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Abstract: Assessing ecological functions is critical for determining the 
efficacy of soil and water conservation measures, especially during the 
development of power transmission and transformation projects. Efficient 
conservation practices are essential for reducing ecological effects and 
guaranteeing sustainable development. This research aims to create a resilient 
model, Ecological Function Prediction for Conservation Effectiveness (EFP-
CE) that will classify conservation effectiveness as either effective or 
ineffective. The goal is to improve prediction accuracy and offer actionable 
insights for better conservation tactics. The EFP-CE model combines many 
analytical methods: Missing values are imputed using Support Vector 
Regression (SVR) and outliers are detected and removed using Euclidean 
distance. Categorical variables are converted using label encoding, while 

numerical attributes are subjected to Min-Max normalization. An ensemble 
feature selection technique integrates filter and wrapper methods to find 
important predictors, while cluster-based oversampling fixes data imbalance. 
The dataset is separated into training and testing sets. A Bagged Gradient 
Boosting model is trained and assessed to forecast conservation efficiency. The 
proposed model was evaluated using a ten ecological function assessment 
attributes dataset. The Bagged Gradient Boosting model obtained 93% 
accuracy, 91% precision, 89% recall, an F1-score of 90%, and a Matthews 
Correlation Coefficient (MCC) of 82%, suggesting strong predictive 
effectiveness in evaluating conservation measures. The EFP-CE model 
demonstrates how machine learning methods can be integrated to improve the 
assessment of conservation measures. By enhancing prediction accuracy, this 

research presents helpful knowledge for policymakers and stakeholders 
participating in environmental safety during infrastructure projects, eventually 
adding to more sustainable construction procedures. 
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Introduction 

The growing need for infrastructure construction, 

especially power transmission and transformation 

projects, has created important environmental difficulties 

(Lian et al., 2022). These projects frequently disrupt 

natural ecosystems, causing soil erosion, poor water 

quality, and biodiversity loss (Wang et al., 2023). As a 

response to these difficulties, efficient soil and water 

conservation measures have become essential to reduce 

negative ecological effects (Chen et al., 2020). The 

assessment of ecological functions related to these 

conservation procedures is critical for calculating their 

efficacy and guaranteeing sustainable implementation 

(Bian et al., 2024). By evaluating the ecological results of 

conservation tactics, stakeholders can develop informed 

decisions that encourage environmental wellness while 

also promoting infrastructure growth (Li et al., 2020). 

Figure (1) depicts the interdependence of different 

ecological features, like vegetation cover, soil erosion 
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rates, and water quality indices, which all contribute to the 

evaluation of conservation efficiency. This figure 

emphasizes the intricacy of ecological systems and the 

requirement for an extensive assessment framework that 

incorporates various data sources and analytical methods. 

Important Elements of the Study 

This research concentrates on many key elements that 

are critical to comprehending the efficacy of soil and 

water conservation measures. Initially, the study 

highlights the importance of remote sensing data in 

assessing ecological functions. Remote sensing 

technology presents useful information about vegetation 

cover, land use alterations, and other key ecological 

parameters, allowing for a more precise evaluation of 

conservation tactics. Second, the research uses 

sophisticated machine-learning methods to improve 

predictive accuracy. Conventional evaluation techniques 

frequently fail to address the intricacies of ecological data, 

which can incorporate missing values, outliers, and high 

dimensionality. Using methods like Support Vector 

Regression (SVR) for data imputation and Bagged 

Gradient Boosting for classification, the research seeks to 

efficiently tackle these difficulties. 

Research Objective 

The main objective of this research is to create the 

Ecological Function Prediction for Conservation 

Effectiveness (EFP-CE) model, which will classify the 

efficacy of soil and water conservation measures as 

effective or ineffective. This classification is dependent 

on a comprehensive dataset that includes a variety of 

ecological features such as vegetation cover percentage, 

soil erosion rates, water quality indices, and more. By 

improving prediction accuracy and presenting useful 

knowledge, the EFP-CE model seeks to substantially 

assist in bettering conservation tactics in the construction 

of infrastructure. 

 

 
 
Fig. 1: Ecological attributes and their role in conservation 

assessment 

Evolution of Ecological Function Evaluation Methods 

Ecological function evaluation techniques have 
developed significantly over time, moving from 

conventional methods to more sophisticated methods 

based on remote sensing and machine learning. Previous 

research depended heavily on manual measurements and 

simple models, which lacked the precision required to 

capture the intricacies of ecological systems. Current 

technological advances, including the utilization of 

remote sensing data and machine learning algorithms, 

have substantially enhanced the precision and 

effectiveness of ecological evaluations (Jiao, 2024). The 

current study expands on these advances by incorporating 

satellite imagery and advanced machine learning methods 
such as Support Vector Regression (SVR) and Bagged 

Gradient Boosting, which improve prediction accuracy 

and manage data intricacies more effectively than 

previous models. This method overcomes previous 

constraints, providing a more comprehensive and 

dependable evaluation of conservation tactics. 

