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Abstract: In Botswana, the rate of evaporation over open water 

surfaces is high because the country is characterised by hot and semi 

arid climatic conditions. The purpose of the study is to investigate the 

correlation between Botswana's monthly maximum temperature and 

evaporation and between monthly maximum wind speed and 

evaporation, for the stations Gaborone, Francistown and Maun and to fit 

transfer function-noise models between the highly correlated elements. 

The data were obtained from the Botswana Department of 

Meteorological Services. Cross correlation analysis revealed that for the 

selected weather stations, monthly maximum evaporation is much more 

strongly correlated to monthly maximum temperature than to monthly 

maximum wind speed. Monthly maximum temperature and evaporation 

were modelled with transfer function-noise models. The results of the 

study are crucial mainly to those in water management, agriculture and 

other similar industries. 

 

Keywords: Botswana, Monthly Maximum Evaporation, Monthly 

Maximum Temperature, Transfer Function-Noise Models 

 

Introduction 

An unending circulation of water within the 

atmosphere starts with large quantities of water 

evaporating from water bodies (Ahrens, 1994). 

Evaporation depends on several factors, which include 

meteorological variables (Xu and Singh, 1998). 

Evaporation and the meteorological variables that 

affect it are of interest to various applications such as 

in water resources management, agriculture and 

climatology. Evaporation from waterbodies accounts 

for most of the moisture in the atmosphere (≈ 90%), 

while the remaining 10% is accounted for by 

transpiration and sublimation (Moran and Morgan, 

1986; Ahrens, 1994; AMPJ, 2016). The contribution 

from transpiration is far greater than that from 

sublimation. Injection of moisture into the atmosphere 

is necessary for precipitation formation. Precipitation 

is the main way by which water is transferred from the 

atmosphere back to the surface of the earth. In regions 

with little rainfall, evaporation losses contribute 

considerably to the decrease of water levels in water 

bodies such as dams (Kumar et al., 2013). 

Since meteorological variables influence evaporation, 

it is crucial to study dynamic relationships between these 

variables and evaporation. Dynamic relationships can be 

studied using Transfer Function-Noise Models (TFNMs). 

These models have been successfully employed in 

studying dynamic relationships between climatic and 

hydrological variables (Box and Jenkins, 1970; 1976; 

Lungu, 1991; Lungu and Sefe, 1991; Box et al., 1994; 

Jain and Lungu, 2003; Manzione et al., 2010). When 

long series are used as input for TFNMs, output series of 

extensive length can be simulated (Manzione et al., 

2010). The success in the application of these models in 

the past has motivated their application in this study. In 

this paper, these models are employed to study the 

dynamic relationships between evaporation and 

meteorological variables in Botswana, using data from 

the Botswana Department of Meteorological Services. 
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The data are for the stations Maun, Francistown and 

Gaborone. For this technique, it is crucial to select only 

input variables that have the strongest influence on 

evaporation for the constructed models to be simple 

enough to be understood (Condorena and da Costa, 

2011). Literature reveals that there are four main 

meteorological parameters that affect evaporation, 

namely, solar radiation, wind speed, relative humidity 

and air temperature (Singh, 1992; Kumar et al., 2013). 

Based on the selection criteria of the input variables for 

the adopted technique and on what literature reveals 

about meteorological parameters in relation to 

evaporation, this study does not consider precipitation as 

one of the main meteorological parameters that affect 

evaporation. However, other authors have studied 

relationships between rainfall and extreme temperatures 

in Botswana (Lungu et al., 2003) and between 

temperature and rainfall variability in South Africa 

(Nkuna and Odiyo, 2016). The present study found that 

out of the four main meteorological elements that affect 

evaporation, only air temperature and wind speed had 

reliable data. This study therefore investigates the 

correlation between Botswana's monthly maximum 

evaporation and temperature and between monthly 

maximum evaporation and wind speed and fits TFNMs 

between the strongly correlated climatic elements   

(Box and Jenkins, 1970; 1976; Box et al., 1994;   

Huang and Wu, 2014; Yu et al., 2014; Deng et al., 

2015; Park and Koo, 2015). Fitting of TFNMs between 

the stated climatic elements has never been done in 

Botswana; hence this study fills this gap. 

