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Abstract: Landslide Susceptibility Maps (LSM) are useful for both 
development planning and disaster management. Currently, LSMs are 

primarily created using GIS and remote sensing techniques. Landslide 

susceptibility mapping relies heavily on selecting and weighting causative 

elements based on their impact on slope instability. GIS is useful for 
calculating static parameters such as slope and aspect, as well as generating 

landslide susceptibility maps. The different primary data were collected for 

Kinematic analysis of the study area. The lesser Himalayan rocks are 
represented by phyllites, pelitic schists, white quartzite, meta carbonates, 

graphitic schists, laminated quartzite, and garnetiferous schists. This study 

serves in preparing LSM covering 4 wards of Panauti municipality known as 

the Nagi Dada area. LSM can produced using various methods using 
qualitative, hierarchical, and quantitative methods. In this study, 2 methods 

Analytical Hierarchical Process (AHP) method and the Frequency Ratio (FR) 

method are used and the efficacy of both methods is compared. The resulting 
insights hold the potential to inform evidence-based decision-making, 

empower stakeholders, and pave the way for sustainable urban planning in 

the Panauti area. The study area is classified as a tourist area with parks, 

gardens, paragliding, and further infrastructure development underway. The 
registered landslide areas in the area are ward number 4, 8, 3, and 12 of the 

Panauti municipality. In this situation, landslide susceptibility mapping is 

crucial because it identifies the area that is susceptible to landslides by 
ranging from low to high chances of a landslide occurring in the given area. 

The landslide susceptibility would serve as the foundation for the Panauti 

municipality's future planning. ArcGIS Pro is used for calculating static 
parameters such as slope and aspect, as well as generating landslide 

susceptibility maps. All together 10 causative factors i.e., slope, slope aspect, 

curvature, LULC, lithology, distance from River, distance from drainage, 

distance from the fault, TWI, and precipitation are used in producing LSM. 
The LSM map was categorized into 5 susceptible indexes i.e., very high, 

high, moderate, low, and very low. The area is susceptible places for 

landslides and the scenario of mitigation measure failure was also observed 
in the area. Kinematics analysis was done in the major three landslides and 

the failure chances in percentage were calculated. A success rate of 85.2% 

was achieved with LSM using the FR method whereas 75.4% was achieved 

using the AHP method which is of very good accuracy. 
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Introduction 

Landslides, one of the biggest natural hazards, 

cause yearly property damage in direct and indirect 

expenses. Landslides are the movement of a mass of 

rock, debris, or earth down a slope (Cruden, 1991). 

Landslides can move in several ways, including 

flowing, sliding, toppling, or falling. In general, 
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landslides are caused by a combination of geo-

environmental factors, i.e., many of which include 2 or 

more different movement types (Varnes, 1978). 

Landslides have frequently caused property and 

infrastructure damage and occasionally resulted in 

human losses. According to literature, between 1990 

and 2005, landslides accounted for 5% of all natural 

hazards worldwide. These numbers will likely increase, 

in the future due to seismic activities, climate change-

induced rainfall levels, and human activity on fragile 

slopes (Kanungo et al., 2009). In mountainous areas 

across the world, landslides have taken countless lives 

and resulted in enormous financial damages. Up to 

100,000 people have died in the worst landslides (Li, 

1992). The Nepal Himalaya is the longest section of the 

Himalayas. It occupies the central position and extends 

all over Nepal. The location of the study area is given 

in the map as shown in Fig. (1). 

Panauti is a relatively small municipality in the 

Kavrepalanchok district of the Bagmati zone of the 

central development region. The municipality lies 32 

km east of Kathmandu and immediately south of 

Banepa municipality. The main source of income here 

is agriculture. The study area is comprised of 4 wards 

within the Panauti municipality, with spatial extent 

between 27°32’-27°38’ north latitude and 85°24’-

85°30’ east longitude. The Kavre area's rocks can be 

classified into 2 types: Crystalline high-grade 

metasedimentary rocks and Kathmandu Nappe 

(complex) (Stöcklin and Bhattarai, 1997). Similarly, 

while studying the geology of the Kavre area the 

Bhimphedi group, divided by the Chak-Rosi thrust and 

the Benighted slate of the upper Nuwakot group 

comprise the lithological units dispersed throughout 

the research region. The lithological units constitute the 

eastern closure of the NW-SE and dip southward. The 

primary joint sets in the rock masses are 3-4, including 

the joint parallel to foliation. The discontinuity 

characteristics show that the rocks have a smooth to 

rough surface with a soft filling aperture, indicating 

they are blocky. The rock bulk is rigid, indurated, and 

almost entirely new. Toppling failures, plane failures, 

and stable and unstable wedges all affect the slopes 

(Paudel and Tamrakar, 2013). The primary causes of 

large-scale landslides on central Nepal's highways are 

the significant hydrothermal alteration in the lesser 

Himalayas during the Main Central Thrust (MCT) and, 

consequently, clay mineralization in sliding zones of 

large-scale landslides. Additionally, this study 

indicates that slope failure in the lesser Himalayas of 

Nepal during the monsoon is primarily caused by large-

scale landslides (Hasegawa et al., 2009). The local 

tectonic activity has caused these rocks to fracture and 

fold. The region's tectonic activity has resulted in 

folding and faulting. Sedimentary rocks, such as 

sandstones, siltstones, and shales, were deposited 

during the Jurassic and Cretaceous periods. 