Advancements Over Previous Research and 

Methodological Improvements 

While prior studies investigated remote sensing for 
ecological surveillance, numerous investigations 

encountered difficulties in dealing with incomplete or 
noisy data, as well as high-dimensional datasets. Typical 
methods, like conventional regression techniques, 
struggled to produce precise outcomes when dealing with 
missing or anomalous data (Olawade et al., 2024). The 
current study enhances these techniques by using SVR for 
data imputation, which allows for the incorporation of 
missing data while maintaining accuracy. Furthermore, 
the use of Bagged Gradient Boosting improves the 
model's capacity to detect complicated trends, resulting in 
higher predictive precision. Unlike previous studies, 
which frequently lacked resilient data imputation and 

sophisticated classification methods, this study provides a 
more extensive and dependable methodology for 
assessing conservation tactics, leading to more precise 
and actionable predictions. 

Future Scope and Research Gaps 

Despite major improvements, there are still multiple 
research gaps in the area of ecological function 
assessment. Future research should concentrate on 
incorporating various data sources, like ground-level 
ecological data, socioeconomic factors, and sophisticated 
remote sensing imagery, to develop more extensive 
models (Castro-Magnani et al., 2021). Recent studies face 
difficulties in implementing these incorporated 
methodologies on a large scale, particularly in 
infrastructure development projects. Additionally, more 
study is needed on real-time data processing and dynamic 

ecological shifts over time (Sagan et al., 2020). The 
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current study fills these gaps by integrating various data 
types with sophisticated machine learning algorithms to 
enhance predictive performance. It lays the groundwork 
for future research that can improve these models, 
allowing decision-makers to execute more efficient and 
ecological conservation practices. 

Literature Review 

Table (1) summarizes important studies on 

ecological restoration and network construction, 

concentrating on methodologies, objectives, findings, 

and limitations. Each study provides distinctive 

insights into the utilization of remote sensing, machine 

learning, and ecological network theory to better 

comprehend and improve ecological health, 
connectivity, and land-use sustainability. This 

comparison emphasizes the variety of methods used 

across regions and ecological settings, highlighting 

both progress and remaining difficulties in ecological 

restoration. 

 
Table 1: Summary table 

Reference No Objective Methodology Result Limitations 

Zhai et al. (2022) Assess the ecological 
restoration impacts of 

the Yongding River 
Watershed in China 

Remote sensing assessment 
utilizing Ziyuan-3 (ZY-3) and 

Landsat images, land cover and 
Normalized Difference Vegetation 
Index (NDVI) data, examination of 
water resources and ecology 

Maintaining 
ecological water 

quantity, creating 
ecological corridors, 
and improving 
ecological function 

Constrained to a 
particular watershed; 

findings may not 
apply to other areas 

Yang et al. (2022) Establish an 
ecological network 
for environmental 
protection in 

Panzhou, Guizhou 
Province 

Combined method integrating 
ecological quality, Ecological 
Function Index (EFI), 
Morphological Spatial Pattern 

Analysis (MSPA), and circuit 
theory to find ecological sources 
and corridors 

Discovered 
ecological sources, 
corridors, pinch 
points, and barriers, 

which guide spatial 
planning 

Concentrate on 
ecological protection; 
constrained 
assessment of long-

term ecological 
effects 

Lu et al. (2022) Evaluate the 
evolution of 
ecological networks 
in the Wuhan urban 
agglomeration from 
2000-2020 

Circuit theory, centrality index, 
intricate network theory; spatial 
evaluation of ecological quality, 
function, and structure 

Identified the effect 
of land growth on 
ecological network 
fragmentation and 
proposed tactics for 
protecting ecological 

corridors 

Restricted to the 
Wuhan area; 
additional testing is 
required for other 
urban agglomerations 

Luo et al. (2024) Simulate land 
utilization and build 
an ecological network 
around Poyang Lake 
to promote 
sustainable growth 

Multi-Objective Programming 
(MOP) model, Non-dominated 
Sorting Genetic Algorithm II 
(NSGA-II), Patch-generating Land 
Use Simulation (PLUS) model, 
spatial evaluation through MSPA, 
Integrated Valuation of Ecosystem 

