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Abstract: In this study, twelve reinforced concrete beams were constructed, 
each with specified dimensions and initial compressive strength. The beams 
were divided into four groups: A control group without any defect, a void 
group featuring a centrally located void, a corrosion group and a debonding 
group. The impact echo test was used for nondestructive testing, gathering 
data on compressive and shear wave velocity and frequency. The collected 
data, including compressive and shear wave velocity, frequency and derived 
material properties as well as modulus of elasticity, were used for subsequent 
analyses. To determine the type of defect, artificial intelligence and machine 
learning methods were utilized. Data collected from the impact echo method 
were analyzed using RStudio and the MATLAB toolbox for statistical 
analysis. Linear regression was employed to establish relationships between 
inputs (wave velocity and frequency) and outputs as shear and compressive 
modulus. The accuracy of these relationships was assessed through 
correlation coefficients, p-values and adjusted R-squared error. Additionally, 
an Imperial Competitive Algorithm (ICA) as part of the artificial neural 
network method was implemented to predict the variables. The results 
demonstrated high correlation coefficients and low mean square errors, 
indicating accurate predictions. Frequency domain defect detection was 
performed by analyzing frequency-amplitude data. The MATLAB toolbox 
was used to identify peaks and determine defects based on a 20% boundary 
condition. The comparison of peaks confirmed the presence of defects in 
beams with voids, corrosion and debonding. Subsequently, support vector 
machines were employed to classify defects in reinforced concrete 
structures, including voids, corrosion and debonding. This study utilized key 
features of reinforced concrete and assessed SVM performance using 
precision, recall and F1-score metrics. Overall, this study illustrates the 
effectiveness of machine learning techniques complied with impact echo 
tests in assessing and predicting the quality of reinforced concrete beams 
with various internal defects. 
 
Keywords: Non-Destructive Tests, Defect Classification, Machine 

Learning, Artificial Neural Network, Imperial Competitive Algorithm, 

Support Vector Machine  

 

Introduction 

Nondestructive Testing (NDT) methods have become 
a prevalent approach for assessing infrastructures and 

structures, particularly reinforced concrete structures 
(Johnson and Pessiki, 1993; Lopes and Nepomuceno, 
1997; Collins, 1995). The NDT method not only 
facilitates the characterization of material properties in 
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concrete structures but also offers insights into visualizing 
the overall quality of the concrete (Nepomuceno and Lopes, 
2017; Beben et al., 2013). In terms of material properties, 

frequency domain data is derived from signal processing and 
sound vibration analysis, with visualization relying on a 
laser-based approach (Carino, 2001; Hoła and Runkiewicz, 
2018; Hugenschmidt, 2002; Rehman et al., 2016).  

Oh et al. (2023) used Impact Echo (IE) to detect defects 
of prestressed concrete. He introduced a cost-effective 
technique for identifying voids within ducts in Prestressed 
Concrete (PSC) bridges, which were prone to corrosion and 
structural failure if the tendon within the duct corrodes. 
Conventional methods, such as Non-Destructive Testing 
(NDT) utilizing ultrasonic waves, were both costly and 
required skilled personnel. Instead, the authors propose 
utilizing an Impact Echo (IE) method combined with 
Deep Support Vector Data Description (Deep SVDD). 
This method distinguished data as either normal or defective 
by employing a hypersphere in a multi-dimensional feature 
space created by an autoencoder. The autoencoder, 
modeled after Embeddings from Language Model 
(ELMo), efficiently represents IE data. Experimental 
findings illustrate the effectiveness of the model, 
achieving an accuracy rate of roughly 77.84%, marking a 
notable enhancement compared to supervised learning 
approaches by approximately 47%. 

Hong et al. (2020) used the ultrasonic pulse velocity 
method to evaluate reinforced concrete structures.  

The research aimed to predict the compressive 
strength of concrete structures as they aged using the 
ultrasonic pulse velocity method. Establishing a 
relationship between ultrasonic pulse velocity and 
compressive strength over time was intended to assist 
in estimating the compressive strength of newly 
constructed buildings or those undergoing renovation. 
The study involved fabricating 123 concrete specimens 
with varying parameters, including design 
compressive strengths ranging from 24-40 MPa at 
different ages (16-672 h). Ultrasonic velocity 
measurements were conducted following standardized 
procedures and compressive strength was determined 
accordingly. By examining the correlation between 
ultrasonic pulse velocity and compressive strength, the 
study proposed an equation for estimating compressive 
strength based on age, demonstrating the potential of 
using nondestructive testing methods for this purpose. 