Metamorphic rocks, such as gneisses, granites, and 

schists, are products of the intense heat and pressure that 

go into the development of mountains (Stöcklin and 

Bhattarai, 1997). The area is prone to landslides and 

rock falls because of the steep terrain and deteriorating 

rocks. In 2014, there was a landslide in the nearby 

Sindhupalchowk area that caused substantial damage 

and killed several people (Van Der Geest and 

Schindler, 2016). With the kinematics of past 

landslides in an area, geologists and engineers can 

create hazard maps that delineate zones prone to 

landslide activity. These maps serve as valuable tools 

for land-use planning, infrastructure design, and 

emergency preparedness (Rusydy et al., 2019). 

Additionally, the variety of conditioning factors in 

slope units is ignored, which leads to the 

incompleteness of the input variables in LSP modeling. 

In this study, LSP modeling is constructed from the 

slope units retrieved by the MSS approach using the 

internal variations of conditioning factors inside a 

slope unit, which are represented by the descriptive 

statistics aspects of mean, standard deviation, and 

range (Chang et al., 2023). This study's large-scale 

geological mapping and site-specific kinematic 

analyses in various spatial domains confirmed that, 

despite the competent lithology (quartz, gneiss, and 

quartzite) within this 180 m stretch, there is a high 

likelihood of both plane and wedge failures due to gentler 

and unfavorably oriented planar discontinuities 

concerning the available resources (Ghosh et al., 2014). 

 

 
 

Fig. 1: Location map of the study area 
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Materials and Methods 

Spatial datasets play a pivotal role in advancing the 

accuracy and efficacy of landslide susceptibility mapping 

through the integration of the AHP method and the FR 

method. In the AHP method, spatial data sets are 

instrumental in delineating criteria such as slope, land 

cover, and lithology, which are crucial factors influencing 

landslide occurrences. These datasets enable the 

quantification of pairwise comparisons and the 

assignment of weights to each criterion, providing a 

geospatial foundation for decision-makers (Saaty and 

Vargas, 2001). Similarly, in the FR method, spatial 

datasets are fundamental for identifying conditioning 

factors associated with landslide occurrences. The 

synergy between spatial datasets and both AHP and FR 

methods fosters a comprehensive understanding of 

landslide susceptibility, thereby supporting informed 

decision-making and proactive measures for landslide risk 

mitigation and management (Mondal and Maiti, 2013). 

Grid Size and Coordinate System Projection Used 

In this study, all the datasets required for the study area 

were maintained at 12.5 m of resolution. DEM and its 

derivatives, distance raster datasets, geology, 

precipitation, and landslides inventory polygon datasets 

were maintained to 12.5 m resolution by applying the 

resampling tool available in ArcGIS Pro. 

Image Processing 

Before compositing and mosaicking, sentinel-2 level-2 

A bands were reduced to the area of interest, resampled to 

12.5 m pixels using ArcGIS Pro, and saved in ENVI 

format. Resampled images were composited into a single 

image using ArcGIS Pro software. Next, the composited 

band picture from the preceding procedure was utilized to 

mosaic 2 image layers into a single continuous image. 

Two DEM Image layers were overlaid to provide 

continuous DEM images for the study region.  

Data Processing 

Clipping and masking is the process of pulling data 

from a specified area of interest. The clip function aligns 

the scope of one geographical layer with another. All 

datasets in this study were cut to cover a larger study 

area. Rasterization is the process of turning vector data 

(points, lines, and polygons) into raster form (pixels). 

The polyline and polygon conversion tool is essential for 

converting these data types to raster. At present, the 

landslide factors and landslide files were rasterized 

using the polygon to raster tool, with a cell size of 12.5 

m. The raster object is created through resampling, 

which adjusts the spatial resolution of the input raster by 

developing rules for aggregating or interpolating data 

over new pixel sizes. This procedure is referred to as 

resampling. ArcGIS Pro has 4 types of resampling 

functions: Nearest neighbor, majority algorithm, bilinear 

interpolation/bilinear interpolation plus, and cubic 

convolution. This study resampled DEM and 

precipitation datasets using closest neighbor resampling, 

with output cell size set to sentinel 2 level 2 A (12.5 m). 

The fastest interpolation technique is nearest neighbor, 

which preserves cell beginning values and is suitable for 

discontinuous data such as land use classification 

(Yalcin, 2007). The spatial analyst toolbox is used for 

reclassifying raster data. This tool allows users to 

modify the values of a raster dataset based on specified 

ranges or criteria. For the landslide susceptibility 

mapping, a total of 10 factors are used after reading 

multiple papers and fieldwork i.e. Slope, slope aspect, 

curvature, stream, road, rainfall, lithology, TWI, LULC, 

and distance from the fault. 

Kinematic Analysis Using DIPS 

For the kinematic analysis of slope failure data were 

collected from joints of exposure of landslide in the field 

and the failure analysis is done using DIPS software. 

Gather geological and geotechnical data related to the 

slope. This includes information on joint orientations, 

spacing, persistence, roughness, and any other relevant 

geological features. The joint orientation data (dip and dip 

direction) into DIPS. This data is typically collected in the 

field using a compass. To calculate the failure; joint 

datasets (joints having similar orientations) are collected. 

The field data are given as input data to dips and it 

analyzes the data giving the failure percentage. 