Services and Tradeoffs (InVEST) 
model, and intricate network 

Enhanced Ecological 
Networks (EN) in 
different situations, 
discovered important 
ecological regions 
and enhanced 
ecological resilience 

in networks 

Constrained to 
Poyang Lake; may 
not account for all 
ecological and 
socioeconomic 
variables in larger 
settings 

Liu et al. (2022) Evaluate land 
use/cover shift and 
ecosystem service 
value in Xi'an's urban 
ecological area 

Multi-resolution remote sensing 
with Landsat 8 Operational Land 
Imager (OLI) and GaoFen-2 (GF-2) 
satellite data; Land Use and Cover 
Change (LUCC) interpretation and 
Ecosystem Service Value (ESV) 

evaluation 

Documented 
important land 
utilization shifts, 
decreased ESV in 
urban ecological 
zones, and presented 

suggestions on 
ecological zone 
planning 

Evaluation is 
restricted to 2014-
2020; further data is 
required to evaluate 
long-term patterns 

Liu et al. (2023) Develop a 
quantitative model for 
long-term safety 
trends in the Qinling 
Mountains 

Machine learning, remote sensing, 
Geographic Information Systems 
(GIS), Analytic Hierarchy Process-
Principal Component Analysis 
(AHP-PCA), and Minimal 

Cumulative Resistance (MCR) 
model 

Created Ecological 
Security Patterns 
(ESPs), discovered 
important ecological 
sources and 

pathways, and 
addressed ecological 
protection in the 
Qinling Mountains 

Concentrated on 
ecological sensitivity; 
restricted 
consideration of 
human social 

dynamics that 
influence security 
trends 
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Li et al. (2021) Assess ecological 
stability in a semi-arid 
coal mining region 
over 16 years 

The coupling coordination degree 
method relies on the structural and 
functional state transition model 
(SFSTM) 

Ecological stability 
fluctuated, with 
mining operations as 
the dominant factor; 

presenting a 
structural threshold 
for early ecological 
indicators 

Region-specific; 
factors impacting 
ecological stability 
may vary in other 

mining settings 

Xiu et al. (2021) Evaluate the influence 
of ecological building 
on vegetation 
restoration in the 
Loess Plateau, China 

Remote sensing and geographic 
data technology are incorporated 
with ecosystem shifts and 
remaining models 

Ecological 
engineering resulted 
in an important rise in 
vegetation NDVI, 
with over 90% 

improvement in 
vegetation quality 

Restricted 
concentration on 
vegetation without 
evaluating the larger 
ecological effect of 

urban expansion 

Hao et al. (2022) Evaluate ecological 
restoration in rare-
earth mining regions 
utilizing Remote 
Sensing Ecological 
Index (RSEI) 

RSEI is computed from Landsat-8 
data for a multidimensional 
evaluation of ecological 
environments 

Enhanced ecological 
conditions through 
multimodal 
management; 
emphasized spatial 
variations in 

ecological responses 

Restricted 
applicability outside 
rare-earth mining; 
findings rely on the 
quality of RSEI and 
fragmentation 

management 
Xiao et al. (2022) Construct a regional 

ecological network for 
the Taishan region 
utilizing multi-
objective 
improvement 

The method combines 
morphological spatial trend 
evaluation, MCR, and gravity 
modeling 

Showed ecological 
network building 
linking natural 
resources across the 
area, emphasizing 
ecosystem integrity 

Regional uniqueness 
may restrict 
generalization to 
regions with various 
ecological systems 

 

Furthermore, several studies have contributed to the 

ecological evaluation of soil and water conservation in 

power transmission projects. Naeeni et al. (2023) 

improved hydraulic simulations to better comprehend 

soil-water interactions in construction. Rahmani 

Firozjaei et al. (2020); and Rahmani Firozjayi et al. 

(2019) concentrated on lateral pipe intake simulations, 

which helped to handle water flow and sediment 

transport in conservation efforts. Aghazadeh and 

Attarnejad (2024; 2020a-b) investigated desalination 

systems and sweetened seawater transportation, proposing 

environmentally friendly water management solutions for 

infrastructure projects. Firozjaei et al. (2024) used physical 

models and decision tree algorithms to evaluate discharge 

efficiency, whereas Hajebi et al. (2024) investigated 

bottom intake effectiveness for water conservation. 

Rahmani Firozjaei et al. (2024a) investigated bottom intake 

structures for desalination plants, offering insights into soil 

and water conservation in construction. Their research on 

submerged vanes (Rahmani Firozjaei et al., 2024b) 

enhanced intake effectiveness, assisting with soil erosion 

and water flow management. These researches contribute 

to superior conservation practices for environmental 

sustainability in infrastructure. 