It has been pointed out above that evaporation 

losses contribute significantly to the decrease of water 

levels in water resources. The water resources that are 

highly affected by evaporation and are of interest in 

this study are the country's Okavango Delta and some 

major dams which include Shashe, Letsibogo, 

Gaborone and Bokaa. These water resources provide 

fresh water to the nation. In addition, the Okavango 

Delta is one of the country's main tourist attractions. It 

is also a Ramsar and a World Heritage Site. The 

models constructed in this study can be used to predict 

the output series (evaporation) with a lead time of a 

few months, which will be valuable information, 

mainly to those responsible for the management of the 

limited water resources in Botswana, agriculture and 

other related works (Manzione et al., 2010; 

Kenabatho et al., 2015).  

Materials and Methods  

The Study Area 

The study area is Botswana, which is a landlocked 

country (Fig. 1). It lies between latitudes 17 and 270S 

and between longitudes 20 and 290E. Drought is 

common and rainfall is highly variable in terms of both 

space and time. Rainfall occurs mainly during the period 

October to March. Annual mean rainfall ranges between 

a maximum of 650 mm in the north (Kasane) and a 

minimum of about 250 mm in the southwest (Bhalotra, 

1984; 1987). Mean monthly maximum temperatures 

range between 32 and 35°C in the northern half of the 

country in October and January, while mean monthly 

minimum temperatures range between 2 and 7°C in July 

in the southwest (Bhalotra, 1984; 1987). Wind speeds 

have a low annual mean, which is about 11 km h
−1

 

(Larsson, 1986), but daily maximum values can exceed 

75 km h
−1

. Botswana's climate can be summarised as hot 

and semi arid to arid (Pike, 1971; Bhalotra, 1984; 1987; 

Moses, 2007). The country's weather conditions are 

influenced by synoptic scale weather systems such as 

the Atlantic Ocean high pressure cell, Indian Ocean 

high pressure cell, cut-off lows, frontal systems, surface 

lows, high pressure cells, Inter Tropical Convergence 

Zone (ITCZ) and westerly and easterly troughs    

(Moses and Parida, 2016). 

The study area is represented by three 

meteorological stations located in three areas of 

national significance, which are Francistown, Maun 

and Gaborone. Maun is situated in the Okavango Delta 

(northwestern part of the country). The Delta is a 

source of fresh water, supports livelihoods and 

ecological functions in the northwestern region. It 

receives most of its water from Angolan high lands, but 

it loses approximately 98% of its water through 

evapotranspiration (USAID, 2013). Moreover, the 

Delta is a tourist site of high economic value. Tourism 

is the country's second largest economic sector after 

mining. Gaborone and Francistown are also areas of 

national significance since they are the country's first 

and second largest cities respectively. Dams shown in 

Fig. 1, which include Shashe and Letsibogo (near 

Francistown), Gaborone and Bokaa (Gaborone), have 

been constructed to supply these cities with fresh water. 

Evaporation from these water resources has persistently 

been a major problem, which limits their optimal 

performance (SMEC, 1987; Moses, 2007). 

Data 

Monthly maximum Temperature (MT), monthly 

Maximum Evaporation (ME) and monthly Maximum 

Wind speed (MW) observational data for the selected 

stations were provided by the Botswana Department of 

Meteorological Services. The geographical positions of 

these stations, their data types and periods are given in 

Table 1. The stations started their operations in the 

1960's. Only the data periods indicated in the table had 

quality data. Periods later than those indicated in the 

table had huge data gaps and were therefore not 

considered in the analysis.  
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Table 1. Meteorological stations used in the study. Lat, Lon, MT, MW and ME stand for latitude, longitude, monthly maximum 

temperature, monthly maximum wind speed and monthly maximum evaporation respectively 

Station name  Lat (0S)  Lon (0E)  Data used  Start data period  End data period  

Gaborone  24.6  25.9  MT, MW, ME  1962  1993  

Francistown  21.2  27.5  MT, MW, ME  1960  1993  

Maun  20.0  23.4  MT, MW, ME  1965  1990  

 

 

 
Fig. 1. Location of the selected meteorological stations, dams and the Okavango Delta 

 

Transfer Function-Noise Models  

TFNMs were employed in the study of the 

dynamic relationships between evaporation and 

meteorological elements that affect it. They were 

fitted to the highly correlated climatic elements, i.e., 

they were fitted either between MT and ME, or 

between MW and ME. Cross correlations, discussed 

in the sub section below, were used to determine the 

strengths of the correlation coefficients and to identify 

the TFNMs. To represent these models with an 

equation, suppose that pairs of observations (Xt,Yt) are 

available at equispaced intervals of time and that X 

measures the level of an input to a system and that the 

level of X influences the level of a system output Y. 

