
American Journal of Environmental Science, 2012, 8 (6), 605-614 

ISSN: 1553-345X  
©2012 Science Publication 
doi:10.3844/ajessp.2012.605.614 Published Online 8 (6) 2012 (http://www.thescipub.com/ajes.toc) 

Corresponding Author: Aaron R. Mittelstet, Department of Biosystems and Agricultural Engineering,  
 Oklahoma State University, 114 Agricultural Hall, Stillwater, OK, USA 74078-6016 
 

605 Science Publications

 
AJES 

Field Scale Modeling to Estimate Phosphorus and Sediment Load 

Reductions Using a Newly Developed Graphical User  Interface for 

Soil and Water Assessment Tool 

1
Aaron R. Mittelstet, 

2
Erin R. Daly,  

3
Daniel E. Storm, 

4
Michael J. White and 

5
Greg A. Kloxin 

 
1Department of Biosystems and Agricultural Engineering,  

Oklahoma State University, 114 Agricultural Hall, Stillwater, OK, 74078-6016, USA 
2Department of Biosystems and Agricultural Engineering,  

Oklahoma State University, 209 Agricultural Hall, Stillwater, OK, 74078-6016, USA 
3Department of Biosystems and Agricultural Engineering,  

Oklahoma State University, 111 Agricultural Hall, Stillwater, OK, 74078-6016, USA 
4USDA-ARS Grassland, Soil and Water Research Laboratory 

808 East Blackland Road Temple, TX, 76502-6712, USA 
5Water Quality Division, Oklahoma Conservation Commission,  

4545 N Lincoln Blvd, Lincoln Plaza Office, Suite 11A, Oklahoma City, OK 73105, USA 

 
Received 2012-07-26, Revised 2012-12-28; Accepted 2012-12-28 

ABSTRACT 

Streams throughout the North Canadian River watershed in northwest Oklahoma, USA have elevated 
levels of nutrients and sediment. Soil and Water Assessment Tool (SWAT) was used to identify areas 
that likely contributed disproportionate amounts of Phosphorus (P) and sediment to Lake Overholser, 
the receiving reservoir at the watershed outlet. These sites were then targeted by the Oklahoma 
Conservation Commission (OCC) to implement conservation practices, such as conservation tillage 
and pasture planting as part of a US Environmental Protection Agency Section 319(h) project. 
Conservation practices were implemented on 238 fields. The objective of this project was to evaluate 
conservation practice effectiveness on these fields using the Texas Best Management Evaluation Tool 
(TBET), a simplified Graphic User Interface (GUI) for SWAT developed for field-scale application. 
TBET was applied on each field to predict the effects of conservation practice implementation on P 
and sediment loads. These predictions were used to evaluate the implementation cost (per kg of 
pollutant) associated with these reductions. Overall the implemented practices were predicted to reduce 
P loads to Lake Overholser by nine percent. The ‘riparian exclusion’ and ‘riparian exclusion with 
buffer’ practices provided the greatest reduction in P load while ‘conservation tillage’ and ‘converting 
wheat to bermuda grass’ produced the largest reduction in sediment load. The most cost efficient 
practices were ‘converting wheat to bermuda grass’ or ‘native range’ and ‘riparian exclusion’. This 
project demonstrates the importance of conservation practice selection and evaluation prior to 
implementation in order to optimize cost share funds. In addition, this information may lead to the 
implementation of more cost effective practices and an improvement in the overall effectiveness of 
water quality programs.  

 
Keywords: SWAT, Phosphorus Management, Hydrologic Modeling, Conservation Practices, Cost-

Effectiveness 
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1. INTRODUCTION 