Analytical Hierarchy Method 

The Analytic Hierarchy Process (AHP) is a systematic 

and structured decision-making method that has found 

application in landslide susceptibility mapping. AHP 

involves the decomposition of a complex decision 

problem into a hierarchy of criteria and alternatives, 

allowing for a comprehensive and organized assessment. 

In landslide susceptibility mapping, various factors such 

as slope, land cover, soil type, and precipitation contribute 

to the overall vulnerability of an area to landslides 

(Mondal and Maiti, 2013). 

The landslide susceptibility map was derived using the 

weighted overlay method and categorized into 5 susceptible 

classes namely, Very Low (VL), Low (L), Moderate (M), 

and High (H) (Kumar and Anbalagan, 2016). This method 

depends on the weightage given by expertise according to 

Tables (1-2), in this research the possible weightage is given 

by studying multiple literatures, field work, and 

consultation with expertise. 
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Table 1: Matrix of pairwise comparison 

C A1 A2 … An 

A1 a11 a12 … a1n 
A2 a21 a22 … a2n 
: : : … : 
Am am1 am2 … amn 

 
Table 2: The basic scale of preference between two variables for 

a pairwise comparison matrix in the AHP method 
(Saaty and Vargas, 2001) 

Importance Degree of 

rank preference Explanation 

1 Equal importance Both criteria provide 

  equal contributions to 

  the objective 

3 Moderately Experienced and 

 importance of judgment marginally 

 one over another to somewhat prefer one 

  set of criteria 

  over another 

5 Strongly Judgment and 

 importance experience essentially 

  favor one criterion 

  over another 

7 Very strongly Experience and 

 importance judgments are strongly 

  favored over another 

  and its dominance is 

  shown in practice 

9 Extremely The evidence favoring 

 importance of one criterion over 

  another is the highest 

  degree probable of 

  an affirmation 

2, 4, 6, and 8 Intermediate Used to represent 

 values between compromising between 

 two adjacent preferences in 

 judgments weight 1, 3, 5, 7 and 9 

Reciprocals are Opposites Used for inverse 

  comparison 

 

In this model, the consistency index, known as the 

Ratio of Consistency (CR), is for indicating the 

probability that the matrix judgments were generated 

randomly. The consistency ratio is stated as valid if it is 

less or equal to 10% (Saaty and Vargas, 2001): 

 

𝐶𝑅 = 𝐶𝐼/𝑅𝐼  (1) 

 

Here RI stands for random index which is given in 

Table 4 whereas CI is calculated by the given formula: 

 

𝐶𝐼 = (𝜆 𝑚𝑎𝑥 − 𝑛)/(𝑛 − 1)  (2) 

 

where, λ max is the principal or largest eigenvalue of the 

matrix and could be calculated easily from the matrix and 

n is the matrix number (Saaty and Vargas, 2001). 

Landslide Susceptibility Index from AHP Method 

The weighting/rating values for all contributing 
factors and factors' classes were calculated in the AHP 

Excel sheet. From the literature review, the general equation 

for creating an LSI map is shown below (Kumar and 

Anbalagan, 2016): 
 
𝐿𝑆𝐼 = ∑ 𝑅𝑖𝑛

𝑖=1 ∗ 𝑊𝑖 (3) 
 
where, 
 
LSI = Landslide susceptibility index  

Ri = Rating class of each layer 

Wi = Weights of each landslide causative factor 

In this research, the (Eq. 3) formula was applied for 

generating an LSI map by using the weighted overlay 

function available in ArcGIS Pro. Later on, the 

susceptible classes were divided into 5 different classes 

i.e., Very high, high, Moderate, low, and very low 

(Hasekioğulları and Ercanoglu, 2012) 

Frequency Ratio Model 

The Frequency Ratio (FR) method is a statistical 

technique commonly employed in landslide susceptibility 

mapping. This method relies on analyzing the spatial 

distribution of landslides about different conditioning 

factors to assess the likelihood of future landslide 

occurrences. The key premise behind the frequency ratio 

method is that certain environmental variables or factors 

contribute more significantly to landslide susceptibility 

(Yalcin et al., 2011). To apply the frequency ratio method, 

various conditioning factors such as slope, land cover, 

lithology, and rainfall are considered. The process 

involves calculating the ratio of the frequency of 

landslides within a specific class of each factor to the 

overall frequency of landslides in the study area. The 

resulting ratios provide a measure of the relative 

importance of each factor in influencing landslide 

occurrence. For instance, if areas with a certain slope 

range experience landslides more frequently compared to 

the overall average, the frequency ratio for that slope class 

would be greater than 1, indicating a higher susceptibility. 

