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Abstract: Time series analysis and forecasting has become a major tool in 

many applications in air pollution and environmental management fields. 

Among the most effective approaches for analyzing time series data is the 

model introduced by Box and Jenkins. In this study, we used Box-Jenkins 

methodology to build Autoregressive Integrated Moving Average 

(ARIMA) model on the average of monthly ozone data taken from three 

monitoring stations in Klang Valley for the period 2000 to 2010 with a total 

of 132 readings. Result shows that ARIMA (1,0,0)(0,1,1)12 model was 

successfully applied to predict the long term trend of ozone concentrations 

in Klang Valley. The model performance has been evaluated on the basis of 

certain commonly used statistical measures. The overall model 

performance is found to be quite satisfactory as indicated by the values of 

Root Mean Squared Error, Mean Absolute Percentage Error and 

Normalized Bayesian Information Criteria. The finding of a statistically 

significant upward trend of future ozone concentrations is a concern for 

human health in Klang Valley since over the last decade, ozone appears as 

one of the main pollutant of concern in Malaysia. 
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Introduction 

In recent decades, air pollution has been recognized 

as one of the major environmental problems faced by 

most of the countries around the world. Air quality in 

Malaysia is governed by the established Malaysian 

Ambient Air Quality Guidelines (MAQG) of 1989 

issued by Department of Environment Malaysia (DOE) 

using Malaysian Air Pollution Index (API). The API is 

an index system for classifying and reporting ambient air 

quality in Malaysia which are measured continuously 

through 52 air quality monitoring stations throughout the 

country. API for a given time period is calculated based 

on the subindex values of Sulfur Dioxide (SO2), 
Nitrogen Dioxide (NO2), Ozone (O3), Carbon Monoxide 

(CO) and particulate matter less than 10 µg/m
3
 (PM10).  

SO2, NO2, CO and PM10 are examples of primary 

pollutant, for which they are pollutants that emitted 

directly from sources. PM10 is inhalable material that is 

emitted directly from motor vehicles, power plants and 

other sources. It also can be formed in the atmosphere 

through reactions with gaseous emissions. CO is a gas 

emitted directly from motor vehicles and other 

combustion sources. SO2 is the chemical compound 

produced by various industrial processes, electricity 

generation and fossil fuel combustion. Any material that 

has coal and petroleum element, either in the form of 

solid fuels, liquid fuels (such as gasoline, diesel and fuel 

oil) or natural gas contains sulfur compounds which 

generate SO2 through combustion. NO2 is one of the 

Nitrogen Oxides (NOX), a group of pollutants produced 

from combustion processes. It is a reddish-brown gas 

with irritating odour produced from the combustion of 
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fossil fuels in transportation and industrial application 

such as waste incineration. Nitric Oxide (NO), which is 

emitted by motor vehicles or other combustion processes, 

combines with oxygen in the atmosphere producing NO2. 

This gas also plays a major role in atmospheric reactions 

that produce O3 (Salahudin et al., 2013). 

O3 is an example of secondary pollutant resulting 

from photochemical reaction of primary pollutants such 

as NOx, Organic Compounds (VOCs) and biogenic 

VOCs, together with certain meteorological conditions. 

(Ahamad et al., 2014; Ismail, 2011; Ismail et al., 2011). 

VOCs are emitted from various sources, including motor 

vehicles, chemical plants, refineries, factories, consumer 

and commercial products, while NOx are emitted from 

motor vehicles, power plants and other sources of 

combustion (DOE, 2006).  

Various time series studies conducted world wide had 

shown the impact of surface O3 on human health. Most 

studies reported that there were access risk on morbidity 

and mortality (Wan Rozita et al., 2013; Fischer et al., 

2011; Nuntavarn et al., 2010). Surface O3 is a crucial 

pollutant compared to others, because its ability to cause 

lung cell damage, inflammatory responses impairment of 

pulmonary host defenses and acute changes in lung 

function and chronic changes in lung cells (Folinsbee et al., 

1992). Increased airway inflammation and deterioration 

in pulmonary function and gas exchange are among the 

health effects of O3, as reported in laboratory studies 

(Mudway and Kelly, 2004; Brown et al., 2008). 

In this past few years, higher surface O3 levels have 

been reported in some Asian cities (Ismail et al., 2011). 