The summarized studies show important growth in 

using sophisticated methods like remote sensing and 

machine learning to track, assess, and improve 

ecological restoration attempts. While each research 

provides useful methods and results, constraints like 

regional specificity, restricted temporal scope and 

insufficient investigation of fundamental drivers 

highlight the necessity of more extensive and adaptable 

methods. These gaps represent possibilities for proposed 

work to create models that incorporate wider ecological 

and socioeconomic factors to assist sustainable land and 

ecological network management. 

Materials and Methods 

To evaluate conservation efficiency, this study used 

the EcoConservation Project Impact Dataset (ECPID), 

which was compiled from field measurements, 

environmental tracking, and remote sensing data. 
Important attributes included vegetation cover, soil 

erosion rate, slope steepness, rainfall intensity, and water 

quality indices, with remote sensing models such as 

NDVI offering additional information. Data 

preprocessing techniques included SVR for missing 

values, Euclidean distance for outlier elimination, label 

encoding for categorical variables, and Min-Max scaling 

for numerical features. Feature selection incorporated 

filter and wrapper techniques, whereas cluster-based 

oversampling tackled class imbalances. The dataset, 

which was saved in CSV format, was safely handled using 

cloud backup and version control. Experiments were 
carried out on an Aspire 3 system equipped with an Intel 

Core i7-1260P (12-core, 2.1 GHz), 64 GB RAM, and 18 
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MB L3 cache for efficient computation. The development 

environment included JDK 1.8 and Apache NetBeans IDE 

15, which provided a solid foundation for creating and 

testing the Conservation_Effectiveness prediction model. 
This section proposes the Ecological Function 

Prediction for Conservation Effectiveness (EFP-CE) 

model, detailing each stage of data preprocessing, feature 

selection, and model training. The processes are described 

using equations for imputation, normalization, and feature 

selection, which explain how these stages aid in precisely 

forecasting conservation efficiency. Figure (2) depicts the 

research's flow diagram. 

Data Collection 

EcoConservation Project Impact Dataset (ECPID) was 
created using a combination of field measurements, 

environmental monitoring, and remote sensing methods. 

Project-specific data were collected by field teams, 

incorporating distinctive identifiers, conservation 

techniques, and environmental metrics such as vegetation 

cover percentage, soil erosion rate, slope steepness, rainfall 

intensity, and distance to water bodies. Furthermore, 

remote sensing presented water quality indices and 

environmental health scores through image processing, 

utilizing models such as NDVI for vegetation evaluation. 
 

 
 
Fig. 2: Research flow diagram 

These data points, collected from both field inspections and 
satellite imagery, were combined and cross-validated to 
ensure consistency. To guarantee data quality, any missing 
data was tackled using imputation and outliers were 
eliminated. The dataset was then structured in Comma-
Separated Values (CSV) format, saved on a safe server with 
cloud backup, and handled using version control to enable 

updates while retaining data integrity. This procedure 
produced an extensive, structured dataset for assessing 
conservation efficiency using machine learning. 

This dataset presents a structured view of different 

environmental and conservation-related features for 

construction projects, each with a distinct Project_ID. 
Important features comprise Vegetation_Cover_Percentage, 

which indicates vegetation coverage following conservation 

efforts, Soil_Erosion_Rate, which indicates soil loss per 

hectare per year and Water_Quality_Index, which measures 

nearby water quality. Slope_Steepness and 

Rainfall_Intensity provide information about the terrain and 

precipitation levels, whereas Distance_to_Water_Body 

shows proximity to water sources. The kind of 

Conservation_Measure_Used, like Grass Planting or 

Check Dams, is determined, as well as a 

Remote_Sensing_Image_Score for evaluating 
environmental health through image analysis. 

Construction_Area_Size describes the project's spatial 

extent. The target attribute, Conservation_Effectiveness, 

categorizes each project's influence as Effective or 

Ineffective, operating as the result variable for 

conservation effectiveness. 