Conversely, a frequency ratio of less than 1 implies a 

lower susceptibility (Ehret et al., 2010). Frequency Ratio 

(FR) is one of the bi-variate statistical approaches of 

landslide susceptibility assessment which is based on 

observed relationships between landslide distribution and 

each causative factor related to landslides. This technique 

can be used to determine the spatial correlation between 

the site of landslides and the explanatory elements for 

them (Yalcin, 2008). Based on their association with the 

occurrence of landslides, the FR for each subclass of 

individual causative factor is determined. The frequency 

of the sub-class of each causative factor can be calculated 

by using the following formula (Ehret et al., 2010): 
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𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜𝑛 =  (𝑀𝑖/𝑀)(𝑁𝑖/𝑁) (4) 

 

where, 

 

Mi = Number of pixels with landslides for each 

subclass conditioning factor, M = total number of 

landslides pixels in the study area 

Ni = Number of pixels in the subclass area of each 

factor and N = total number of pixels in the 

study area 

 

Landslide Susceptibility Index from Frequency Method 

The landslide susceptibility index was computed by 

adding up the raster datasets generated from the 

application of frequency ratio based on Eq. (4): 

 

𝐿𝑆𝐼 = 𝐹𝑟1 + 𝐹𝑟2 + 𝐹𝑟3+. . . +𝐹𝑟𝑛  (5) 

 

where, LSI = landslide susceptibility index, Fr = rating of 

each factor's class. 

After that using raster calculator tool in ArcGIS Pro 

was used to generate the landslide susceptibility index. 

LSI maps into 5 various landslide susceptibility 

categories: Very low, low, moderate, high, and very high 

(El Jazouli et al., 2019). 

Validation 

The Receiver operating characteristic (Roc) curve is 

a useful tool in the field of landslide susceptibility 

mapping since it provides a quantitative assessment of 

the model's ability to predict landslides. This curve aids 

in determining the optimal balance between accurately 

predicting landslide occurrences and reducing false 

alarms. The roc curve can be used by researchers to 

assess the susceptibility model's dependability, 

optimize parameter values, and improve overall 

forecast accuracy. 

Therefore, the ROC curve serves as a crucial tool in 

guiding the development and validation of landslide 

susceptibility mapping models, contributing to more 

effective and reliable hazard assessment and mitigation 

strategies (Hoo et al., 2017). 

Table 3 gives the categorization of the ROC curve on 

the basis of the value obtained. 

 
Table 3: The categorization of ROC curve value 

AU-ROC curve value Category 

0.9-1.0 Excellent 

0.8-0.9 Very good 

0.8-0.7 Good 

0.7-0.6 Satisfactory 

0.6-0.5 Poor 

Results 

From the landslide inventory map, the location of the 

landslide is traced that the maximum landslide is near the 

built-up areas the reason may be road construction, 

mining, etc. From the landslide location data sets, the 

training and testing data are separated for the validation 

process the landslide inventory map representing training 

and testing data is shown in Fig. (2). 

Similarly, the polygon datasets of landslide in Fig. (3) 

give the total area of the study area covered by landslide. 

From the field investigation and landslide inventory map 

from Google Earth. The inventory, the area of the 

landslide was found to be ranged from 9.2-44446.34 m2. 

More landslide was found in built-up areas and near road 

areas however, various triggering factors have equal 

importance in inducing landslides. 

 

 
 
Fig. 2: Map indicating testing and training dataset of the study area 

 

 
 

Fig. 3: Map after digitizing landslide area in Polygon 
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Kinematics Analysis 

For kinematics analysis, three major areas of landslide 
are taken from each landslide 50-60 data is collected using 

a Brunton compass, and the DIPS Software is used which 

provides us with the chances of failure in the given area 

so as to provide suggestions and mitigation measures. In 

the field study the major landslide area of concern is taken 

as shown in Fig. (4). The results of Kinematic analysis of 

the study area using DIPS software are given in Fig. (4). 

Kinematic analysis aims to identify critical failure 

surfaces within the landslide mass. These surfaces represent 

the pathways along which sliding or failure is most likely to 

occur and are important for predicting potential landslide 

hazards. Hence the kinematic analysis is formed in the field 
investigation. The result of kinematic analysis performed in 

the three locations to study possible failures in the study area. 

The detail of the kinematic analysis is given in Table 4. 

Slope 

Slope significantly impacts surface and subsurface 

hydrology, as well as terrain stability. Landslide 

susceptibility estimates rely heavily on this characteristic. 

Moreover, the literature review suggests steep slopes are 

very prone to a landslide so, in this research the Slope map 

was prepared covering 5 classes: Very low/flat (0-15°), 

low (15-30°), moderate (30-45°), high (45-60°) and very 

high (>60°) as shown in Fig. 5. 

Slope Aspect 

A slope's aspect refers to its orientation relative to the 

north. The literature review suggests slope aspect affects 

solar heating, soil moisture, and air dryness. 

The slope aspect affects the stability of the terrain by 

regulating soil moisture and vegetation growth through 

sunshine exposure. For susceptibility analysis, aspect maps 

are divided into nine classes: N, NE, E, SE, S, SW, W, NW, 

and Flat. Landslides in different slope aspects are given in 

Table 7 the slope aspect of the study area is shown in Fig. 6. 

 

 

 
Fig. 4: The map representing the point location of the data 

collection for kinematic analysis 

 

 

 

Fig. 5: The map representing the slope of the study area 

 
Table 4: Details of possible failure in the Landslide prone area 

Location Slope dip Slope dip direction Friction angle Failure type Failure in % 

1 86° 342 30° Wedge failure 12.0 

    Planar failure 6.0 

    Planar failure (All) 12.0 

    Flexural toppling  18.0 

    Direct toppling 14.0 

2 86° 342 30° Wedge failure 19.4 

    Planar failure 2.0 

    Planar failure (All) 26.0 

    Flexural toppling 8.0 

    Direct toppling 8.0 

3 87° 30 30° Wedge failure 23.7 

    Planar failure 5.7 

    Planar failure (All) 44.2 

    Flexural toppling 25.0 

    Direct toppling 7.6 
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Fig. 6: Slope aspect map of the study area 

 

Lithology 

Rocks of the Kathmandu complex and Phulchauki 

group were found in the study area. Mainly 

metasandstone, phyllite, and slate were the dominant 

rocks present in the exposed area. 