Recent studies in Malaysia showed the variations of 

surface O3 in Klang Valley exceeded the Recommended 

Malaysian Air Quality Guideline (RMAQG) of 0.10ppm 

for the hourly level (Latif et al., 2012). Similar findings 

were reported by Ahamad and colleagues who conducted 

a study in 2014 which concluded that surface O3 

exceedance pattern in Klang Valley area is strongly 

influenced by local pollutant emission and dispersion 

characteristics. Geographically, Malaysia is located at the 

equatorial region. Thus, it poses greater risk of surface O3 

formation due to high levels of solar radiation which can 

promote the formation of photochemical pollutants.  

Development and the usage of statistical techniques 

in estimating the concentrations of air pollution are 

generally been made with the help of predictive air 

pollution models. Gaussian approach is widely used to 

estimate ground level air pollution concentrations 

(Nieuwstadt, 1980; Varma et al., 2014). Besides 

Gaussian, empirical models also had been used to 

estimate the ambient concentration of the level of air 

pollution particularly CO in a road side environment 

(Nunez et al., 1999). In order to assist in air pollution 

management and to reduce the health impact, forecasting 

of future air pollution concentrations, particularly O3 is 

crucial. Autoregressive Integrated Moving Average or 

known as ARIMA, is a stochastic approach, suggested 

by Box and Jenkins, also is widely used in forecasting 

air pollution concentrations (Kumar et al., 2004; Ismail, 

2011; Ismail et al., 2011). This method was reviewed in 

detail by Milionis and Davis and was found to be 

successfully in the context of air pollution 

modeling.(Wang and Guo, 2009). Therefore, in this 

study, we aimed to find the best forecasting model to 

forecast upcoming monthly surface O3 concentration in 

Klang Valley using ARIMA. 

Methodology 

Study Area 

This study was conducted in Klang Valley, which is 

the most industrialised and economically the fastest 

growing area in Malaysia. The Klang Valley, situated in 

the middle of the west coast of Peninsular Malaysia and 

has an area of about 2,832 km
2
 which include Kuala 

Lumpur Federal Territory and its suburbs and adjoining 

cities and towns in the state of Selangor. Klang Valley 

is also known for large-scale industrial, commercial 

activities, densely populated areas and high volume of 

vehicular traffic. Based on Department of Statistics 

report in year 2006, the population in this area had 

expanded to 4.7 million (DOS, 2006). In addition and 

due to its characteristic as a valley, the prevailing 

winds in Klang Valley are generally weak resulting in 

stable atmospheric conditions which cause pollutants in 

the air to stagnate (DOE, 2006).  

The exact locations of the monitoring stations, the 

descriptions and geographical map are given in Table 1 

and Fig. 1.  

The 8 h average level for O3 was used because it was 

the average time recommended by the WHO for reflecting 

the most health-relevant exposure to O3 (WHO, 2000). 

Due to that, to obtain a single value of daily pollutants 

readings that represented Klang Valley, the average of the 

O3 concentrations were calculated daily and further 

monthly, across all the monitoring stations. 

Study Period 

We used the data series consist of 132 monthly 

concentrations of surface O3 from January 2000 to 

December 2010, that had been recorded in Klang 

Valley, Malaysia from three monitoring sites located 

in Gombak, Petaling Jaya and Shah Alam. All the 132 

observations were used in the estimation part. The 

data was obtained from Air Quality Division of the 

Department of the Environment, Malaysia, (DOE) 

through long-term monitoring by a private company, 

Alam Sekitar Sdn Bhd (ASMA). 
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Table 1: The exact locations and descriptions of monitoring stations in Klang Valley 

Station Location Category Cordinates Description 

Gombak Water Service Department Residential N03°15.702’, E101°39.103’; S3 Nearest station to Kuala 
   Lumpur’s city centre 
Seri Petaling Primary School, Industrial N03°06.612’, E101°42.274’; S1 Heavy traffic particularly 
Petaling Jaya   during the morning rush hour

 
Taman Tun Dr Ismail Primary Residential N03°06.287’, E101°33.368’; S2 Traffic density is lower 
School (TTDI) Jaya, Shah Alam   compared with Petaling Jaya

 
 

 
 

Fig. 1: A geographical map of the sampling stations located in Klang Valley, Malaysia 

 

100° 101° 102° 103° 104° 

7° 

 
6° 

 
5° 

 
4° 

 
3° 

 
2° 



Wan Rozita Wan Mahiyuddin et al. / American Journal of Environmental Sciences 2018, 14 (3): 118.128 

DOI: 10.3844/ajessp.2018.118.128 

 

121 

Time Series Analysis 

The time series analysis of the data was carried out 
using statistical software, SPSS version 19 and Microsoft 
Excel 2010. The time series consists of a set of sequential 
numeric data at equal space intervals for a period of time. 