In agricultural watersheds, non-point sources are 
often the dominate contributor to water quality 
impairment (Allan, 1995; Rao et al., 2009). Phosphorus 
(P) and sediment are two of the most common 
contributors to aquatic impairment with agricultural sources 
responsible for 46% of the sediment and 47% of the P 
released into U.S. waters (Allan, 1995; Rao et al., 2009). 
Phosphorus is a necessary nutrient for agricultural crops, 
yet over application of fertilizer may lead to elevated P 
levels in streams, reservoirs and lakes. Several 
conservation practices are effective in reducing sediment 
and P loss from agricultural fields, including riparian 
buffers, conservation tillage, crop rotation and vegetative 
filter strips. The Environmental Quality Incentives 
Program (EQIP), which is administered by the US 
Department of Agricultural (USDA) Natural Resources 
Conservation Service (NRCS), provides assistance for 
landowners seeking to establish conservation practices 
and received $1.02 billion nationally in 2006 (Canada 
and Zinn, 2005). The Clean Water Act, Section 319, 
program administered by the US Environmental 
Protection Agency (USEPA) distributed $201 million in 
federal funds, which required a 40% state match, to 
states for use in nonpoint source pollution reduction 
projects (USEPA, 2007). Both the USEPA and the 
USDA have expressed significant interest in evaluating 
the effectiveness of these programs. 

Published data on P and sediment reduction for 
various conservation practices are available, but these 
data provide only a general estimate of practice 
efficiency as site characteristics inherently vary. Use of a 
watershed or field-scale hydrologic model provides an 
alternative to these generalized efficiencies and may 
produce more accurate estimation of site specific P and 
sediment reductions from conservation practice 
implementation. Soil and Water Assessment Tool 
(SWAT) (Arnold et al., 1998) is a watershed scale model 
widely used to evaluate conservation programs. SWAT was 
utilized by Tuppad et al. (2010) and Vache et al. (2002) to 
model the reduction of sediment and nutrients due to 
conservation practice implementation. Simulated 
scenarios by Tuppad et al. (2010) demonstrated 
decreases from 3 to 37% for sediment load and up to a 
30% decrease in total P load for individual conservation 
practices for the Bosque River watershed in northern 
Texas, USA. Vache et al. (2002) examined three future 
land use scenarios in central Iowa, USA where two of the 
scenarios showed significant reductions in sediment and 
nutrient loads. By using a combination of conservation 

practices, e.g., conservation tillage, strip intercropping, 
rotational grazing, predicted sediment loads were reduced 
by 37 to 67% and nutrients by 54 to 75%. Many other 
researchers have also used SWAT to evaluate 
conservation practices in a variety of systems (Chu et al., 
2005; Bracmort et al., 2006; White et al., 2010). 

Though several studies have evaluated the effect of 
conservation practice implementation on P and sediment 
losses from agricultural fields, few have considered the 
cost per unit load reduction. It is important to make this 
information available to policy makers to aid them in 
determining the largest P and sediment reduction for the 
least cost. Secchi et al. (2007) found that by 
implementing conservation practices in 13 Iowa 
watersheds, SWAT predicted sediment loads could be 
reduced from 6 to 65% and the P loads from 28 to 59% 
at a cost of $2.4-4.3 billion over ten years. Chang et al. 
(2009) evaluated the number and location of conservation 
practices versus pollutant reduction.  They demonstrated 
that although there continued to be a reduction in pollutant 
load per added conservation practice, there was an optimal 
quantity of conservation practices where the largest 
pollutant reduction per cost was achieved. Gitau et al. 
(2004) utilized SWAT to determine the optimal selection 
and placement of conservation practices to identify cost-
effective solutions for nonpoint source reduction. 
Schwartz (2010) used watershed-scale optimization to 
inform decision makers of the most cost efficient nutrient 
reduction strategies. While models like SWAT are 
valuable tools for highly trained specialists, their 
complexity prohibits their use by most conservation and 
nutrient management planners. The Texas Best 
management practice Evaluation Tool (TBET) was 
designed to simplify the operation of SWAT in order to 
put the predictive power of a proven water quality model 
into the hands of people who make daily decisions that 
affect water quality. 

This project involved three stages with the bulk of the 
study focusing on the final stage of the project, the 
modeling of the fields that were identified as targeted 
areas. The first stage of the project was to identify the 
areas (targeted areas) within the watershed that 
contributed a large percent of the P and sediment to the 
stream system. The second stage was the implementation 
of the best management practices by the Oklahoma 
Conservation Commission. The third stage and the focus 
of this study was to estimate the reduction in total P and 
sediment loads from 238 fields in the North Canadian 
Watershed in northwestern Oklahoma resulting from the 
implementation of conservation practices using TBET. 
Costs for conservation practice implementation for both 
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the federal government and the rancher and farmer per 
Mg of sediment and kg of total P reduction were also 
calculated and their efficiencies evaluated.  