The IE method is a powerful Non-Destructive Testing 

(NDT) technique widely used for assessing the condition 

of concrete structures. However, it comes with certain 

limitations that can impact its effectiveness in certain 

scenarios. One significant limitation is related to the size 

and shape of defects that can be detected. While IE is 

adept at identifying large defects such as voids, 

delamination and cracks, it may struggle to detect smaller 

defects or those located at deeper depths within the 

concrete structure. This limitation can be particularly 

challenging when assessing structures with complex 

geometries or those where defects are distributed across 

different depths.  

Another limitation of the IE method is its reliance on 

access to both sides of the concrete elements being tested. 

In situations where access to one side of the structure is 

restricted or impossible, such as in the case of heavily 

reinforced concrete or structures with limited entry points, 

conducting impact-echo testing becomes impractical. This 

constraint restricts the method’s applicability in real-world 

scenarios where complete access to the structure may not 

be feasible. Additionally, the accuracy of IE results can be 

influenced by factors such as surface roughness, moisture 

content and the presence of reinforcing bars, further 

adding to the complexity of its application and 

interpretation in concrete NDT. 
Zhao et al. (2018) utilized ultrasonic nondestructive 

test methods to assess defect determination in reinforced 

concrete structures. Six reinforced concrete components 

with varying defect levels were fabricated. Data 

acquisition involved Piezoceramic Transducers (PT) and the 

Time Reversal Method (TRM) to generate time-frequency 

graphs. Defect visualization was achieved through the 

image processing toolbox. The results displayed the 

location of the internal defect with reasonable accuracy. 

Atamturktur (2011) conducted experimental and 

analytical investigations on intentionally defective 

reinforced concrete (Damirchilo et al., 2021) beams. The 

finite element method was employed to simulate 

frequency tests and Bayesian calibration techniques were 

applied for comparison with experimental samples. The 

results demonstrated that the defect detection by this 

method may not be accurate enough when compared with 

experimental tests due to several factors.  
Brilakis et al. (2011) studied the Visual Pattern 

Recognition (VPR) of infrastructures. The VPR has been 
used by the image analysis toolbox to take detailed 
information about the image. The result indicated that this 
method could distinguish the air pocket on the concrete 
surface. Dawood et al. (2018) explored the application of 
a computer vision model for identifying moisture 

locations in subways. They utilized an artificial neural 
network alongside the Red-Green-Blue (RGB) method for 
visualization to reduce noise. Their findings showcased 
that combining the RGB and ANN methods optimized 
moisture detection capabilities. Additionally, reinforced 
concrete structures might exhibit internal issues such as 

corrosion, deterioration, delamination, voids and more 
(Nanekar et al., 2019; Sadowski, 2022; Cotič et al., 2018). 
Sugimoto et al. (2018) employed statistical analysis to 
detect the internal defects of concrete structures. They 
utilized a non-contact device, a long-range acoustic device, 
as well as a laser Doppler vibrometer to distinguish good 

quality parts from poor ones. The investigation involved 
testing on concrete slabs of both bridges and railroad 
tunnels. The examination centered on the application of 
spectral entropy and corresponding frequency peaks to 
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ascertain concrete quality by identifying the presence or 
absence of resonance peaks in frequency graphs. 

 Shah et al. (2012) studied the integration of non-linear 

ultrasonic techniques with Artificial Neural Networks (ANNs) 
to assess damages in stressed concrete non-destructively is 
explored in the study. Two ANN models, one utilizing 
raw data and the other employing dimensionless 
variables, were developed and tested for predicting 
concrete damage. Input data for the ANN consisted of 

time-domain signals from ultrasonic waves, gathered from 
previous experimental studies involving 75 ultrasonic 
measurements on concrete cubes with varying water-cement 
ratios. Both ANN models were two-layer perceptrons 
trained using the back-propagation algorithm. The 
potential of ANN in evaluating concrete damage using 

non-linear ultrasonic measurements is demonstrated by 
the results. The proposed ANN models exhibit low 
absolute errors in predicting concrete cube strength, 
with the model utilizing raw data being outperformed 
by the one using grouped dimensionless variables. 