The lithology of the study area consists of all 6 forms, 

i.e., Pulchauki formation, Chitlang formation, Tistung 

formation, Chandragiri formation, and Sopyang 

formation of the Phulchauki group. The detailed map 

showing the formation present in the study area is shown 

in the Fig. 7. 

Road 

The road network can significantly influence the 

occurrence of landslides. Building roads on unstable 

terrain increases the risk of landslides. Figure 8 shows the 

distribution of landslide events at various distances from 

the road network. 

Fault 

Fault distance is crucial in landslide occurrences as it 

directly influences the potential for slope instability. The 

proximity of a fault to a slope can amplify the risk of 

landslides due to the geological and tectonic forces 

associated with fault activity. Closer fault distances often 

increase the slope's stress and strain, heightening the 

likelihood of slope failure and triggering landslides. As 

shown in Fig. 9 Euclidean distance of the existing fault is 

classified into three classes i.e., 0-1300, 1300-2600, and 

greater than 2600 meters, and the presence of landslide in 

each class is given in Table 8. 

Drainage 

Landslides were frequently observed along the 

research area's stream. The location of the landslide from 

the stream was deemed a geomorphology-related causal 

element. Field observations show that slope failure occurs 

more frequently along streams due to groundwater 

migration and toe undercutting. A distance to drainage 

map was created for landslide activity analysis and 

susceptibility evaluation as shown in Fig. 10. 
 

 
 
Fig. 7: The map representing the lithology of the study area 
 

 
 
Fig. 8: The map representing Euclidean distance of road with 

the study area boundary 
 

 
 
Fig. 9: The map representing Euclidean distance of fault within 

the boundary of the study area 
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Fig. 10: The map representing Euclidean distance of drainage 

within the boundary of the study area 
 

Land Use Land Cover 

Land cover always controls the landslide process. Well-
forested slopes are less prone to landslides. Land cover 
always controls the landslide process. Slopes in forest areas 
are always less prone to landslide occurrence whereas 
unmanaged built-up areas and cultivation also drainage like 
water stream could induce landslide. In Fig. 11 LULC map 
of the study area is divided into 5 classes i.e. Water, 
developed, barren, forest, planted/ cultivated. 

The Kappa coefficient of the LULC map is 0.865 
which means 85% accuracy and P_accuracy 93%. 

Rainfall 

Rainfall is an extrinsic parameter it had been used 

with a susceptibility map for producing landslides in 
the study area. For the average annual rainfall data 

preparation 13 years' data in the format of CSV file was 
used for 6 rainfall stations as shown in Fig. 12 and it was 

categorized into 5 classes i.e., 1028-1038, 1038-1048, 
1048-1058, 1058-1068, 1068-1080 in mm. 

Topographic Wetness Index (TWI) 

TWI from DEM is a widely used method for assessing 

soil moisture, with altering TWI values influencing both 
moisture and species (Bhandari and Upreti, 2015). The 

distribution of landslides across various TWI classes is 
clearly apparent in Fig. 13 and it is classified in 4 categories 

i.e., 0-7, 7-12, 12-17, 17-23. Maximum landslide is seen in 
range 0-7 where the landslide area is 292500 m2. 

Slope Curvature 

Curvatures, along with other parameters, influence water 

flow in and out of slopes, making them crucial for studying 

landslides this study focused on profile curvature. A profile 

curvature map was created, depicting both concave and 

convex profiles as shown in Fig. 14. Similarly, the table 

shows the landslide coverage in each class. 

 

 
Fig. 11: The map representing the study area's land use land 

cover map 

 

 

 
Fig. 12: Average annual precipitation map of the study area 

(2010-2012) 

 

 

 
Fig 13: Map representing the topographic wetness index of the 

study area 
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Fig. 14: Map showing the curvature of the study area 
 

 
 
Fig. 15: Landslide susceptible map from AHP method 

Analytical Hierarchy Process Method 

Landslide Susceptibility Map from AHP Method 

LSM was accomplished using the AHP approach as 

shown in Fig. 15. AHP was used to weight factors and 

classes as given in Table 5. Raster maps of each factor 

were weighted on a cell-by-cell basis. Integrating a 

weighted raster map produced an LSM map containing 

numerical susceptibility data, with higher LSI values 

indicating high susceptibility and lower values indicating 

low susceptibility. LSI values vary from 6.58-37. Now the 

distribution of landslide susceptibility zones and landslide 
occurrence is given in Table 6. 

In Table 6 maximum class percentage of 52.34 is in 

the moderate zone, 0.49 which is the lowest percentage in 

the very high zone. 

Frequency Ratio Method 

Landslide Susceptibility Map from Frequency 

Ratio Method 

LSM was accomplished using the frequency ratio 

approach as shown in Fig. 16. Frequency ratio was used 

to weight factors and classes. Raster maps of each 

factor were weighted on a cell-by-cell basis. The 

integration of the weighted raster map produced an 

LSM map containing numerical susceptibility data, 

with higher LSI values indicating high susceptibility 

and lower values indicating low susceptibility. LSI 

values vary from 356- 1864. 
Now the distribution of landslide susceptibility zones 

and landslide occurrence is given in Table 8. 