1.1. Background 

1.1.1. Study Area 

The Canton-Overholser corridor of the North 
Canadian watershed (Fig. 1) which includes parts of 
Blaine, Canadian and Dewey Counties, located in 
northwest Oklahoma, USA, occupies a drainage area of 
approximately 1,970 km2. Streams throughout this wheat 
and cattle producing area are impaired due to excess 
nutrients, suspended solids and siltation.  Designated 
uses for the waterbodies include primary body contact 
recreation, fish and wildlife propagation, public and 
private water supply, aesthetics, industrial and municipal 
process and cooling water and agriculture (OCC, 2008). 
The soils are predominantly made up of highly erodible 
sandy, silty or clay loams. 

1.2. Identification of Targeted Areas (Stage 1) 

The first stage of the project was to use SWAT to 
identify the non-urban areas within the North Canadian 
watershed that contributed disproportionate nutrient 
loads (Fig. 1a). For more information on the model setup, 
calibration, etc. of the watershed see Storm et al. (2007). 
The results of the SWAT model indicated that cropland 
(small grain and row crops), bare soil and urban 
development were found to be the primary sources of 
nutrient and sediment loads. The identified targeted 
(non-urban) areas made up a total of 54 km2 or 
approximately 3% of the total watershed area.   

Several scenarios of conservation practice 
implementation were simulated to determine potential 
total P load reductions at the watershed outlet. If all 
fields with small grains and row crops implemented 
conservation tillage with farming on the contour, total P 
loads were predicted to be reduced by 22%. By 
converting all small grains and row crops to pasture or 
all grazing pastures to hay, P loads were predicted to be 
reduced by 15 and 12%, respectively. The greatest single 
P load reduction (22%) resulted from adding a 10 m 
buffer strip to all agricultural lands bordering the 
Northern Canadian River and its tributaries. 

1.3. Conservation Practice Implementation 

(Stage 2) 

The Oklahoma Conservation Commission (OCC) 

applied limited funding from the US Environmental 

Protection Agency 319(h) Program to cost share the 

implementation of conservation practices at 238 field 

sites within the watershed project area to reduce total P 

andsediment loads (Fig. 1b). Although the OCC 

prioritized the implementation of best management 

practices based on Storm et al. (2007) implementation 

efforts were ultimately constrained by landowner 

participation. The 238 field sites where the best 

management practices were implemented occupied a 

total of 65 km2 (3.2% of the watershed area), with field 

sizes ranging from 0.01 to 1.2 km2. The targeted areas 

identified by Storm et al. (2007) and field sites with 

implemented conservation practices mutually occurred 

on 44 of the 238 field sites with an area of 14 km2.  

Five types of conservation practices were 

implemented within the watershed individually or 

together with annual costs provided in Table 1. The 

fraction of the total cost subsidized by the cost share 

program differed by practice (USDA-NRCS, 2011). For 

some practices, such as conservation tillage, 100% of the 

cost was paid by the federal government.  For other 

costs, such as the installation of fence and the 

establishment of bermuda grass, the cost was shared 

between the government (80%) and the farmer or rancher 

(20%). Some practices required single implementation 

(conservation tillage), while others required multiple 

installations such as animal exclusion (fence, watering 

facility, pipeline and pump). The practical life of the 

conservation practices were also taken into account. For 

example, based on the USDA NRCS Field Office 

Technical Guide (FOTG), native rangeland 

implementation had a practical life of 10 years compared 

to 20 years for a watering facility (USDA-NRCS, 2011). 

2. MATERIALS AND METHODS 

2.1. Texas Best Management Evaluation Tool 

The Texas Best management practice Evaluation 

Tool (TBET) is based on a specially modified version 

of Soil and Water Assessment Tool (SWAT) 2009 

(Arnold et al., 1998) a product of more than 30 years of 

model development by the USDA, Agricultural Research 

Service. The field-scale model is a vastly simplified 

Graphical User Interface (GUI) which includes numerous 

updates and local climate, soils, topography and 

management databases supporting it’s usage throughout 

south central US.  Required data for TBET simulations 

include crop system and management practices, soil type, 

field area, distance to stream and soil test phosphorus.   
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Fig. 1. The North Canadian River Watershed Project area in northwest Oklahoma, USA with Canton Lake in the north draining to 
Lake Overholser in the south connected by the North Canadian River.  The location of the elevated areas of phosphorus loss 
identified by SWAT (a) Elevated areas of phosphorus and the locations of the 238 field sites where the conservation practices 
were implemented (b) Field sites with conservation practices 