Missing Data Imputation with Support Vector 

Regression (SVR) 

To tackle missing values in numerical features, 
Support Vector Regression (SVR) is used for imputation, 
which is a powerful method for capturing intricate 
relationships between variables without presuming a 
particular data distribution. SVR models each feature with 
missing values by considering it as the target and using 
the other features as predictors. Initially, a feature matrix 
X is defined by eliminating the features with missing 
values while retaining all other pertinent features. The 
feature matrix is then used to train an SVR model, which 
learns the relationships between the features and forecasts 
missing values. The trained model is used to estimate and 
replace missing values in each instance of the feature 
being imputed, yielding a dataset with complete 
numerical values. The prediction utilizing SVR can be 
represented mathematically as shown in Eq. (1): 
 
𝑥 = 𝑆𝑉𝑅(𝑋𝑡𝑟𝑎𝑖𝑛)  (1) 
 
where, 𝑥 represents the imputed values predicted for 
each missing instance. This imputation procedure is 

applied consecutively to each feature with missing 
data, guaranteeing accuracy and consistency 
throughout the dataset. 
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Outlier Detection and Removal Using Euclidean 

Distance 

Outliers are detected and removed utilizing Euclidean 
distance computations, with a focus on detecting data 

points that deviate substantially from their nearest 
neighbors. For each data point 𝑥𝑖 in the dataset, the 
Euclidean distance 𝑑 (𝑥𝑖, 𝑥𝑗) to other points is computed 
to determine its proximity to neighboring instances. A 
threshold 𝛿 is established, beyond which any point is 
regarded as an outlier. Particularly, if the computed 
distance 𝑑 (𝑥𝑖, 𝑥𝑗) surpasses the defined threshold, the 
point 𝑥𝑖 is marked as an outlier and flagged for 
elimination. This procedure guarantees that only 
representative data points remain in the dataset, 
improving the dependability of the following examines. 
The Euclidean distance between two points 𝑥𝑖 and 𝑥𝑗 is 

computed utilizing the Eq. (2): 
 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝑛
𝑘=1   (2) 

 
where, 𝑛 signifies the number of features in the dataset. 

By performing this technique, all recognized outliers are 

eliminated, resulting in a cleaner dataset that better 

reflects the fundamental patterns in the data. 

Encoding Categorical Variables 

Categorical variable encoding converts attributes such 
as Conservation_Measure_Used and Project_ID into 

numerical format by assigning each category a distinct 

integer label. A distinct integer 𝐿 is assigned to each 

unique category 𝑐 within 𝐶, enabling the incorporation of 

categorical data into machine learning models. The 

encoding procedure can be described by Eq. (3): 

 

𝐿(𝑐) = {0,1,2, … , 𝑘 − 1}  (3) 
 
Where 𝑘 represents the total number of distinct categories 

within the feature 𝐶. By transforming categorical data into 

numerical labels, this method guarantees compatibility 

with computational models while maintaining category 

distinctions. 

Min-Max Normalization 

Min-max normalization is used to scale numerical 

features within the range [0,1], guaranteeing that 

features with larger ranges don't have an undue impact 

on the model. For each numerical feature 𝑥, the 

normalization procedure modifies values using the 

minimum (𝑥𝑚𝑖𝑛) and maximum values (𝑥𝑚𝑎𝑥) within the 

feature, protecting relative variances while aligning data 

to a common scale. The normalized value for each 

feature 𝑥 is computed as Eq. (4): 
 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (4) 

This conversion keeps proportional relationships in 

the data and improves the model's effectiveness by 

removing scale-related biases across features. 

Ensemble Feature Selection 

The ensemble feature selection technique integrates 

filter and wrapper methods to find the most important 

attributes for predicting Conservation_Effectiveness, 

utilizing complementary advantages from both statistical 

and model-based methods. 

Filter-Based Selection (Mutual Information) 

The filter method employs Mutual Information (MI) to 

assess the relationship between each feature 𝑋 and the 

target variable 𝑌. MI is especially useful for ranking 

features based on how much they decrease uncertainty 

regarding the target when observed. The MI formula, 

shown in Eq. (5), computes the shared data by evaluating 

the joint probability p(x,y) of 𝑋 and 𝑌 alongside their 

marginal probabilities p(x), p(y): 
 

𝐼(𝑋; 𝑌) = ∑𝑥∈𝑋 ∑𝑦∈𝑌 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
  (5) 

 
Features with higher MI scores suggest greater 

predictive relevance for the target variable and are 
prioritized in the choosing process. This statistical ranking 

technique presents a basic comprehension of each 

feature's contribution to the prediction procedure before 

any model is used. 

Wrapper-Based Selection (Recursive Feature 

Elimination with SVM) 

The wrapper method combines Recursive Feature 

Elimination (RFE) with Support Vector Machines 

(SVM), involving iteratively training an SVM model and 

eliminating the least important attributes at each step. 