When X is changed from one level to another, it has 

no immediate effect on the output, but produces a 

delayed response with Y eventually coming to 

equilibrium at a new level. Such a change is called a 

dynamic response, which is described by transfer 

function models. These models can be expressed as   

(Box and Jenkins, 1970; 1976; Jenkins, 1979; Box et al., 

1994; Huang and Wu, 2014; Park and Koo, 2015): 

 

( ) ( )r t s t bB Y B Xδ ω −=  (1) 

 

where, the operators δr(B) and ωs(B) are polynomials of 

orders (r,s), which are expressed respectively as: 

 

( ) 2

11 r

r rB B Bδ δ δ= − − −…  (2a) 

 

( ) 2

0 1 2

s

r sB B B Bω ω ω ω ω= − − − −…  (2b) 

 

where, B is the backward shift operator, Xt is a measure 

of the level of an input to a system which influences the 

level of a system output Yt, b is the delay parameter 

representing the number of complete time intervals 

before a change in Xt begins to have an effect on Yt.  
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For stability, the roots of the characteristic 

equation δr(B) = 0, with B regarded as a variable, 

must lie outside the unit circle. Equation 1 is of order 

(r,s,b). The order of this equation is identified from 

the data during the data based identification process 

(Romanowicz et al., 2010). The orders of r and s 

range from 0 to 2 (Box and Jenkins, 1970). In the real 

world, there are other influences that affect Y other 

than X, whose net effect is to corrupt the output 

predicted by the transfer function model. These other 

influences on Y, which also need to be accounted for 

by TFNMs, are called disturbances or noise. For a 

series that has been differenced (which removes 

trends and seasonality) to attain stationarity, TFNMs 

have the form (Box and Jenkins, 1970; 1976; Jenkins, 

1979; Box et al., 1994): 

 

( ) ( )1

t r s t b tY B B x nδ ω−
−= +  (3a) 

 

With: 

 

( ) ( )1d

t tn B B aφ θ−= ∇  (3b) 

 

where, nt is the net effect of the noise which corrupts the 

system at the output, yt = ∇d
Yt and xt = ∇d

Xt are 

stationary processes with zero means, at is the 

uncorrelated random variable, d is the order of non-

seasonal differencing necessary to make the series 

stationary, ∇ = (1-B) is the backward differencing 

operator, ϕ(B) is the autoregressive operator, θ(B) is the 

moving average operator.  

Identification of TFNMs was simplified by pre-

whitening the input of the system. As the number one 

step of the identification process, the pre-whitening 

procedure of Box and Jenkins (1970) involves fitting 

an Autoregressive Moving Average (ARMA) model to 

the differenced input series. Autocorrelation 

Functions (ACFs) and Partial Autocorrelation 

Functions (PACFs) were used to fit the ARMA model 

to the differenced input series (Box and Jenkins, 1970; 

1976; Lungu, 1991; Lungu and Sefe, 1991; Box et al., 

1994; Bierkens and Knotters, 1999; Jain and Lungu, 

2003; Lungu et al., 2003; Huang and Wu, 2014; 

Kenabatho et al., 2015; Park and Koo, 2015). The 

95% confidence limits of the autocorrelation and 

partial autocorrelations functions were approximated 

by ±2/n
1/2

 (Harvey, 1993; Diggle and Chetwynd, 

2011). An ARMA model has the form (Box and 

Jenkins, 1970; 1976; Box et al., 1994): 

 

( ) ( )t tB x Bφ θ α=  (4a) 

or when rearranged: 

 

( ) ( )1

t tB B xα θ φ−=  (4b) 

 

where, αt is the uncorrelated input series.  