 
Table 1. Conservation practices implemented in the North Canadian River Watershed Project, their costs to the federal government 

and the ranchers and farmers and their practical life expectancy (USNRCS 2011) 

Conservation No. Total Cost to Cost to Practical 
Practice of fields area (ha) federal government farmer or rancher Life (yrs) 

Conservation tillage 205 6040 $52.22/ha (100%) $0.00 (0%) 1 
Wheat to bermuda 23 305 $207.44/ha (80%) $51.86/ha (20%) 10 
Wheat to native range 2 37 $201.85/ha (80%) $50.46/ha (20%) 10 
Riparian exclusion 2 13 $4.78/ linear m fence (90%) $0.53 /linear m fence (10%) 20 
   $5.08/linear m pipe (90%) $0.51/linear m pipe (10%) 20 
   Watering facility-$625.93 (90%) Watering facility-$69.55 (10%) 10 
   Solar water pump-$5,636.25 (90%) Solar water pump-$626.25 (10%) 15 
Riparian exclusion 2 45 $4.78/ linear m fence (90%) $0.53/linear m fence (10%) 20 
with conservation   $5.08/linear m pipe (90%) $0.51/linear m pipe (10%) 20 
tillage   Watering facility-$625.93 (90%) Watering facility-$69.55 (10%) 10 
   Solar water pump-$5,636.25 (90%) Solar water pump-$626.25 (10%) 15 
   $48.70 ha-1 (100%) $0.00 1 
Riparian exclusion 4 33 $4.78 linear m fence (90%) $0.53/linear m fence (10%) 20 
with buffer   $5.08/linear m pipe (90%) $0.51/linear m pipe (10%) 20 
   Watering facility-$625.93 (90%) Watering facility-$69.55 (10%) 10 
   Solar water pump-$5,636.25 (90%) Solar water pump-$626.25 (10%) 15 
   $223.20 ha-1 (Excluded) (100%) $0.00 (0%) 15 

 

TBET was developed for use in state- and 
federally- sponsored water quality improvement 
programs to assist in the selection of optimal 
conservation practices and to estimate and evaluate 
the resulting pollutant reductions. The model interface 
acts as an input and output interpreter for the SWAT 
model and insulates the conservation planner from the 
model complexities of SWAT.  TBET supports 
common NRCS conservation practices and predicts 

sediment, phosphorus and nitrogen losses from 
individual fields that comprise a farm and/or ranch 
operation.  By using the process-based SWAT model, 
this tool more accurately simulates a wide variety of 
management options and field characteristics. A 
rigorous, data intensive calibration and validation  
process was employed in TBET development (White et al., 
2012). First, hydrology outputs were calibrated with 
basin scale streamflow data from 20 USGS sites.   
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Table 2. Crop management data for TBET simulations with crop system, fertilization and grazing management data and field 
Mehlich III Soil Test Phosphorus levels 

Crop Fertilizer rates and Grazing management Soil test 
system time of application (animal unit/ha) phosphorus (ppm) 

Winter wheat 34 kg N, 2.7 kg P (Pre-plant) 0.82 39-41 
Bermuda grass 136 kg N, 34 kg P (Spring) 1.85 40 
Native range None 0.62 26-30 

 
Then, runoff, sediment and total N and P outputs were 
calibrated and validated with measured field scale data 
(260+ site years).  The sites varied based on cropping 
system, location, nutrient application rates and timing, 
field sizes, soil types and Soil Test Phosphorus (STP) 
levels. A total of 331, 332 and 341 site years of field 
scale data for runoff, sediment and total P were obtained. 
The r2 were 0.64, 0.28 and 0.76, respectively. 

2.2. Phosphorus and Sediment Load Modeling 

(Stage 3) 

Each of the 238 field sites was modeled pre- and 
post-conservation practice implementation. The OCC 
provided the locations and areas of the 238 field sites and 
the type or types of conservation practices implemented. 
Other input needs were soil type, slope, landcover and 
management practices (Table 2). 