This study applied two components of time series 
study. The first component was determination of 
seasonality through seasonal decomposition method 
and followed by determination of the best model by 
using Box -Jenkins Autoregressive Integrated Moving 
Average (ARIMA) model. 

The seasonal decomposition was applied to 
decompose the seasonal variation in the series into a 
combination of Seasonal component (St), trend (Tt) , cycle 
component (Ct) and irregular (It) or short-term variation. 
These components are assumed to be related in a 
multiplicative manner or additive form, as shown below: 
 

t t t t
Y T S I multiplicative= × ×  (1) 
 

t t t t
Y T S I additive= + +  (2) 
 
where, Yt is the original series of surface O3. The Tt, has 
the same unit as Yt but not St, Ct and It. As the underlying 
level of the series change, the magnitude of the seasonal 
variations also change. The St was the average deviation 
of each month’s surface O3 value from the overall 
average of surface O3 level that was due to other 
components in that particular month. 

In trend analysis, ARIMA approach was applied to 

determine the forecast trend. There are three main stages 

in building ARIMA model based on Box-Jenkins 

procedure. The first stage is model identification, second 

stage is model estimation and third stage is model 

application. These stages of building an ARIMA model 

are described in Fig. 2. 

ARIMA is a general class of time series model that 

comprises of several techniques, which are differencing, 

Autoregressive models (AR) and Moving Average 

models (MA). An AR model of the order p is the one in 

which the current observation, xt, is regressed on 

previous observations, xt−1, xt−2,…..xt−p of the same time 

series. This is expressed by the equation below: 

 

.t 1 t 1 2 t 2 p t p tx = x + x + x + ξ ε
− − −

+Φ Φ …………Φ  (3) 

 

where, the Ф1, Ф2,…..Фp are the regression coefficients. 

ξ is the constant term and εt is random error. 

Similarly to MA model of order q can be defined by: 

 

1 1 2 2
...........

t t t t q t q
x e e e eµ

− − −

= + + − −θ θ θ  (4) 

 

Both models AR(p) and MA(q) can be combined to 

form ARMA (p,q) and can be written as: 

 

( ) ( )P t q t
B x B eξ θΦ = +  (5) 

 

 
 

Fig. 2: Main stages of building an ARIMA model 
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This ARMA (p, q) model is for stationary time series, 

which means than it fluctuates randomly around some 

fixed values, either a constant or a mean. A series that 

does not follow this rule is called as ‘non-stationary time 

series’. Such series can be made stationary by taking 

successive differences of the data and the process is 

called as differencing. The process is done when the 

previous observation xt−1 is subtracted from the current 

observation xt. The number of how much differencing is 

needed in a non-stationary time series is denoted by the 

value ‘d’ in an ARIMA (p, d, q) model. 

The first step in the application of the Box-Jenkins 

methodology is to identify the most appropriate class of 

ARIMA to be applied in the data series. Common statistics 

used to identify the model class is Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) 

coefficients. ARIMA models are classified as ARIMA (p, 

d, q) (P, D, Q)S. Non-seasonal ARIMA (p, d, q) model 

contains three types of parameter; autoregressive 

parameters (p), number of differences (d) and moving 

average parameters (q). In addition, seasonal ARIMA (P, D, 

Q) or known as SARIMA, contains three types of 

parameter; seasonal Autoregressive (P), seasonal 

Differencing (D) and seasonal moving average (Q). Period 

or seasonality of data denotes as ‘s’. 

The usual step of estimating the models and 

performing the necessary diagnostic testing procedures is 

to select the best model for forecasting. This is the 

crucial aspect of forecasting exercise since model that 

fits well may not necessary forecast well. 

Ljung-Box test will be implemented in order to check 

for the presence of autocorrelation among the residuals 

by calculating the chi-square value of the error terms. 