The rearranged ARMA model (Equation 4b) shows 

that the correlated input series xt is transformed to the 

uncorrelated white noise series αt by the 

transformation ϕ(B)θ
−1

(B). The advantage of using the 

differencing method to attain stationarity is that if the 

same order of differencing is applied to both the input 

and the output series, the resulting transfer functions 

between the differenced series are identical to those 

between the original series. Assuming that the 

transformation applied to the input series xt can be 

applied to the differenced output series yt, yields: 

 

( ) ( )1

t tB B yβ φ θ −=  (5) 

 

where, βt is the uncorrelated output series.  

The ARMA model represented by Equation 4a is a 

special case of the general multiplicative 

Autoregressive Integrated Moving Average (ARIMA) 

models, of order (p,d,q)x(P,D,Q)s, that account for 

both the non-seasonal and seasonal dependencies in 

the time series. These models have the general form 

(Box and Jenkins, 1970; 1976; Box et al., 1994; 

Huang and Wu, 2014; Kenabatho et al., 2015;       

Park and Koo, 2015): 

 

( ) ( ) ( ) ( )D d s

P s p s t Q q tB B z B B aφ θΦ ∇ ∇ = Θ  (6) 

 

where, ϕp(B) is the autoregressive operator of order p, 

θq(B) is the moving average operator of order q, D is the 

degree of seasonal differencing, s is the periodicity, 

∇s = (1-B
s
) is the simplifying operator, ΦP(B

s
) is the 

seasonal autoregressive operator of order P, ΘQ(B
s
) is 

the seasonal moving average operator of order Q, zt is 

the series of observations. 

Cross Correlations  

Cross correlations at lag zero, which are a measure 

of the average correlations (Rummel, 1976), were 

used to determine the strengths of the relationships 

between the dependent and the independent time 

series, i.e., between the differenced series of MT and 

ME and between MW and ME. As mentioned above, 

TFNMs were fitted between the strongly correlated 

climatic elements. Cross correlations at various lags 

were used in the identification of the models, i.e., the 

orders (r,s,b) of the operators δr(B) and ωs(B) in 
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Equation 1, 2a and 2b and were also used to estimate 

the parameters of these operators. The advantage of 

cross correlations is that they can characterise lagged 

relationships between two series (LC, 2016) and can 

also discern relationships between variables that may 

possibly be difficult to discern because of strong 

trends in the data (Nkuna and Ndiyo, 2016). For the 

pre-whitened input series αt (from Equation 4b) and 

the corresponding output series βt (from Equation 5), 

the cross correlation between the two series at lag k, 

rαβ(k), is given by the equation (Chatfield, 2004; 

Montgomery et al., 2008): 
 

( )
( ) ( )( )

( )1
1 /

, 0,1,..., 1

n k

i ii
n

r k k nαβ
α β

α α β β

σ σ

−

=
− −

= = −
∑

 (7) 

 

where, α and β are the averages of the αt and βt series 

respectively, while σα and σβ are their standard deviations, 

n is the length of the two series, i is the i
th
 value.  

Considering one series as the input and the other 

series as the output from a dynamic linear system, the 

delayed response is computed through the impulse 

response function (LC, 2016). The cross correlation at 

lag k is directly proportional to the impulse response 

function ν'(k) and is expressed as (Box and Jenkins, 

1970; 1976; Box et al., 1994): 

 

( ) ( ) /v k r k s sαβ β α′ =  (8) 

 

where, 2sα  and 2sβ  are estimates of the variances 2

ασ  and 

2

βσ , respectively.  

Approximate standard error of rαβ(k) were estimated by: 

 

( ) 1/r n kσ ′ = −  (9) 

 

Approximate standard errors provide a statistical 

check whether rαβ(k) is considerably different from zero 

(Pong-Wai, 1979).  

Results and Discussion 

Analysis of Mean Monthly Data 

Mean monthly Maximum Temperature (mean MT), 

mean monthly maximum wind speed (mean MW) and 

mean monthly Maximum Evaporation (mean ME) 

were analysed to give an overview of their monthly 

variation. Variations of mean MT, mean ME and 

mean MW for Maun are shown in Fig. 2a-c 

respectively. Variations of mean monthly values of 

the other stations were similar to these figures. From 

Fig. 2a, it can be seen that mean MT vary from month 

to month, they are at their lowest in June and July and 

they are at their highest in January and December. 