Automated flaw detection in concrete using ultrasonic 

tomography and Convolutional Neural Networks (CNN) 

was explored in Marek Słoński's study (Słoński et al., 

2020). The methodology involved obtaining images 

through ultrasonic tomography and utilizing CNN to 

automatically detect defects. The model, fine-tuned on 

laboratory test images, accurately identified defects in 

concrete elements. This automated approach has the 

potential to classify various defect types in concrete. 
Jiang et al. (2024) conducted a study on identifying 

multiple cracks in large structures using a novel data-
driven algorithm combining the Scaled Boundary Finite 
Element Method (SBFEM) and deep learning techniques. 
Quantifying structural defects accurately is challenging, 

prompting the development of this innovative approach. 
The algorithm integrates SBFEM to simulate various 
crack-like defects, simplifying mesh generation and 
minimizing re-meshing efforts. An absorbing boundary 
model with Rayleigh damping is utilized for efficient 
wave propagation simulation in massive structures. To 

enhance the neural network's ability to capture sequential 
data and complex mapping relationships, a dilated causal 
Convolutional Neural Network (CNN) is employed. This 
enables the model to accurately detect the number, 
location and depth of cracks while remaining robust to 
noise. The proposed algorithm holds promise for 

enhancing structural defect detection and diagnosis, 
thereby enhancing overall engineering structure safety. 

Kuchipudi and Ghosh (2024) developed a method for 

the automated detection and segmentation of internal 

defects in reinforced concrete using deep learning on 

ultrasonic images. While periodic inspection of concrete 

structures was recommended for ensuring safety, 

manually screening ultrasonic images for defects had 

been laborious and error-prone. The study proposed a 

region-based CNN to automatically detect, localize and 

segment defects in ultrasonic images. The network, which 

was trained on real experimental data, employed the 

synthetic aperture focusing technique to generate an 

ultrasonic image dataset containing various defects like 

debonded rebars and cracks. The model achieved a high 

mean Average Precision (mAP) of 0.98 in detecting and 

masking defect pixels, surpassing other state-of-the-art 

defect detection networks. 

Many researchers studied the effect of using 

nondestructive tests to determine the quality of existing 

reinforced concrete structures. Most of these researchers 

focused on experimental tests or numerical analyses to 

evaluate the quality of reinforced concrete structures. 

Further, a few researchers studied machine learning 

methodologies to determine concrete defects. Despite 

numerous studies, none have addressed the methodology of 

classifying and detecting types of defects in existing 

reinforced concrete structures using numerical techniques. 

Also, no study has been conducted to show how to predict 

different types of defects based on impact echo results and 

statistical analysis with machine learning techniques.  

In this study, diverse reinforced concrete beams were 

made in the laboratory. These beams were constructed in 

four groups including no defect, void, corrosion and 

debonding. Impact echo is employed to perform testing 

and collect data. Then, statistical analyses including linear 

regression, artificial neural network and machine learning 

methods are employed to evaluate the IE data and classify 

the defect's type accordingly.  

Experimental Investigation  

In this study, twelve reinforced concrete beams have been 

constructed in the structural lab (Sayyar-Roudsari et al., 

2020; Roudari et al., 2020; Roudsari, 2020). The beam’s 

dimensions are 81696 inches in width, height and 

length respectively. The initial concrete compressive 

strength is computed to be at least 4000 Psi. RC beams are 

divided into four groups and each group has three 

specimens. The first group is the control group (group A) 

meaning that there is no internal defect. The second group 

is subjected to have void (group B) located at the center 

of RC beams. The location of the void is about 48 inches 

from the edge and 3 inches from the top surface of the RC 

beam. The geometry of the void is also 321 inches in 

height, width and thickness. The third group is corrosion 

(group C) and the fourth one is debonding (group D). It 

needs to be mentioned that corroded bars are made by a 

natural process where bars are immersed in a water pond 

for a few months and debonding is implemented by fully 

lubricating bars. Four numbers of #4 have been employed 

at the tensile area of the RC beam. Figures 1-2 show the 

geometry and actual RC beams. Table. 1 displays the group 

names based on different defects (Sayyar-Roudsari et al., 

2020; Roudari et al., 2020; Roudsari, 2020).  
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Table 1: RC beams group name, ID (Sayyar-Roudsari et al., 2020; Roudari et al., 2020; Roudsari, 2020) 

 A   B   C   D 

Group name ----------------------------------- ------------------------------ --------------------------- ---------------------------- 

type Control   Void   Corrosion   Debonding 

ID A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 

 