Such test procedure is commonly known as portmanteau 

test. The model is adequate to represent our time series if 

the errors are white noise or uncorrelated. Graphical 

analysis such as plots of residual ACF, plots of residual 

PACF and normal probability plot should corroborate to 

the portmanteau test. The method with the smallest value 

of error measures (MSE, RMSE and MAPE) will be 

selected as the most appropriate ARIMA model. 

Finally, goodness of fit of the model will be 

confirmed if it fulfills all the criteria. Therefore, the best 

model is now ready to be used to generate forecast 

values which give results of forecast values together with 

upper and lower limits with 95% confidence interval. 

Any forecast value within the range are considered 

acceptable. If the model fails to produce reliable forecast 

values or fails to explain the phenomena being 

investigated, then it needs to be revised and updated. 

Results 

Figure 3 shows the time series sequence plot of O3 

concentrations in the studied area by month from 

January 2000 – December 2010 in the Klang Valley, 

Malaysia. The monthly O3 concentrations fluctuated 

throughout the months with the trend line y = 0.000025 * 

time +0.0157 that registered a very minimal upward trend 

over the study period. Therefore for further modelling 

strategy, we considered that the concentrations of monthly 

O3 fluctuate around a constant mean. 

The highest peak of the O3 concentrations was 

recorded on February 2005 with the reading of 

0.0269ppm. The other most highest concentrations were 

also recorded in the months of either February or March 

of the years, which were March 2002 (0.0248 ppm), 

March 2006 (0.0242 ppm), February 2010 (0.0243 ppm) 

and March 2010 (0.0257 ppm). February and March are 

dry months with minimum rainfall. The monthly average 

concentrations of O3 from 2000-2010 was 0.017ppm. 

Figure 4 showed the annual cycle of seasonal index 

of the surface O3. Highest seasonal index of surface O3 

occured in February and followed by March and the 

lowest was in July. This was consistent with the findings 

in Fig. 3 that highest concentrations were observed in 

either February or March from 2000-2010. The seasonal 

index was at a minimum in November, December and 

January, at which it began to increase, reaching a peak in 

February and March, before declining again. The 

seasonal index ranged from the lowest of 93.15 in July to 

the highest of 107.75 in February, indicated that there 

was a seasonal swing from 93.15% of average to 

107.75% of average in a complete cycle of a year. 

The results of ACF and PACF from surface O3 

concentrations clearly indicated that the series were 

stationary but contained seasonal component (Fig. 3, 4). 

The ACF for surface O3 concentrations exhibited 

seasonality where ACF showed a wave pattern passing 

through zero several times and there were some peak at 

every dozen (Fig. 5(a)). From Fig. 5(b), the first lag on 

PACF also showed a spike with significant value of 

0.4879. There was also significant peak at lag 12 in 

PACF that confirmed the presence of an annual 

seasonal component in the series. Therefore, the series 

need to be adjusted by performing seasonal differences 

of order 1 to station the series.  

Figure 6 showed the residuals were uncorrelated 

by time and the residuals fluctuated around a constant 

mean and zero variance after performing seasonal 

differencing at order 1. 

To ensure that a well specified model is not 

missed, several models will be estimated and 

subsequently, the best model that satisfied statistical 

requirements will be chosen. Therefore, Portmanteau 

test is carried out in order to ensure the model 

identified is adequate enough to represent the monthly 

pattern of surface O3 concentration. 
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Fig. 3: Trend analysis plot of surface O3 concentrations (Yt) 
 

 
 

Fig. 4: Annual cycle of ozone seasonal index concentrations in Klang Valley 

110 

 
105 

 
100 

 
95 

 
90 

 
85 

S
ea

so
n
al

 i
n
d
ex

 

Ja
n
u
ar

y
  

F
eb

u
ar

y
  

M
ar

ch
  

A
p
ri
l  

M
ay

  
Ju

n
e  

Ju
ly

  
A

u
g
u
st
  

S
ep

te
m

b
er

  
O

ct
o
b
er
  

N
o
v
er

m
b
er

  
D

ec
em

b
er

 

Months 

107.75 

105.83 

97.2 
98.18 

100.56 
101.6 

104.03 

100.03 

102.77 

94.51 94.16 

Date 

R2 = 0.1076 

0.03000 

 
0.02500 

 
0.02000 

 
0.01500 

 
0.01000 

 
0.00500 

 
0.00000 

 