RFE identifies the features that contribute the most to 

model accuracy by continually improving the feature 

subset. Utilizing SVM as the base model presents a 

reliable measure of feature significance because SVM is 

extremely sensitive to informative features and ignores 

noise. This iterative removal continues until the optimum 

subset of features is determined, which provides a more 

concentrated set for enhanced model performance. 
The final feature subset is selected through majority 

voting, which incorporates the rankings from both the 

filter (Mutual Information) and wrapper (RFE) 

techniques. This ensemble method enables a balanced 

selection procedure, utilizing both statistical relevance 

and model-based performance metrics to determine an 

extensive and efficient feature set. 

Cluster-Based Oversampling for Imbalanced Data 

To tackle the problem of imbalanced data, cluster-
based oversampling is applied to the minority class. This 
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approach seeks to improve the representation of the 

minority class by creating synthetic samples, allowing for 

more balanced class distributions and better model 

training. The procedure starts with clustering the minority 

class utilizing K-means clustering. The model divides the 

data points into 𝑘 clusters, each represented by a centroid. 

Clustering assists find the fundamental structure of the 

minority class by grouping similar instances. The 

selection of 𝑘 is crucial because it impacts the number of 

synthetic samples created. 

Once the clusters have been established, synthetic 
samples are created for each cluster using the centroid. 
This entails adding new data points that are close to the 
centroid of each cluster, efficiently augmenting the 
minority class while introducing minimal noise. These 
synthetic samples are usually created by adding small 
random perturbations to the centroid, guaranteeing that 

the new instances retain the original data distribution 
within that cluster. Lastly, synthetic samples are 
introduced into the dataset to obtain a more balanced 
representation of both classes. This cluster-based method 
not only increases the number of minority class samples 
but also maintains the data's local structure, resulting in 
better model efficiency and generalization abilities. 
Cluster-based oversampling contributes to a more 
equitable learning procedure by efficiently raising the 
minority class size. This reduces the risk of bias towards 
the majority class. 

Dataset Split  

The dataset is separated into training and testing sets 
to make model creation and assessment easier. This split 
is done in an 80:20 ratio, which means that 80% of the 
data is used for training and the remaining 20% is reserved 
for testing. The 80:20 split ratio for splitting a dataset into 

training and testing sets is broadly used in machine 
learning because of its balanced strategy to model training 
and assessment. Assigning 80% of the data to training 
guarantees that the model has sufficient instances to learn 
the fundamental trends and relationships, which is critical 
for developing a reliable predictive model. The remaining 
20% is set aside for testing, which offers a suitably big 
and independent dataset to assess the model's efficacy on 
previously unseen data, revealing insights into its 
generalization capacity. This ratio assists in striking a 
balance between having sufficient data for correct model 
training and maintaining a resilient testing set to avoid 

overfitting and evaluate the model's efficacy in 
forecasting real-world results. Additionally, the 80:20 
split is a proven approach that has been used effectively 
in a variety of research, guaranteeing robust and 
consistent assessment of machine learning models. 

Bagged Gradient Boosting Model 

The Bagged Gradient Boosting method is used as the 
main classification model to forecast 

Conservation_Effectiveness, taking advantage of ensemble 
techniques' advantages to enhance accuracy and resilience. 

This approach comprises training numerous gradient-
boosting models on bootstrapped subsets of the training 

data, which improves the model's capacity to generalize by 
decreasing variance by averaging the predictions from 

different models. Hyperparameter tuning is used to further 
enhance the Bagged Gradient Boosting model's efficiency. 

To attain optimum outcomes, important parameters are 
fine-tuned. These include the number of estimators 𝑁, 

which decides how numerous individual models will be 
incorporated in the ensemble; the learning rate 𝛼, which 

controls the contribution of each model to the overall 
prediction; and the maximum depth 𝑑, which limits the 

depth of each tree, thus controlling overfitting and 
intricacy. Eq. (6) mathematically expresses the 

fundamental idea of gradient boosting: 
 
𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) +  ℎ𝑚(𝑥)  (6) 
 

In this equation, 𝐹𝑚(𝑥)  signifies the cumulative 

prediction from the first 𝑚 models, 𝐹𝑚−1(𝑥) denotes the 

cumulative prediction from the first 𝑚-1 models, while 

ℎ𝑚(𝑥)  represents the 𝑚th base model. By periodically 

adding the weighted predictions of the base models, the 

Bagged Gradient Boosting technique improves predictive 

accuracy while retaining the model's capacity to capture 

intricate relationships within the dataset. This structured 

training procedure is crucial for developing a strong model 

able to precisely predict the efficiency of conservation 

measures depending on the presented features. 

Pseudo code 1 denotes the proposed Ecological Function 
Prediction for Conservation Effectiveness (EFP-CE) model.  
 