 
 
Fig. 1: Geometrical properties of RC beam (Sayyar-Roudsari et al., 

2020; Roudari et al., 2020; Roudsari, 2020) 
 

 
 
Fig. 2: RC beam in the structural lab (Sayyar-Roudsari et al., 

2020; Roudari et al., 2020; Roudsari, 2020) 

 

 
 
Fig. 3: Impact echo test's locations on RC beam 
 

In order to collect data, the impact echo as a 

nondestructive test method is employed. This device 

uses ultrasonic methods which are based on an acoustic 

base system (Taslimian et al., 2023). The IE device is 

used to run on the top surface of the RC beam and several 

tests are performed on each location to collect data. 

These tests are done in five different locations for each 

RC beam which is shown in Fig. 3. The IE test carries 

out the results for each spot and data from each test is 

collected for the analysis scheme. 

The fundamental properties of a medium, particularly 

shear wave velocity and compressive wave velocity, 

significantly influence the dispersion properties of waves 

(Taslimian et al., 2015; 2012; Ross and Willson, 2018). 

The impact echo test can give information like 

compressive and shear wave velocity as well as 

compressive and shear wave frequency. Based on this 

data, the module of elasticity, shear modulus and 

compressive strength of concrete are computed.  

Materials and Methods 

The concrete mixtures employed for the experimental 

tests were based on ASTM C494 and ASTM C1017 

standards. The concrete exhibits a compressive strength 

of 4000 psi (27.58 MPa) with a water-to-cement ratio 

(w/c) of 0.5, resulting in a slump of 4 inches (101.6 mm). 

Self-Consolidating Concrete (SCC) was utilized to 

address vibration issues, such as aggregate blockage. For 

reinforcement, Grade 40 steel bars measuring 0.5 inches 

(12.7 mm) in diameter were utilized. These bars exhibit 

yield and ultimate strengths of 40000 and 70000 psi 

(275.80 and 482.63 MPa) respectively, in accordance with 

ASTM A615 standards. 

One crucial criterion for a statistical approach is 

ensuring a sufficient amount of data. Utilizing IE provides 

a large data set as input and output parameters of each 

specimen. Table 2 displays the initial four columns 

obtained by executing the IE software, wherein 

compressive wave velocity, shear wave velocity, 

compressive frequency and shear frequency serve as the 

input data. The IE software records data through vibrations, 

capturing both frequency and velocity. On the other hand, 

Young's modulus, shear modulus and compressive 

strength are calculated from the provided input data. 

To establish relationships between inputs and outputs, 

the linear regression method is employed using RStudio 

software. Specifically, the compressive frequency 

category is chosen to assess linearity for the modulus of 

elasticity and compressive strength. Moreover, the 

correlation between compressive wave velocity and 

compressive frequency is investigated. The selection of 

polynomial degrees of freedom is crucial for linear 

regression, where input and output data are designated as 

independent and dependent variables, respectively 

(Jäntschi et al., 2015). Notably, higher compressive 

frequency or velocity tends to correlate with increased 

compressive strength, emphasizing their significance in 

concrete quality assessment. Similarly, shear frequency 

and velocity are compared with shear modulus. In the 

broader context, the method for evaluating concrete 

quality often revolves around compressive strength, 

implying that a higher compressive frequency domain or 

velocity corresponds to better concrete quality. Equation 

1 represents the general relationship between independent 

and dependent variables (Deschepper et al., 2006): 
 
𝑌 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽 (𝑋) + 𝜀̂ (1) 
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Table 2: Data of impact Echo test 

Beam type Compressive  Compressive Shear Young's  Compressive 

and spot’s wave Shear frequency frequency modulus Shear strength 

test velocity velocity (Hz) (Hz) (Ksi) (Ksi) (Psi) 

A1-3 12444 7283 4667 2758 5023 1720 6865 

B1-3 6932 4245 2600 1608 1559 0585 0661 

C1-3 9646 6138 3617 2325 3017 1222 2477 

D1-3 8468 5413 3175 2050 2325 0950 1471 

 

The significant level (p-value) of all regression models 

is 0.05. The null hypothesis (𝐻0) indicates that the slop (𝛽) 

is equal to zero and the alternative hypothesis (𝐻𝑎) means 

that the slop (𝛽) is not equal to zero. The observed errors 

(𝜀̂) are named as residual meaning the difference between 

the fitted observed dependent (𝑌) and predicted values 

(𝑌̂). Eq.2 displays the residual error of the dependent and 

independent models (Pogliani and Julián-Ortiz, 2005): 

 

𝜀̂ = 𝑌𝑖  − 𝑌̂𝑖  (2) 

 

The linearity assumption can be assessed through the 

residual plot, which indicates whether the model exhibits 

a random distribution pattern. A random distribution 

pattern suggests linearity, while a non-random pattern 

signifies nonlinearity (Iván and Carlos, 2015). 