O
zo

n
e 

(p
p
m

) 



Wan Rozita Wan Mahiyuddin et al. / American Journal of Environmental Sciences 2018, 14 (3): 118.128 

DOI: 10.3844/ajessp.2018.118.128 

 

124 

 
(a)  

 

 
(b) 

 

Fig. 5: (a) ACF for O3 concentration (b) PACF for O3 concentration 
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Fig. 6: Time plot of the residual (white noise) of the model after seasonal differencing 

 
Table 2: Portmanteau for selected ARIMA model  

 ARIMA ARIMA ARIMA ARIMA 

 (1,0,0)(0,1,1)12  (1,0,1)(1,1,0)12 (1,0,1)(0,1,1)12 (0,0,1)(0,1,1)12 

Ljung-Box  0.552 0.063 0.467 0.327 

*p-value   

Conclusion # # # # 

RMSE 0.002 0.003 0.002 0.003 

MAPE 10.569 12.339 10.578 10.654 

NBIC -11.878 -11.560 -11.829 -11.860 

* at 5% significance level 
#errors are white noise 

 

Table 2 showed the results of p-value for Ljung Box 

statistics. All the models were insignicant (p>0.05) 

indicating that residuals appeared to be uncorrelated and 

the errors were white noise. The values of Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error 

(MAPE) and Normalized Bayesian Information Criteria 

(NBIC) for all the possible models in ARIMA were also 

shown in Table 2. The best model was the model with 

the lowest value of RMSE, MAPE and NBIC. ARIMA 

(1,0,0)(0,1,1)12 recorded the lowest values for RMSE and 

MAPE but not for NBIC. Model forecasts were found to 

be reasonably close to the observed values of monthly 

mean of surface O3 concentrations (MAPE~10%). 

However, based on the principle of parsimony model, 

ARIMA(1,0,0)(0,1,1)12 was chosen as the best model of 

Box-Jenkins Methodology and will be used to generate 

forecasts till year 2020. 

This model ARIMA (1,0,0)(0,1,1)12 was selected to be 

the best forecast for future data of surface O3. As shown in 

Table 3, the p value for all the coefficients for each 

parameter that form the ARIMA (1,0,0)(0,1,1)12 were less 

than 0.05. Indicating that the associated parameters can be 

judged as significantly different from zero. 

Therefore, by combining both seasonal and non-

seasonal model, ARIMA (1,0,0)(0,1,1)12 the best model 

for surface O3 concentrations in Klang Valley can be 

written in the mathematical expressions as shown below: 

 

1 12 13 12
0.368 0.368 0.939

t t t t t t
y y y y e e

− − − −

= + + + −  (6) 

  

Based on the prediction for O3 concentration (Fig. 7), 

O3 registered a general upward trend over the period of 

2000-2010 in Klang Valley. The O3 concentration 

increased steadily in Klang Valley until 2020. 
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Table 3: ARIMA (1,0,0)(0,1,1)12 model parameters 

Parameter Coefficient SE Coefficient t p-value 

AR1 0.368  0.087  4.236 0.000 
SMA12 0.939 0.302 3.103 0.002 

 

 
 

Fig. 7: Model predicted plot of O3 concentration with actual and 95% confidence interval 

 

Discussion 

The results showed that the ARIMA(1,0,0)(0,1,1)12 

model of O3 contained non-seasonal and seasonal part. 

The non-seasonal part was identified as AR(1) with no 

differencing and the seasonal part was identified as 

MA(1) with seasonal differencing. The AR components 

capture the correlation between the current values of the 

time series and some of its past values. AR (1) means 

that the current observation of O3 concentration is 

correlated with its immediate past values at time t = 1. 

The MOVING AVERAGE (MA) component represents 

the influence of a random (unexplained) shocks. MA (1) 

for seasonal part means that a shock on the value of the 

O3 concentrations series at time t is correlated with the 

shock or error at time t = 12. The mixture of AR and MA 

model with seasonality exist in the O3 series of this 

study, consistent with other findings in Malaysia (Ismail, 

2011; Ismail et al., 2011).  