Pseudo code 1: Ecological Function Prediction for 
Conservation Effectiveness (EFP-CE) 

For each numerical feature with missing values: 
 Execute Support Vector Regression (SVR) to predict 

and impute missing entries 
Compute Euclidean distance between data points 

Eliminate points with distances surpassing a set threshold 
Transform categorical features into numerical labels 
Implement Min-Max Normalization to normalize features 
between 0 to 1 
Utilize filter techniques (Mutual Information) and wrapper 
techniques (RFE with SVM). 
Choose features using majority voting from ensemble rankings 
Perform cluster-based oversampling on minority classes 
Separate dataset into 80% training set and 20% testing set 

Employ Bagged Gradient Boosting on the training set using 
hyperparameter tuning 
Predict Conservation_Effectiveness on the testing set 

 

Results and Discussion 

The performance evaluation was carried out on an 
Aspire 3 system outfitted with a high-performance Intel 
configuration that was designed to manage intensive 
computational tasks and big datasets. The system features 
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an Intel Core i7-1260P processor with a 12-core 
architecture that balances processing power and energy 
efficiency. The system, which runs at 2.1 GHz and has 64 
GB of RAM, can handle intricate algorithms and datasets 
with ease. The 18 MB L3 cache improves data retrieval 
speeds, increasing the entire system's efficiency. 

JDK 1.8 was utilized for software development, along 

with Apache NetBeans IDE 15, to create a stable 
environment for coding, debugging, and testing 
algorithms. This configuration enabled smooth interaction 
with the system's resources and allowed for efficient 
performance evaluation. Table (2) shows the details of the 
experimental setup. 

Comparative Analysis 

To evaluate the effectiveness of the EFP-CE model, it 
was compared to four famous classifiers: Naive Bayes, 
JRip, IBk, and J48. The efficacy of each classifier was 
assessed using five important metrics: Accuracy, 
precision, recall, F1-score, and Matthews Correlation 
Coefficient (MCC). The formula for these metrics is 
outlined as follows: Accuracy is the percentage of 
accurate predictions among all predictions made: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (7) 

 
where, TP = True Positives; TN = True Negatives; FP = 

False Positives and FN = False Negatives 

Precision denotes the accuracy of positive predictions: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (8) 

 
A higher precision indicates fewer false positives. 

Recall, also called sensitivity, quantifies the model's 
capacity to identify all pertinent cases (true positives): 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (9) 

 
A higher recall indicates fewer false negatives. The 

F1-score is the harmonic mean of precision and recall, 
offering a balance between the two: 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (10) 

 
The Matthews Correlation Coefficient (MCC) 

assesses the effectiveness of binary classifications by 

taking into account all four confusion matrix categories: 
 

𝑀𝐶𝐶 =  
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (11) 

 
MCC values range from -1 to 1, with 1 representing a 

perfect prediction. Table (3) compares the performance 
metrics of each classifier. 

As shown in Table (3), the EFP-CE model surpassed 
all other classifiers on all five metrics. With an accuracy 
of 93%, the model showed better predictive performance, 
demonstrating its ability to accurately classify data. This 
high level of accuracy exceeds that of Naive Bayes, JRip, 

IBk, and J48, which is critical for applications that require 
consistent results. Additionally, Fig. (3) displays the 
accuracy comparison. 

Figure (3) shows that the EFP-CE model outperforms 

all other classifiers in terms of accuracy, with a remarkable 

93%. This better accuracy is due to the model's 

sophisticated feature selection procedure and capacity to 

use ensemble methods, which improve its generalization 

abilities. The enhanced management of class imbalance 

guarantees that the model correctly detects minority class 

instances, improving overall accuracy. Additionally, 
Fig. (4) displays the precision comparison. 
 

Table 2: Experimental setup 

Component Specification 

Processor Model Intel Core i7-1260P 
CPU Type 12-Core Architecture 

Brand Aspire 3 
Memory (RAM) 64 GB 
Clock Speed 2.1 GHz 
Operating System Windows 11 Home 
L3 Cache Size 18 MB 
JDK Version 1.8 
IDE Apache NetBeans IDE 15 

 
Table 3: Performance metrics comparison 

Model 

Accuracy 

(%) 

Precisio

n (%) 

Recall 

(%) 

F1-Score 

(%) 

MCC 

(%) 

Naive 

Bayes 

79 76 81 78 57 

JRip 82 80 81 81 62 

IBk 84 82 86 84 67 

J48 86 84 88 86 71 

EFP-CE 93 91 89 90 82 

 

 
 
Fig. 3: Accuracy comparison 
 

 
 
Fig. 4: Precision comparison 
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The EFP-CE model also leads in precision, scoring 

91%. This high precision demonstrates that the model is 

capable of generating accurate positive predictions, 

substantially lowering the number of false positives. The 

EFP-CE model's ensemble method and rigorous feature 

selection contribute to its precision by training only the 

most pertinent features, reducing noise, and improving 

prediction dependability. Additionally, Fig. (5) displays 

the recall comparison. 