Fig. 2b shows that mean ME also vary from month to 

month in a similar manner as mean MT in Fig. 2a. 

Figure 2c reveals that the lowest values of mean MW 

are attained in February, while the highest values are 

attained in October. 

Cross Correlation Coefficient Analysis  

The estimated cross correlation coefficients at lag 

zero, between MT and ME series and between MW and 

ME series, are shown in Table 2. The coefficients 

between MT and ME for Gaborone, Francistown and 

Maun are 0.66, 0.60 and 0.58, respectively. In contrast, 

the coefficients between MW and ME for Gaborone, 

Francistown and Maun are much smaller, being 0.28, 

0.12 and 0.14 respectively. The estimated confidence 

limits of the coefficients are ±0.05 for Francistown and 

Gaborone and ±0.06 for Maun. To make it easier to 

interpret the coefficients, the percentages of variance 

in common between MT and ME and between MW 

and ME were computed by squaring the coefficients 

and then multiplying them by 100 (Rummel, 1976). 

Consequently, the percentages of variance in common 

between MT and ME for Gaborone, Francistown and 

Maun are 44, 36 and 34%, respectively. On the other 

hand, the percentages of variance in common between 

MW and ME for Gaborone, Francistown and Maun 

are 8, 1 and 2% respectively. The high coefficients 

between MT and ME imply stronger correlations 

between the variables, while the low coefficients 

imply weaker correlations. In other words, on the 

basis of the estimated magnitudes of the coefficients, 

MT has a much greater influence on ME than MW. 

However, all the correlation coefficients are positive, 

indicating positive associations between the variables. 

TFNMs were fitted between the highly correlated MT 

and ME series. The coefficients between MT and ME 

and between MW and ME are higher for Gaborone 

than for the other two stations (Table 2). This could 

be attributed to drier conditions in Gaborone 

compared to the other two stations; hence Gaborone 

has higher evaporation rates. Maun and Francistown 

are closer to higher rainfall areas of Angola and 

Zambia, which have a positive influence on their 

surrounding air moisture level.  

A study by Kumar et al. (2013), which estimated 

evaporation from climatic factors in India, found 

correlation coefficients of 0.7625 and 0.6612 between 

MT and ME and between MW and ME, respectively. 

Clearly these coefficients are higher than those found in 

this study and they indicate that MW has almost the 

same level of influence on ME as MT in India. This 

implies that the level of influence of meteorological 

factors on evaporation differs from region to region.  
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Table 2. Correlation coefficients of the data. MT, ME and MW stands for monthly maximum temperature, monthly maximum 

evaporation and monthly maximum wind speed respectively. Confidence limits for Francistown and Gaborone = ±0.05, for 

Maun = ±0.06  

Gaborone  MT  ME  MW 

MT  1  0.66  - 

ME  -  1 0.28  

MW  - - 1  

Francistown  MT  ME  MW 

MT  1  0.60  - 

ME  -  1 0.12  

MW  - - 1  

Maun  MT  ME  MW 

MT  1  0.58  - 

ME  -  1 0.14  

MW  - - 1  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2.Variation of Maun’s (a) mean monthly Maximum Temperature (Mean MT), (b) mean monthly Maximum Evaporation (Mean 

ME) and (c) mean monthly Maximum Wind speed (Mean MW)  
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Prewhitening of the Series  

In the prewhitening process, the MT series was taken 

as the input series, while the ME series was taken as the 

output series. The first step was to fit an ARMA model 

(Equation 4b) to the MT series using Autocorrelation 

Function (ACF) and Partial Autocorrelation Function 

(PACF). Figure 3 is a plot of the ACF and PACF for 

Francistown’s MT series. The estimated 95% confidence 

limits of the ACF and PACF are ±0.1. ACFs and PACFs 

for the other stations' input and output series resembled 

Fig. 3. This figure shows that the series were made 

stationary by the order of differencing d = 1 and D = 0. 