Other results also showed that February and March 

were the months that recorded high concentrations of O3 

from 2000-2010. Both of the months included in the 

transition period of Northeast Monsoon (NEM) from 

November to January and the Southwest Monsoon 

(SWM) from May to August (Wong et al., 2009). In 

addition, during this transition period, an increased 

number of sunny hours were evident. Therefore, due to the 

positive relationship of O3 with temperature and high level 

of solar radiation and inverse relationship with rainfall 

(Tan et al., 2014), it is expected that the concentrations of 

O3 were observed to peak during these months. 

The low level of average monthly O3 in ambient air 
compared to the MAAQG for the study period, 
consistent with the findings by other research in few 
different cities in Peninsular Malaysia (Rahman et al., 
2012; Awang et al., 2015; Banan et al., 2013). Although 
lower concentration of O3 do not necessarily indicate 
cleaner air, few studies showed excedeences especially in 
the urban area and industrial zones (Awang et al., 2013). 
Furthermore, study by Wan Rozita et al. (2013) revealed 
associations between O3 and daily natural mortality and 
between O3 and daily respiratory mortality even though 
the concentrations of O3 were far below the guidelines.  

The fitted series of O3 during the study period 
together with the prediction series based on the selected 
model, showed consistent increasing trend till year 2020. 
One of the main challenges for countries in tropical 
region is the high concentrations of O3 caused by 
elevated levels of anthropogenic and natural O3 
precursors, particularly NOx, the emissions from motor 
vehicles. The interaction of NO and O3 lead to the 
formation of NO2 which in turn contributes to the 
amount of O and O3 in the atmosphere. A study by 
Banan et al. (2013) concluded that O3 concentrations 
were higher particularly in sub-urban areas, as a result of 
down winds, compared to those in urban areas. 
Meteorological factors such as sunlight, the ambient 
temperature, cloud cover, water vapour concentrations, 
humidity and wind directions, influenced the variations 
of O3 in the ambient air (Rahman et al., 2012). 

The New Ambient Air Quality Standard was 

established by DOE in 2014 in order to replace the older 

Malaysia Ambient Air Quality Guideline that has been 
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used since 1989. The New Ambient Air Quality 

Standard adopts 6 air pollutants criteria that include 5 

existing air pollutants which are particulate matter with 

the size of less than 10 micron (PM10), sulfur dioxide 

(SO2), carbon monoxide (CO), nitrogen dioxide (NO2) 

and ground level ozone (O3) as well as 1 additional 

parameter which is particulate matter with the size of 

less than 2.5 micron (PM2.5). 

The air pollutants concentration limit will be 

strengthen in stages until 2020. There are 3 interim 

targets set which include interim target 1 (IT-1) in 2015, 

interim target 2 (IT-2) in 2018 and the full implementation 

of the standard in 2020. Since substantial literatures has 

been published on the increasing level of O3 in Klang 

Valley, to minimize the effects of ground-level O3 

pollution from becoming too hazardous, an action plan 

for early information should be developed. The action 

plan should includes to identify the causes, assist policy 

makers in formulating policies and strategies to address 

the issue of O3. It will also recommend measures of 

prevention, monitoring and compliance activities that 

contribute to O3 pollution reduction. 

These new guidelines and action plan are timely and 

consistent with the current situation of rapid 

urbanization in Malaysia in order to ensure sustainable 

development in the country. 

Conclusion 

An ARIMA model of the order (1,0,0)(0,1,1)12 was 

found to fit the time series of monthly mean surface O3 

concentrations in Klang Valley from 2000 to 2010. The 

predictions estimates for the univariable model were 

found to be satisfactory. The model applied was not 

designed to forecast episodic circumstances but to 

recognize their behavior and assess its time-based 

progression. The study demonstrates that the ARIMA 

modeling approach is a useful tool for analysing non-

stationary data, containing ordinary or seasonal series. It 

also has proven could be effectively used for obtaining 

short-term forecasts of air quality. Univariable 

forecasting using routinely-data collected is still not 

popularly used in the area of air pollution in Malaysia. A 

comparative study of the ARIMA modeling approach 

with other relevant alternatives of forecasting such as 

Classification and Regression Trees and Artificial Neural 

Network Models in the context of air quality modeling 

would be highly desirable.  

An accurate methodology to forecast O3 
concentration is needed for the strategy planning and 
control of air pollution. Studies had shown that O3 

seriously endangers human health and environment at 
the level below the guideline. The effective 
management of the control and public warning strategies 
for O3 concentration can be efficiently implemented by 
the accurate forecast of O3 concentration.  