In Table 8 maximum class percentage of 38.17 is in 

the moderate zone, 1.01 with the lowest percentage 

observed in the very high zone. 
 
Table 5: The pair-wise comparison matrix, class weights (rating), and consistency ratio 

Matrix   1 2 3 4 5 6 7 8 9 10 weightage % 

Slope 1 1 1 1 2 1 1 1 1 1/2 1 9.58 

Aspect 2 1 1 1 2 1 4 1 1 2 2 13.19 

Lithology 3 1 1 1 4 3 1 1 1 2 4 15.40 

LULC 4 1/2 1/2 1/4 1 2 2 1/2 1 2 4 9.92 

Distance to fault 5 1 1 1/3 1/2 1 1 2 1 1 4 9.67 

Distance to drainage 6 1 1/4 1 1/2 1 1 1 1/3 1 2 7.39 

Distance to road network 7 1 1 1 2 1/2 1 1 1 1 4 10.56 

Precipitation 8 1 1 1 1 1 3 1 1 1 4 11.44 

TWI 9 2 1/2 1/2 1/2 1 1 1 1 1 4 9.21 

Curvature 10 1 1/2 1/4 1/4 1/4 1/2 1/4 1/4 1/4 1 3.65 

CR = 6.2% 

 
Table 6: The distribution of landslide susceptibility zones and landslide occurrence 

Susceptibility classes Class pixel Percentage Landslide pixel Landslide% Landslide area 

Very low 7532 1.53 9 0.042 937.00 

Low 137632 27.89 144 6.008 2261.65 
Moderate 258261 52.34 530 25.005 82812.05 
High 87568 17.75 1253 59.243 195781.03 
Very high 2408 0.49 179 8.463 27968.75 
Sum 493401  2115 
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Table 7: Frequency ratio of 10 causative factors 