In TBET up to three soil types and their percentages 

can be selected for each field site. SSURGO data 

(USDA-NRCS, 2007) were chosen due to its high 

resolution. Slopes from 0.01-12.7% with an average of 

2.2% were calculated in ESRI ArcGIS using 10-m 

National Elevation Dataset (NED) (USGS, 1999). The 

National Agricultural Statistics Service (30-m resolution) 

(USDA-NRCS, 2009) dataset was used to obtain the 

current landcover for each field site, which were then 

verified by OCC personnel knowledgeable in the area.  

The majority of the field sites were wheat fields, but also 

included pasture and rangeland. Crop management data 

were obtained from the OCC, Oklahoma State 

Cooperative Extension papers (PSS-2263 and NREM-

2869) and from Hossain et al. (2004) (Table 2). Soil test 

phosphorus levels were based on a previous survey from 

Storm et al. (2007).  

2.3. Best Management Practices 

2.3.1. Conservation Tillage (NRCS Code 344) 

This practice involves leaving plant residue on the 

soil surface year round while limiting soil activities to 

only those that are necessary such as planting, harvesting 

and fertilization (USDA-NRCS, 2011). This reduces 

both the sediment and nutrient losses from the field site. 

For this project pre-conservation practice conditions 

were modeled with conventional tillage and post-

conservation practice conditions were modeled with 

conservation tillage with 70% crop residue remaining on 

the surface.  

2.4. Converting Wheat to Bermuda or Native 

Range (NRCS Codes 512 and 550) 

The second and third practices involve planting 

bermuda or a native grass to improve livestock nutrition 

(USDA-NRCS, 2011). By maintaining cover year round, 

the soil erosion and P and N losses decrease. For this 

project all fields were modeled as both grazed and 

ungrazed and the average of the model results used for 

all statistics. This was because anywhere from 30-70% 

of the fields may be grazed in any one year due to 

changes in cattle prices, precipitation and other factors.  

Grazing was assumed to be continuous for a 90 day 

period at various densities (Table 2). 

2.5. Riparian Exclusion (NRCS Codes 382, 516 

and 614) 

The fourth conservation practice implemented was 

riparian exclusion. This included the installation of 

fences (Code 382) to prevent animal entry and 

establish/reestablish riparian vegetation for filtering and 

stabilizing benefits.  It also included the installation of a 

pipeline (Code 516) and watering facility (Code 614) to 

convey water from a source to the livestock. These field 

sites were only modeled as grazed since fields without 

cattle would not need exclusion. This conservation 

practice was implemented individually or coupled with 

conservation tillage or a buffer.   

2.6. Riparian Forest Buffer (NRCS Code 391) 

The fifth conservation practice involves the 

maintaining of trees along a water body to reduce excess 

sediment, P and N to receiving water bodies. This 

practice also creates shade, provides habitat, increases 

carbon storage and restores riparian plant communities. 

This practice was implemented with riparian exclusion.  
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3. RESULTS  

The average annual reduction from the 238 field sites 
due to the implementation of the conservation practices 
was 4,200 kg of P per year (0.65 kg ha-1 year-1) and 3,000 

Mg of sediment per year (0.47 Mg ha−1 year−1). This 
corresponded to a nine percent average annual reduction 
in P load to Lake Overholser based on loads estimated by 
Storm et al. (2007).  The average percent reduction for 
each field site for the practice ‘conservation tillage’ was 
38% for sediment and 34% for P. This was comparable to 
the predicted results by Santhi et al. (2006) of a 29-41% 
reduction in sediment and 12-25% for P. The other 
practices were also comparable to Santhi et al. (2006) with 
a 76% reduction in P for ‘riparian buffer’, a 71-78% P 

reduction and 98-99% sediment reduction for the practices 
‘wheat to bermuda’ and ‘wheat to native range’.  

The majority of the total watershed reductions were 
from the ‘conservation tillage’ and ‘wheat to bermuda’ 
practices due to the large number of fields where these 
practices were implemented; however the largest 
reductions in P and sediment per unit area were achieved 
with the ‘riparian exclusion with buffer’ (i.e., cattle 
exclusion) and the ‘wheat to bermuda’ practices, 
respectively (Fig. 2). Although ‘riparian exclusion’ 
greatly reduced P loads to the stream, it did little for the 
predicted sediment load reductions (neglecting 
streambank erosion). On the other hand, ‘conservation 
tillage’ and ‘converting wheat to bermuda’ significantly 
reduced both P and sediment loads.  