We hope that the outcome of the study will be used to 

assist the development of the action plan of O3 in 

Malaysia. This study will contribute to the formulation of 

pertinent public policies to address the root causes of air 

pollution. Further conclusive studies on health risk of air 

pollution particularly O3 recommended to be conducted in 

order to provide evidence to guide the air quality 

management for health protection and sustainable city. 

Acknowledgement 

The authors would like to gratefully acknowledge the 

Director General of Health, Malaysia and the Director of 

the Institute for Medical Research (IMR), Ministry of 

Health Malaysia, for the permission to publish this 

paper. We also would like to thank Department of the 

Environment (DOE), for providing the data. This study 

received grant from National Institute of Health (JPP-

IMR 13-014; NMRR-13-630-16667). 

 Author’s Contributions 

Wan Rozita Wan Mahiyuddin: Designed the research 

plan and organized the study, writing the manuscript, 

coordinating the data analysis and data management. 

Nur Izzah Jamil: Managing the database, did the 

data analysis and writing the final model. 

Zamtira Seman: Writing the final model and 

coordinated the mouse work.  

Nurul Izzah Ahmad, Nor Aini Abdullah, Mohd 

Talib Latif
 
and Mazrura Sahani: Contributed to the 

writing of the manuscript. 

Ethics 

This paper has been approved to be published by 

Malaysia Research Ethical Committee (MREC) under 

the above mentioned grant. We declare that there is no 

conflict of interest in this paper. 

References 

Ahamad, F., M.T. Latif, R. Tang, L. Juneng and D. 

Dominick et al., 2014. Variation of surface ozone 

exceedance around Klang Valley, Malaysia. 

Atmospheric Res., 139: 116-127. 

 DOI: 10.1016/j.atmosres.2014.01.003 

Awang, N.R., N.A. Ramli, A.S. Yahaya and M. Elbayoumi, 

2015. High nighttime ground-level ozone 

concentrations in Kemaman: NO and NO2 

concnetraions attributions. Aerosol Air Qual. Res., 

15: 1357-1366. DOI: 10.4209/aaqr.2015.01.0031 

Awang, N.R., N.A. Ramli, N.I. Mohammed and A.S. 

Yahaya, 2013. Time series evaluation of ozone 

concentrations in Malaysia based on location of 

monitoring stations. Int. J. Eng. Technol., 3: 390-394. 



Wan Rozita Wan Mahiyuddin et al. / American Journal of Environmental Sciences 2018, 14 (3): 118.128 

DOI: 10.3844/ajessp.2018.118.128 

 

128 

Banan, N., M.T. Latif, L. Juneng and F. Ahamad, 2013. 
Characteristics of surface ozone concentrations at 
stations with different backgrounds in the Malaysian 
Peninsula. Aerosol Air Qual. Res., 13: 1090-1106. 
DOI: 10.4209/aaqr.2012.09.0259 

Brown, J.S., T.F. Bateson and W.F. McDonnell, 2008. 
Effects of exposure to 0.06 ppm ozone on FEV1 in 
humans: A secondary analysis of existing data. 
Environ. Health Perspect., 11: 1023-1026. 

 DOI: 10.1289/ehp.11396 
DOE, 2006. Environment quality report, 2005. Department 

of Environment, Ministry of Natural Resources and 
Environment, Malaysia, Kuala Lumpur. 

DOS, 2006. Basic population characteristics by 
administrative districts. Department of Statistics, 
Kuala Lumpur, Malaysia. 

Fischer, P.H., M. Marra, N. Janssen and F.R. Cassee, 
2011. Trends in relative risk estimates for the 
association between air pollution and mortality in 
the Netherlands, 1992-2006. Environ. Res., 111: 
94-100. DOI: 10.1016/j.envres.2010.09.010 

Folinsbee, L.J., M.J. Hazucha, E. Seal, H.R. Kehrl and 
D.H. Horstman, 1992. Cumulative ozone exposure 
dose explains responses to different exposure 
regimens. Am. Rev. Respor. Dis., 145: 195-195. 

Ismail, M., 2011. Time series analysis of ground-level 
ozone in Muda Irrigation Scheme Area (MADA), 
Kedah. J Sustain. Sci. Manage., 6: 79-88. 