Since the autocorrelation at lag 0 is always equal to 1 

(Shaw, 1983; Box and Jenkins, 1970; 1976; Box et al., 

1994), the figure shows that only the autocorrelation at 

lag 1 is statistically significant since it shoots beyond the 

95% confidence limits. This suggests that for the MT 

series, the suitable ARMA model (Equation 4b) can be 

well represented by a first order autoregressive model: 

 

( )1t tB xα φ= −  (10) 

 

Comparing Equation 4b and 10 yields: 

 

( ) ( ) ( )1 1B B Bθ φ φ− = −  (11) 

 

Equation 11 is the transformation that was found to 

be suitable for transforming the input MT series to the 

uncorrelated pure white noise series αt, i.e., prewhitening 

the input series. In this equation, the estimated values of 

the autoregressive parameter φ that minimise 2

t
αΣ  are 

given in Table 3. By the assumption made in Equation 5, 

the transformation represented by Equation 11 was also 

applied to the output ME series to transform it to the 

uncorrelated white noise series βt. 

Cross Correlation Function Analysis  

Cross Correlation Functions (CCFs) were used to 

identify the delay parameter b, the orders r and s of 

the operators δr(B) and ωs(B) in Equation 1, 2a and 2b 

and were also used to estimate the parameters of these 

operators. CCFs were between the uncorrelated αt 

series (prewhitened MT series) and βt series 

(prewhitened ME series). The variances 2sα  and 2sβ  for 

the uncorrelated series αt and βt respectively, as well 

as approximate standard errors (Equation 9) of CCFs 

were computed and recorded in Table 3. CCFs for 

Francistown, Gaborone and Maun are plotted in Fig. 

4a-c respectively. Figure 4a generally shows that the 

cross correlations smoothly decay towards zero with 

increasing lag. The cross correlation at lag 0 is the 

only one that is significantly greater than the 

approximate standard errors contained in Table 3. The 

cross correlations at lag 8 and 12 were considered as 

outliers, which were inevitable due to the fact that the 

same transformation that was used to transform the 

MT series was also used to transform the ME series. 

Francistown's CCF suggests that the delay parameter 

b in Equation 3a is equal to zero. The CCF for 

Gaborone (Fig. 4b) also, generally indicates that the 

cross correlations smoothly decay towards zero with 

increasing lag. The cross correlations at lag 0, 1 and 9 

overshoot the approximated standard errors, but the 

cross correlations at lag 1 and 9 were treated as 

outliers as already discussed in the case of Fig. 4a. 

Hence the delay parameter b for Gaborone was also 

taken to be zero. For the same reasoning as in the 

cases of Fig. 4a and 4b, the cross correlation at lag 0 

in Fig. 4c (Maun's CCF) was considered as the only 

statistically significant cross correlation. As a result, 

the delay parameter b for Maun was also taken to be 

zero. The delay parameter b being zero implies that 

for the data considered in the analysis, there is no 

period of delay for a change in temperature to have an 

effect on evaporation.  

The determined orders (r,s,b) were (1,1,0). This 

means that the parameters of the operators δr(B) and 

ωs(B) were δ1, ω0 and ω1. These parameters were 

estimated and recorded in Table 3. Having determined 

these parameters, the transfer function model in Equation 

3a simplifies to: 

 

1 0 1(1 ) ( )t t tB y x nδ ω ω− = − +  (12) 

 

Table 3. Autoregressive parameter ϕ, variances 2sα  and 2sβ , approximate standard errors σ'(r), stochastic transfer function models 

parameters δ1, ω0 and ω1 for Francistown, Gaborone and Maun 

Parameter  Francistown  Gaborone  Maun 

ϕ  -0.50  -0.45  -0.51 
2sα   3.14  2.82  2.44 

2sβ   7.78  6.17  11.13 

σ'(r)  0.05  0.05  0.06 

δ1  0.40  0.08  7.24 

ω0  0.33  0.14  0.20 

ω1  0.08  -0.15  1.40 
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Table 4. Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF) for Francistown, Gaborone and Maun 