 

 

 
Fig. 2. Unit area P and sediment load reduction per year summary for each conservation practice for the 238 fields sites based on 

TBET simulations (Rip = Riparian; Exe = Exclusion; Cons = Conservation; w = with; Exclusion = cattle exclusion) 
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Fig. 3. Average annual unit area total phosphorus and sediment load reductions from targeted areas, field sites with slopes greater 
than 2% and fields within 200 m of a waterbody 

 

Based on a Mann-Whitney ranked sum test, the median P 

reduction for the conservation practice ‘converting wheat 

to bermuda’ was not significantly greater than the median 

P reduction due to ‘conservation tillage’ at a p-value of 

0.05 (0.62 and 0.47 kg ha−1); however it had a 

significantly greater reduction (p>0.044) in sediment 

(0.41 and 0.29 Mg ha−1). Statistical analysis was not 

performed on the other conservation practices due to 

their small sampling size. 
The Mann-Whitney rank sum test was also utilized to 

analyze the effect of field slope and distance to a 
waterbody on P and sediment loads. Fields with a slope 
greater than 2% (112 fields) had a median P load 

reduction of 0.95 kg ha−1 and the load reductions were 
significantly greater than fields with a slope less than 2% 

(126 fields) with a reduction of 0.29 kg ha−1. The results 
were similar for sediment loads with a reduction of 0.76 

Mg ha−1 for the fields with a greater than a 2% slope and 

0.19 Mg ha−1 for the fields with less than a 2% slope. 
There were 99 fields within a distance of 200 m of a 
waterbody (based on 1: 24,000 USGS blue line streams) 
that contributed median P and sediment load reductions 

of 0.76 kg ha−1 and 0.41 Mg ha−1, respectively. These 
were significantly greater than the fields with distances 

greater than 200 m from a waterbody where the median 

P and sediment loads were reduced by 0.41 kg ha−1 and 

0.25 Mg ha−1, respectfully. 
Each had a p-value less than 0.005. Forty of the field 

sites where conservation practices were implemented 
were targeted areas by Storm et al. (2007). The median P 

reduction from these 44 field sites was 1.13 kg ha−1 

compared to 0.41 kg ha−1 for the non-targeted field sites. 
The median sediment loads were also significantly 

greater with a 0.88 Mg ha−1 reduction for the targeted 

areas and 0.24 Mg ha−1 for the remaining sites. Fifty field 
sites had both a slope greater identified as than 2% and 
were within 200 m of a waterbody. Of the 50 sites, 42% 
were also targeted areas. These sites had median P and 

sediment reductions of 1.38 kg ha−1 and 1.08 Mg ha−1, 
respectfully (Fig. 3). 

4. DISCUSSION 

When selecting conservation practice(s) to implement, 
their life expectancy and the total cost of P and sediment 
load reduction should be considered. For example, the cost 
per ha for ‘conservation tillage’ implementation was $52.24 
with a life expectancy of one year.   



Aaron R. Mittelstet et al. / American Journal of Environmental Science 8 (6) (2012) 605-614 

 
612 Science Publications

 
AJES 

 
 

 
 
Fig. 4. Conservation practice implementation cost for both the federal government and the farmer or rancher for total phosphorus and 

sediment load reduction in 2011 USA dollars 

 
For those practices with multiple years of life 
expectancy, the Net Present Value (NPV) was calculated 

using an interest rate of 5% (USDA-NRCS, 2011) and 
the Equation 1: 
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where, C denotes the cost, t the time period and i the 

interest rate (Boardman et al., 2011). For example, for 

the conservation practice ‘converting wheat to bermuda’ 

with a life expectancy of 10 years, the cost to the federal 

government was $207.44 ha−1 or $20.74 ha−1 for the first 

year and $12.74 ha−1 for the 10th year. The average cost 

over the ten year period was then utilized to calculate the 

cost per reduction per year. Based on this method, 

‘converting wheat to bermuda’ cost $65.52 per Mg of 

sediment reduced and $43.22 per kg of P. These were 

both significantly less than the load reductions for 

‘conservation tillage’ with a sediment reduction of 

$285.19 per Mg and $159.38 per kg of P. Statistics were 

not utilized with the remaining practices due to their 

small sample sizes. The most cost efficient practice for 

sediment reduction was ‘converting wheat to bermuda’. 