Additionally, the QQ-Plot is utilized to verify the 

uniformity and normal distribution of the data, with a 

straight-line pattern indicating uniformity (Akossou and 

Palm, 2013). Linear regression involves two types of 

errors, namely R-squared and adjusted R-squared. A 

higher percentage value in these errors signifies more 

accurate results and their computation is outlined in 

Eqs. 3-4: (Van Trees and Bell, 2007): 

 

𝑅2 = 1 −
∑ (𝑌𝑖 −𝑌̂𝑖)2𝑛

𝑖

∑ (𝑌𝑖 −𝑌̅𝑖)2𝑛
𝑖

  (3) 

 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑀𝑆𝐸

𝑀𝑆𝑇
  (4) 

 

In these equations, 𝑌̅𝑖 is the mean of Y, the mean 

squared error is computed by 𝑀𝑆𝐸 =
∑ (𝑌𝑖 −𝑌̂𝑖)2𝑛

𝑖

(𝑛−𝑞)
 and the 

sum of the squared total is 𝑆𝑆𝑇 =
∑ (𝑌𝑖 −𝑌̅𝑖)2𝑛

𝑖

(𝑛−1)
, where n and 

q are the number of observation and the number of 

coefficients, in order. The standard error deviation 

formula is the square root of the mean square error which 

is displayed in Eq. 5: 
 

𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 = √𝑀𝑆𝐸  (5) 

 

The F-statistic is calculated by 
𝑀𝑆𝑅

𝑀𝑆𝐸
 where the MSR 

formula is shown in Eq. 6. (Kaveh and Talatahari, 2010): 

 

𝑀𝑆𝑅 =
∑ (𝑌𝑖 −𝑌̅𝑖)𝑛

𝑖

𝑞−1
  (6) 

To determine the linearity of parameters, RStudio is 

employed. In this software, data is imported with the 

"dataset" library. After importing data, each data category 

is separately divided and called out for linear regression. 

The "lm" command is utilized to create the regression 

model and the polynomial command is used to show two 

degrees as a quadratic model. To represent the residual 

analysis, linear regression is compiled with identical 

matrix (I) multiple (according to the dataset) ^2 such as lm 

(compressive_velocity~compressive_frequency + I 

(compressive_velocity ^2), data = CWVCF). CWVCF 

is an example of a data set to show as abbreviated 

stands for compressive wave velocity and compressive 

frequency, in order. 

Further, for the Q-Q plot in RStudio, the qq norm () 

function is used to create the plot, passing the dataset as 

an argument. Then, a reference line for better 

interpretation is considered by adding the qq line () 

command. Executing the Q-Q plot compares the quantiles 

of the dataset against a theoretical distribution, aiding in 

assessing the dataset's conformity.  

In this study, the Artificial Neural Networks (ANN) 

method is employed for the decision-making scheme. 

Using Artificial Neural Networks (ANNs) for 

decision-making in defect detection of concrete offers 

several advantages. ANNs excel in handling complex and 

multidimensional data, making them suitable for tasks 

involving various parameters like texture, color, 

composition and structural properties. They can capture 

intricate patterns and relationships among these 

parameters, which is crucial for detecting subtle defects 

that may not be easily discernible using traditional 

methods. Additionally, ANNs can learn from historical 

data without relying heavily on predefined rules or 

linguistic terms, unlike fuzzy logic systems. This data-

driven approach allows ANNs to adapt to different types 

of defects and environmental conditions, enhancing their 

robustness and generalization capability. ANNs also offer 

flexibility in model architecture, accommodating different 

network structures based on the nature of the input data 

and the complexity of the defect detection task. While 

fuzzy logic has been applied in various engineering 

domains for decision-making under uncertainty, its 

application in concrete defect detection may be limited 

due to factors such as interpretability versus complexity, 

handling non-linearity and limited learning capability 

compared to ANNs. In summary, while both ANNs and 
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fuzzy logic have their strengths and weaknesses, ANNs 

are often preferred for defect detection in concrete due to 

their ability to learn complex patterns from data, handle 

non-linear relationships and adapt to diverse defect 

detection scenarios. However, the choice between these 

methods ultimately depends on the specific 

requirements of the application, the availability of 

training data and the desired balance between 

interpretability and predictive performance. 
One of the most reliable methods in ANN is the 