 Francistown   Gaborone   Maun  

 ------------------------------------ ---------------------------------- --------------------------------- 

k ACF  PACF  ACF  PACF  ACF  PACF  

1 -0.64 -0.64 -0.48 -0.48 -0.46 -0.46 

2 0.15 -0.43 -0.02 -0.32 -0.04 -0.31 

3 -0.01 -0.28 0.03 -0.2 -0.02 -0.27 

4 -0.03 -0.24 -0.08 -0.24 0.04 -0.18 

5 0.03 -0.17 0.11 -0.09 -0.04 -0.19 

6 -0.01 -0.12 -0.1 -0.15 0.08 -0.06 

7 -0.03 -0.17 0.05 -0.1 -0.09 -0.12 

8 0.07 -0.1 0.02 -0.04 0.06 -0.05 

9 -0.07 -0.13 -0.03 -0.04 -0.03 -0.04 

10 0.09 0.01 -0.08 -0.19 -0.08 -0.18 

11 -0.09 0.01 0.13 -0.05 0.08 -0.11 

12 -0.02 -0.14 -0.07 -0.1 0.04 -0.02 

13 0.09 -0.11 0.08 0.03 -0.05 -0.03 

14 -0.03 -0.02 -0.09 -0.07 -0.01 -0.06 

15 -0.05 -0.11 0.03 -0.04 0.04 -0.01 

 
Table 5. Autoregressive parameter ξ for the noise components, for Francistown, Gaborone and Maun 

Parameter  Francistown  Gaborone  Maun 

ξ  -0.90  -0.80  -0.85 

 

 

 
Fig. 3. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) for the stationary monthly maximum 

temperature series for Francistown. 95% confidence limits = ±0.1 

 

 
(a) 
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(b) 

 

 
(c) 

 
Fig. 4. Cross Correlation Functions (CCFs) between monthly maximum temperature and evaporation for the prewhitened series for 

(a) Francistown, (b) Gaborone and (c) Maun. Confidence limits for Francistown and Gaborone = ±0.05, for Maun = ±0.06.   

 

The Noise Component  

To determine the equation for the noise component 

nt, in Equation 12, the estimated values of the parameters 

δ1, ω0 and ω1 were used to generate the series: 

 

1 1 0 1 1t t t t
y y x xδ ω ω− −′ ′= + −  (13) 

 

which was then used to estimate the nt series as (yt-y't). 

Autocorrelation and partial autocorrelation functions of 

the nt series were computed and recorded in Table 4. 

They were used to identify the noise models for the 

selected stations. The identified noise models were 

autoregressive models of order 1, of the form: 

 

( )1 t tB n aξ− =  (14) 

 

The estimated values of the autoregressive parameter 

ξ in Equation 14 are recorded in Table 5. 

The Final Transfer Function-Noise Models  

By Equation 12, 14 and the estimated parameters in 
Table 3 to 5, the transfer function-noise models fitted to 

the strongly correlated monthly maximum temperature 
and evaporation series for Francistown, Gaborone and 
Maun are Equation 15a-c respectively: 
 

( ) ( )
( )

1 0.40 0.33 0.08

/ 1 0.90

t t t

t t

B y B x n

n a B

− ∇ = + ∇ +


= + 
 (15a) 

 

( ) ( )
( )

1 0.08 0.14 0.15

/ 1 0.80

t t t

t t

B y B x n

n a

− ∇ = + ∇ +


= + 
 (15b) 

 

( ) ( )
( )

1 7.24 0.20 1.40

/ 1 0.85

t t t

t t

B y B x n

n a B

− ∇ = − ∇ +


= + 
 (15c) 

 

The transfer function-noise models (Equation 15a-c) 

fitted to the data, were checked for adequacy using the 

criteria of Box and Jenkins (1970) and were found to be 

adequate. The models involve a small number of 

parameters, their cross correlation functions decay after 

a finite lag k (Fig. 4a to 4c) and absolute values of the 

autoregressive parameter ξ (Table 5) of the noise 

models are less than 1.  
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Conclusion 

Correlations between Botswana's monthly 

maximum temperature and evaporation and between 

monthly maximum wind speed and evaporation for 

Maun, Francistown and Gaborone were assessed. The 

correlations between monthly maximum temperature 

and evaporation were found to be much stronger than 

those between monthly maximum wind speed and 

evaporation. The more strongly correlated monthly 

maximum temperature and evaporation were modelled 

using transfer function-noise models given as 

Equation 15a-15c, for Francistown, Gaborone and 

Maun respectively. When checked for adequacy using 

the Box and Jenkins (1970) criteria, the models were 

found to be adequate. Such models can be used to 

predict the evaporation output series with a lead time 

of a few months. The results of the study are crucial 

primarily to those responsible for the management of 

the limited water resources in Botswana, agriculture 

and other related applications. 
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