For P reduction, ‘converting wheat to bermuda’ and 

‘riparian exclusion’ were the most efficient. 
Finally, when deciding which conservation practice 

(s) to promote to the farmers and ranchers, it is important 
to consider the costs to both the landowner and the 
federal government (Fig. 4).  Typically farmers and 
ranchers are more willing to implement conservation 
practices that pay for themselves with increased crop 
yields or decreased inputs, are easy to install and 
maintain and do not alter their management 
requirements.  However, each conservation practice 
considered in this project requires some change in 
management.  Thus, the cost share rate must provide the 
incentive to implement the practice, or the practice must 
provide a reasonable cost savings or increased revenue. 
For example, to convert from conventional to 
conservation tillage, the additional capital investment 
requirement to purchase additional equipment and the 
added pesticide costs may be offset by reduced fertilizer 
and fuel costs and improved soil quality resulting in 
increased crop yields.  Based on the results from this 
project, the most cost efficient reduction of P to both the 
farmer and the federal government was ‘converting 
wheat to bermuda’ and ‘riparian exclusion’ and for 
sediment reduction the most cost effective conservation 
practice was ‘converting wheat to bermuda’. However, 
the potential reduction in economic returns from 
bermuda compared to wheat production should also be 
considered. In addition, the increased management 
requirements for riparian exclusion may also be a factor 
for some farmers and ranchers.  

4. CONCLUSION 

Agricultural fields contribute a large percentage of P 
and sediment to the nation’s waterways each year. 
Implementing conservation practices can aid in reducing 
these pollutant loads and thereby have the potential to 
increase the water quality in the receiving streams, 
rivers, reservoirs and lakes. This study modeled P and 
sediment loads from 238 field sites before and after the 
implementation of conservation practices. The total load 
reduction, load reduction per ha and the efficiency of 
each conservation practice were analyzed using TBET. 
The average annual reduction from the 238 field sites 
due to the implementation of the conservation practices 

was 4,200 kg of P per year (0.65 kg ha−1 year−1) and 

3,000 Mg of sediment per year (0.47 Mg ha−1 year−1). 
This corresponded to a nine percent annual reduction in 
P load to Lake Overholser based on loads estimated by 
Storm et al. (2007). Results from these model 
simulations demonstrated that the conservation practices 
‘riparian exclusion with buffer’ and ‘converting wheat to 
bermuda’ had the largest P and sediment reductions, 
respectively. The most cost efficient practices were 
‘riparian exclusion’ for P reduction and ‘converting 
wheat to bermuda’ for sediment reduction. 

Based on these results, an agency can determine 
where and what conservation practice they want to 
implement to get the largest reductions per dollar spent. 
For example, if an agency wanted to reduce the P load in 
the watershed by 20% per year it would cost $1,510,000 
if only ‘conservation tillage’ was implemented compared 
to $410,000 if only the ‘wheat to bermuda’ practice was 
implemented. This cost can be further reduced to around 
$214,000 if the practices were implemented in only 
target areas. By first considering the correct practice and 
location, a considerable amount of money can be saved 
while getting the same improvement in water quality. 

Typically farmers and ranchers are more willing to 
implement conservation practices that pay for themselves 
with increased crop or forage yields and/or decreased 
inputs, are easy to install and maintain and do not alter 
their management requirements. Therefore, the out of 
pocket cost and the impact on the management of their 
operation to implement a conservation practice must be 
considered when selecting conservation practices to 
recommend for cost share programs. However, at the same 
time the cost per mass of pollutant reduction must be a 
primary consideration to determine the cost share rates. 
TBET provided an easy to use and cost effective and 
efficient tool to provide information to help determine cost 
share rates for new water quality programs as well as 



Aaron R. Mittelstet et al. / American Journal of Environmental Science 8 (6) (2012) 605-614 

 
614 Science Publications

 
AJES 

providing the potential load reductions for actual 
conservation practices implemented.  
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