Ismail, M., M.Z. Ibrahim, T.A. Ibrahim and A.M. Abdullah, 
2011. Time series analysis of surface ozone 
monitoring records in Kemaman, Malaysia, Sains 
Malaysiana. 40 : 411-417 

Kumar, K., A.K. Yadav, M.P. Singh and V.K. Jain, 
2004. Forecasting daily maximum surface ozone 
concentrations in Brunei Darussalam-An ARIMA 
modeling approach. J. Air Waste Manage. Assoc., 54: 
809-814. DOI: 10.1080/10473289.2004.10470949 

Latif, M.T., L.S. Huey and L. Juneng, 2012. Variations 
of surface ozone concentration across the Klang 
Valley, Malaysia. Atmosphere Environ., 61: 434-445. 
DOI: 10.1016/j.atmosenv.2012.07.062 

Mudway, I.S. and F.J. Kelly, 2004. An investigation of 
inhaled ozone dose and the magnitude of airway 
inflammation in healthy adults. Am. J. Resp. Crit. 
Care, 169: 1089-1095. 

 DOI: 10.1164/rccm.200309-1325PP 
Nieuwstadt, F.T.M., 1980. Prediction of air pollution 

frequency distribution-part II. The Gaussian plume 

model. Atmosphere Environ., 14: 259-265. 

 DOI: 10.1016/0004-6981(80)90286-3 

 

 

 

 

 

 

Nunez,  C.M.,  G.H.  Ramsey,  M.A.  Bahner  and 

C.A. Clayton, 1999. An empirical model to predict 

styrene emissions from fiber-reinforced plastics 

fabrication processes. J. Air Waste Manage. Assoc., 

49 :1168-1178. 

 DOI: 10.1080/10473289.1999.10463800 

Nuntavarn, V.V., N. Vajanapoom and B. Ostro, 2010. 

Estimating the effects of air pollution on mortality in 

Bangkok, Thailand. Health Effects Inst. Res. Report, 

154; 231-266. 

Rahman, S.R.A., S.N.S. Ismail, M.F. Ramli, M.T. Latif 

and E.Z Abinin et al., 2012. The assessment of 

ambient air pollution trend in Klang Valley, 

Malaysia. World Environ., 5: 1-11. 

Salahudin, S.N., M.M. Abdullah and N.A. Newaz, 2013. 

Emissions: Sources, policies and development in 

Malaysia. Int. J. Educ. Res., 1: 1-12 

Tan, K.C., H.S. Lim and M.Z.M. Jafri, 2014. Analysis of 

total ozone in Peninsular Malaysia retrieved from 

SCIAMACHY. Atmosphere. Pollut. Res., 5: 42-51. 

DOI: 10.5094/APR.2014.006 

Varma, S.A.K., M. Srimurali and S.V.K. Varma, 2014. 

Prediction of ground level concentrations of air 

pollutants using Gaussian model, Rayalaseema 

Thermal Power Project, Kadapa, A.P., India. Energy 

Environ. Eng., 2: 91-97. 

Wan Rozita, W.M., S. Mazrura, A. Rasimah, C.M. Wong 

and T.Q. Thach et al., 2013. Short-term effects of air 

pollution on mortality in Klang Valley, Malaysia. 

Atmosphere Environ., 65: 69-79. 

 DOI: 10.1016/j.atmosenv.2012.10.019 

Wang, W. and Y. Guo, 2009. Air pollution PM2.5 data 

analysis in Los Angeles Long Beach with seasonal 

ARIMA Model. Proceedings of the International 

Conference on Energy and Environment 

Technology, Oct. 16-18, IEEE Xplore Press, Guilin, 

Guangxi, China, pp: 7-10. 

 DOI: 10.1109/ICEET.2009.468 

WHO, 2000. Air Quality Guidelines For Europe. 1st 

Edn., World Health Organization, Regional Office 

for Europe, Copenhagen, Denmark, 

 ISBN-10: 9289013583, pp: 273. 

Wong, C.L., R. Venneker, S. Uhlenbrook, A.B.M. Jamil 

and Y. Zhou, 2009. Variability of rainfall in 

Peninsular Malaysia. Hydrol. Earth Syst. Sci., 6; 

5471-5503. DOI: 10.5194/hessd-6-5471-2009 


