddy viscosity 

𝜏𝑜𝑟 = The radial component of the boundary shear 

  stress 

𝜏𝑜𝑠 = The tangential boundary stress 

𝜏𝑟𝑠  = The external radial surface shear stress acting on 

  the water surface 

B = The channel width 

c = Constant taken as 0.0765 

C = The Chezy’s roughness coefficient 

Cr = A correction factor that accounts for the 

  nonlinear distribution of the main velocity 

cu = A coefficient depends on the flow conditions  

D = The local flow depth 

f = The Darcy-Welsbach friction factor 
F(r)  = The radial distribution of the dimensionless 

  depth-averaged main velocity 

g = The acceleration due to gravity 

ks = A representative roughness height of the bed 

  surface 

m = An exponent in the primary-flow velocity power 

law = 
1

𝜅
 √

𝑓

8
 

n = Manning’s roughness coefficient 

p = Reciprocal of “m” 
r = The radial direction measured from the center of 

  curvature of the bend 

rc = The radius of the channel center line 

S = The channel longitudinal slope 

s = The curvilinear coordinate along the channel 

  main direction 

Sr = The transverse water surface slope 

t = The time 

U = The cross-sectional averaged-velocity 

u = The primary (longitudinal or main) local flow 

  velocity 

u* = The local shear velocity 
U* = The shear velocity of the cross-section 

ub = The bed's longitudinal or main velocity 

v = the lateral (radial or transverse) local velocity 

vs = The value of the transverse velocity at the water 

  surface 

w = The vertical local velocity 

z = The vertical coordinate measured from the bed 

  level upward 

zb = The thickness or height of the longitudinal 

  bed-load layer 

η = Is the relative depth (= z/D) 
κ = The von Karman constant  

ρ = The fluid density 

τr  = The radial or transverse local turbulent-shear 

  stress 

τs  = The longitudinal local turbulent shear stress 

Φ(𝑓) =
 (1+ 𝑝)2

(2𝑝 + 1)
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