             (Max- 

         RF    Min) 
  Class % class Landslide % landslide   RF (Int) Min Max Max- Min 

Parameters Classes pixel pixels pixels pixel) FR RF (non%) RF RF RF Min RF PR 

Slope 0-15 066924 13.54 237 11.2500 0.0003 0.016 16.3100 16 

 15-30 185710 37.59 581 27.5800 0.0003 0.014 14.4100 14 

 30-45 189009 38.26 878 41.6900 0.0004 0.0214 21.4000 21 

 45-60 049074 9.93 403 19.1300 0.0008 0.0378 37.8300 37 

 60< 003213 0.65 7 0.3300 0.0002 0.0001 10.0300 10 

Sum   493930 100.00 2106 100.0000 0.0021       0.10 0.37 0.27 0.14 1.94 

Aspect Flat 080292 16.25 82 3.8900 0.0010 0.0022 2.2300 2 

 North  058094 11.75 156 7.4200 0.0026 0.0058 5.8600 5 

 North 058429 11.82 127 6.0300 0.0021 0.0047 4.7500 4 

 East 

 East 062783 12.70 244 11.5800 0.0038 0.0084 8.4940 8 

 South 049291 9.97 612 29.0500 0.0124 0.0271 27.1300 27 

 East      

 South  036695 7.42 645 30.6200 0.0175 0.0384 38.4200 38 

 South 033404 6.76 135 6.4100 0.0004 0.0088 8.8330 8 

 West      

 West 039337 7.96 46 2.1800 0.0001 0.0025 2.5560 2 

 North 075743 15.33 59 2.8000 0.0007 0.0017 1.7000 1 

 West      

Sum   494068 100.00 2106 100.0000 0.045       0.017 0.384 0.367 0.143 2.56 

Lithology Tistung 211138 43.20 484 22.8800 0.0002 0.0116 11.6700 11 

 formation      

 Quaternary 003198 0.65 2 0.0900 0.0006 0.0003 3.1800 3 

 deposit      

 Sopyang 37561 7.68 322 15.2200 0.0085 0.0436 43.6500 43 

 formation      

 Chandragiri 183348 37.51 1230 58.1500 0.0067 0.0341 34.1500 34 

 formation      

 Chitlang 53457 10.93 77 3.6400 0.0014 0.0073 7.3300 7 

 formation 

Sum   488702 100.00 2115 100.0000 0.0196       0.031 0.436 0.404 0.143 2.82 

Distance 0-1300 435124 87.43 2084 98.7200 0.0047 0.0832 83.2390 83 

from road 1300-2600 47170 9.47 24 1.1300 0.0005 0.0088 8.8420 8 

 2600-4000 15367 3.08 7 0.3300 0.0004 0.0079 7.9168 7 

Sum   497661 100.00 2115 100.1895 0.0057       0.0791 0.832 0.075 0.143 5.25 

Distance 0-1300 326691 72.57 1754 82.9300 0.0005 0.0453 45.3000 45 

from fault 1300-2300 139216 30.92 201 9.5000 0.0001 0.0121 12.1810 12 

 2300< 20407 4.53 160 7.5600 0.0005 0.0425 42.5100 42 

Sum   486314 108.03 2115 100.0000 0.0118       0.121 0.453 0.331 0.143 2.31 

Distance 0-1000 371704 74.81 1636 77.3500 0.0044 0.0512 51.2080 51 

from drainage 1000-1500 121037 24.36 478 22.6000 0.0003 0.0459 45.9470 45 

 1500-2500 4086 0.82 1 0.4700 0.0002 0.0028 2.8470 2 

Sum   496827 100.00 2115 100.0000 0.0085       0.028 0.512 0.483 0.143 3.37 

Precipitation 1028-1038 90278 18.14 200 9.4560 0.0002 0.0151 15.1010 15 

 1038-1048 251557 50.54 1554 73.4700 0.0006 0.0421 42.1090 42 

 1048-1058 105030 21.10 288 13.6100 0.0020 0.1869 18.6910 18 

 1058-1068 36241 7.28 36 1.7020 0.0009 0.0067 6.7710 6 

 1078-1080 14555 2.92 37 1.7490 0.0250 0.1732 17.3200 17 

Sum   497661 100.00 2115 100.0000 0.1467       0.067 0.421 0.353 0.143 2.46 

LULC Water 19359 2.48 20 0.9400 0.0010 0.0064 0.6400 0 

 Developed 95337 12.26 213 10.0700 0.0020 0.0138 1.3800 1 

 Barren 7821 1.01 1208 57.1100 0.1544 0.9592 95.9200 96 

 Forest 477828 61.45 145 6.8500 0.0003 0.0018 0.1880 1 

 Planted/ 177173 22.78 529 25.0100 0.0029 0.0185 1.8500 2 

 cultivated      

Sum   777518 100.00 2115 100.00 0.1610       0.001 0.959 0.957 0.143 6.67 

TWI 0-7 412450 83.48 1872 88.51 0.0045 0.3244 32.4400 32 

 7.0-12 75017 15.18 217 14.57 0.0028 0.2067 20.6700 20 

 12-17.0 6206 1.25 25 3.99 0.0040 0.2879 28.7900 28 

 17-23 395 0.79 1 0.47 0.0025 0.1809 18.0009 18 

Sum   494068   2115   0.0013       0.180 0.324 0.143 0.143 1.00 

Curvature Concave 204502 41.52 1489 70.40 0.0007 0.0770 77.0000 77 

 Convex 288026 58.47 626 29.59 0.0002 0.0229 22.9000 23 

Sum   492528   2115   0.0094       0.229 0.770 0.540 0.143 3.77 

 
Table 8: The distribution of landslide susceptibility zones and landslide occurrence 

 LSI  Landslide  Landslide 

LSI pixel LSI % pixel Landslide % area (m2) 

Very low 34256 6.94 8 0.37 1250.00 

Low 132040 26.76 166 7.84 25937.05 

Moderate 188324 38.17 277 13.09 43281.25 

High 133788 27.12 452 21.37 70625.00 

Very high 4993 1.01 1212 57.30 189375.00 

Sum 493401   2115 
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Fig. 16: Landslide susceptible map from frequency ratio method 

 

 

 
Fig. 17: AUC curve for validation of map from AHP method 

 

Comparison Based on Landslide Density 

Landslide density is the area of an existing landslide 

divided by the area of each landslide susceptibility class. 

In this study, it is determined based on the number of 

pixels. In an ideal landslide susceptibility map, the high 

susceptibility zone should have the maximum landslide 

density, with the density values dropping gradually from 

medium to low susceptibility zones. 

The landslide densities of the susceptibility classes 

of both the LSM maps are calculated and tabulated in 

Table 9. 

In the Table 9 for FR, very low LSI class, there are 

34,256 pixels and the density of landslide pixels is 0.0002. 

This means that out of the total pixels classified in the very 

low LSI class, only a very small proportion (0.02%) are 

identified as landslide pixels. For AHP, the very low LSI 

class, there are 7532 pixels and the density of landslide 

pixels is 0.0012. This means that out of the total pixels 

classified in the very low LSI class, a small proportion 

(0.12%) are identified as landslide pixels. 

Validation of FR and AHP Method 

In Fig. 17 AUC value 0.7547 is achieved for the 

present model which can be converted in terms of a 

percent success rate accuracy of 75.47%. So, it can be said 

that the AHP model gave an accuracy of 75.47%. 

Additionally, in Fig. 18 AUC value achieved is 0.852. 

Hence it could be said that the FR model has a high 

accuracy of 85.2% in comparison to the AHP approach. 

 

 
 
Fig. 18: AUC Curve for validation of map from frequency 

ratio method 

 
Table 9: The landslide densities of the susceptibility classes of both the LSM maps 

 Frequency ratio method  Analytical hierarchical process method 

 ---------------------------------------------------------- ---------------------------------------------------------------- 

LSI Class pixel Landslide pixel Density Class pixel Landslide Pixel Density 

Very low 34256 8 0.0002 07532 9 0.0012 

Low 132040 166 0.0013 137632 144 0.0001 

Moderate 188324 277 0.0015 258261 530 0.0021 

High 133788 452 0.0034 87568 1253 0.0143 

Very high 4993 1212 0.2427 2408 179 0.0743 

Sum 493401 2115   493401 2115 
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Discussion 