In terms of recall, the EFP-CE model outperformed 

all other classifiers, scoring 89 percent. This high recall 

demonstrates that the model correctly detects a large 

proportion of true positive cases, decreasing false 

negatives. The model's capacity to capture minority 

class instances is further supported by techniques like 

cluster-based oversampling that effectively manage 

class imbalances. Additionally, Fig. (6) demonstrates 

the F1-Score Comparison. 

The EFP-CE model also performs well in the F1-score, 

earning a score of 90%. This metric shows the model's 

balanced effectiveness in terms of precision and recall, 

verifying its dependability across a variety of scenarios. 

The EFP-CE model's ensemble approach efficiently 

reduces the trade-offs between precision and recall that 

are common in other classifier systems. Additionally, 

Fig. (7) demonstrates the MCC Comparison. 
 

 
 
Fig. 5: Recall comparison 

 

 
 
Fig. 6: F1-score comparison 

 
 

Fig. 7: MCC comparison 

 

Lastly, the EFP-CE model obtains the highest Matthews 

correlation coefficient of 82%, suggesting high 

classification accuracy. This metric shows that the model 

executes well not only on positive predictions but also on 

negative predictions. The high MCC reflects the model's 

resilience and overall efficiency in differentiating between 

classes, rendering it a better option for the task at hand. 

This research substantially enhances previous research 

by tackling important constraints in model efficiency and 

making novel contributions to boost accuracy and 

dependability. While previous models like Naive Bayes, 

JRip, IBk, and J48 attained mild success, with accuracy 

ranging from 79-86% and Matthews Correlation 

Coefficient (MCC) values ranging from 57-71%, they fell 

short of providing consistent precision, recall, and F1-

scores, which are required for effective assessment. The 

proposed model, EFP-CE, surpasses these benchmarks 

with 93% accuracy and 82% MCC, showing better 

predictive power and model stability. Additionally, EFP-

CE shows balanced enhancements in all important metrics 

precision (91%), recall (89%), and F1-score (90%), 

demonstrating its capacity to offer overall performance 

gains. These improvements emphasize the research's 

novel contributions to enhancing ecological assessment 

techniques and establishing a novel standard for tackling 

intricate issues in soil and water conservation for power 

transmission projects. 

Overall, the comparative analysis shows that the EFP-

CE model surpasses conventional classifiers on all metrics. 

Its sophisticated techniques for feature selection and 

handling imbalanced data help to its outstanding predictive 

efficiency, establishing it as the top model in this 

assessment. The model's ability for real-world conservation 

effectiveness evaluations is highlighted by its high 

accuracy, precision, recall, F1-score, and MCC scores. 

Conclusion 

This study proposed the EFP-CE model as an 

innovative method for predicting conservation efficiency, 
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which outperformed conventional classifiers such as 

Naive Bayes, JRip, IBk, and J48. Using advanced feature 

selection techniques and tackling class imbalance, the 

EFP-CE model outperformed all important metrics, 

containing accuracy (93%), precision (91%), recall 

(89%), F1-score (90%), and MCC (82%). These findings 

demonstrate the model's resilience and dependability in 

evaluating complex conservation datasets. In contrast to 

prior research, where performance metrics were limited 

by restrictions in precision and consistency, the EFP-CE 

model establishes a novel standard for conservation data 

evaluation, providing a more effective and dependable 

tool for researchers and practitioners. The results 

highlight the ability of novel machine learning methods to 

transform decision-making procedures in ecological 

conservation, paving the manner for more efficient 

ecological practices. 

Study Limitations and Future Research  

Despite its promising outcomes, the EFP-CE model 
has some drawbacks. Its efficacy is impacted by the 
excellence and volume of input data and potential biases 
in data gathering can affect model predictions. 
Furthermore, the model's intricacy may limit 
interpretability, rendering it difficult for non-technical 
stakeholders to comprehend its results. Future research 
could overcome these drawbacks by incorporating 
explainable AI methods that improve transparency and 
usability. Extending the model's application to other 

domains, like healthcare, urban planning, and precision 
agriculture, could reveal important information about its 
flexibility and scalability. Furthermore, investigating 
hybrid models that integrate EFP-CE with deep learning 
methods or integrating real-time data streams could also 
improve its predictive capacities and widen its usefulness 
across various disciplines. 
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