The study aimed to identify elements that cause 

landslides, create a susceptibility map using a geographic 

information system, and monitor changes using remote 

sensing techniques. The high and very high susceptibility 

classes on the weight of the evidence-modeled 

susceptibility map coincide with steeply sloped areas, i.e., 

30-45°. In South Africa also this is no surprise, as slopes 

greater than 18° are considered susceptible to landslides 

and therefore not suitable for construction. South-facing 

slopes have long been more susceptible to landslides 
(Boelhouwers et al., 1998). This was further confirmed in 

this study when the south-facing slopes recorded the highest 

number of landslides. The area's geology influences 

landslides, as different rock types have varying hydrological 

qualities and strength levels. Geological structures can 

weaken rocks. It has been noted by Dahal (2014), that 

lithology is also a major causative factor for inducing 

landslides. In the study area, Chandragiri formation has 

the maximum landslide area, the prominent rock found is 

limestone. Limestone has a high hydraulic transmissivity; 

higher transmissivity allows water to penetrate deeper 

into the ground, leading to decreased cohesion of clay 
minerals and higher pore fluid pressure (Warrick et al., 

1977). Borrelli et al. (2018), also suggest landslides are 

more prone to occur in locations with faults and lithological 

connections due to their inherent vulnerability. The fault 

distance from 0-1300 in the study area consists of 

maximum landslide pixels. The road network exhibits high 

and extremely high susceptibility classes in the LSM 

(Kumar and Anbalagan, 2016). This study analyzed the 

maximum landslides to be near the road 0-1300 m. 

In the LSM map in the Tehri region of Uttarakhand, 

the results also showed that highly vulnerable classes 

occupied regions near the drainage network (Kumar and 

Anbalagan, 2016). Low susceptibility classes are seen in 
locations with flat terrain, high forest cover, and sparse 

forest cover. Settlement areas have been classified as 

somewhat moderate to highly susceptible. The LSM map 
from this research also provides similar results: Few 

landslides are seen in forest regions and moderate chances 

of susceptibility are seen in Built-up areas. Barren slopes 

are more susceptible to landslides based on field 
observations and in the LULC map also we could see a 

maximum number of landslides occurring in barren areas. 

Slope curvature as a factor (Dahal, 2014) suggests 
curvatures, along with other parameters, influence water 

flow in and out of slopes, making them crucial for 

studying landslides. In this study also maximum 
landslides above 60% were analyzed to be in concave 

curvature. The Topographic Wetness Index is a parameter 

used in terrain analysis to estimate the relative wetness or 

moisture content of the land surface. It is calculated based 
on topographic characteristics such as slope and flow 

accumulation in this study area lower the value of TWI 

higher the landslide was observed. Maximum landslides 
were observed in class 0-7 and the landslide percentage 

decreases higher the value of TWI. 

Therefore, selecting an appropriate weighting system 

was crucial in this study. This study utilized both the 

weight of evidence and the map combination approach. 

There are 34,256 pixels in the FR very low LSI class and 

the density of landslide pixels is 0.0002. This indicates 

that just a very tiny percentage (0.02%) of all pixels 

classified in the very low LSI class are identified as 

landslide pixels. There are 7532 pixels in the very low LSI 

class AHP and the density of landslide pixels is 0.0012. 

This indicates that a tiny percentage (0.12%) of all the 

pixels classified in the very low LSI class are landslide 

pixels. The difference is seen in the final map too because 

both are different techniques; one includes weightage 

whereas another is dependent on the raster cell size of 

landslides and its factors However, the frequency ratio 

method outperformed the AHP method in this analysis. The 

ROC/AUC curve suggests that the accuracy of AHP is 

about 75% in contrast to the FR which is about 85%. A total 

of 138 landslides were observed in the study area and 

plotted into polygons among them 70% were distinguished 

as training datasets whereas 30% as testing data sets. 

Testing data sets were used in plotting AUC curves. 

Conclusion 

LSM was accomplished using the AHP and FR 

approach. AHP was used to weigh factors and their 

classifications. The weight values have been given to each 

factor's raster maps on a cell-by-cell basis in the FR 

method and for the AHP method multiple; literature 
review, fieldwork, and consultation with expertise 

weightage was given to each factor. Integration of 

weightage to each factor produced an LSI map with 

numerical susceptibility information, where larger values 

indicate high susceptibility and lower values indicate low 

susceptibility. The LSI from AHP method values vary from 

6.58-37 Similarly, the LSI value ranges from 356-1864. 

The continuous LSI map from both methods was divided 

into 5 groups using the natural break classifier. There are 

5 levels of susceptibility: Very low, low, moderate, high, 

and extremely high. From the result of both the maps a 
maximum region of the study area has moderate chances 

of landslide i.e., about 58% of the study area is susceptible 

to landslide from AHP in contradiction to the FR method 

about 48% of the total area has moderate chances 

similarly in FR method 27% of the area is susceptible to 

landslide whereas AHP method provides 22% of 

predication. However, the map presented by AHP and FR 

both is recommendable because the success rate of AHP 

is about 75% and FR is 85%. The first stage in planning 

for future land use is to assess the requirement for 

landslide susceptibility information to avoid exceeding an 
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acceptable level of risk. Landslide risk refers to the degree 

of loss caused by a certain landslide. Landslide information 

aims to identify regions vulnerable to landslides and 

recommend appropriate development measures. Landslides 

can disrupt human activities and the economy. 
Understanding the area's landslide risk is vital. Landslide 

susceptibility maps only show locations with a high 

likelihood of landslides, not when they may occur. Planners 

can use these estimations to make decisions about site 

suitability, kind of development, and mitigation measures. 
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