Imperial Competitive Algorithm (ICA). The algorithm 
maintains a population of candidate solutions, each 
representing a potential solution to the optimization 
problem. These solutions are typically encoded as vectors 
in a multidimensional search space. In ICA, each 
candidate solution is classified as either an imperialist or 
a colony. Imperialist solutions represent dominant and 
influential entities, while colony solutions represent less 
influential entities. The algorithm starts with an initial 
population of candidate solutions. These solutions are 
randomly generated within the search space. Initially, a 
subset of these solutions is selected as imperialists, while 
the remaining solutions become colonies. During each 
iteration of the algorithm, imperialist nations compete for 
dominance over colonies. Imperialist nations with higher 
fitness (better solutions) are more likely to conquer 
colonies with lower fitness. This process reflects the 
socio-political concept of imperialism, where stronger 
nations tend to dominate weaker ones. Colonies assimilate 
into the empires of the victorious imperialist nations. This 
assimilation process involves updating the position of 
colonies towards the position of their corresponding 
imperialist nation. This allows colonies to benefit from 
the superior solutions found by their imperialist rulers. To 
maintain diversity and prevent premature convergence, a 
revolution process is incorporated into ICA. During a 
revolution, a fraction of colonies may rebel against their 
imperialist rulers and become independent solutions. This 
helps in exploring new regions of the search space and 
avoiding stagnation. After each iteration, the fitness of all 
candidate solutions is evaluated based on the objective 
function of the optimization problem. Imperialist nations 
and colonies are selected for the next iteration based on 
their fitness, with higher fitness solutions being more 
likely to survive and reproduce. The algorithm terminates 
when a stopping criterion is met, such as reaching a 
maximum number of iterations or achieving a satisfactory 
solution. The imperialist competitive algorithm has been 
successfully applied to various optimization problems, 
including engineering design, scheduling and data 
mining. Its ability to balance exploration and exploitation, 
along with its parallelism and scalability, makes it an 
effective optimization tool for solving complex problems. 

While the Imperialist Competitive Algorithm (ICA) 

presents several advantages in optimization problem 

solving, it also has limitations. The performance of ICA 

can be sensitive to its parameters, such as the initial 

population size, the rate of revolution and the selection 

mechanism. Poorly chosen parameter values may lead to 

suboptimal convergence or premature convergence to 

local optima. ICA may exhibit slower convergence 

rates compared to some other optimization 

algorithms, especially in high-dimensional or complex 

search spaces. This can result in longer computational 

times, particularly for problems with large-scale data or 

intricate solution landscapes. While ICA incorporates a 

revolution process to promote exploration, it may still 

suffer from limited exploration capabilities, particularly 

in highly rugged or multimodal search spaces. The 

algorithm's exploration efficiency can be influenced by 

factors such as the selection mechanism and the degree of 

diversity in the population. Like many population-based 

optimization algorithms, ICA may encounter challenges 

in handling constraints effectively. Ensuring that 

candidate solutions satisfy all problem constraints can be 

non-trivial, especially when dealing with complex 

constraints or discontinuous feasible regions.  

Despite these limitations, the Imperialist Competitive 

Algorithm can be suitable for defect detection in concrete 

due to several factors. Defect detection in concrete often 

involves optimizing multiple parameters or features 

simultaneously, such as texture, color, composition and 

structural properties. ICA's ability to handle 

multidimensional optimization makes it well-suited for 

addressing complex defect detection tasks. ICA aims to 

find globally optimal solutions by balancing exploration 

and exploitation. In defect detection applications, where 

the goal is to identify defects accurately and reliably 

across different concrete samples or structures, the ability 

to search for global optima is crucial. ICA's adaptability 

to different types of data and solution spaces makes it 

versatile for defect detection tasks. It can accommodate 

diverse data sources, including sensor readings, imaging 

data, or material properties and adjust its search strategy 

accordingly. Concrete defect detection often involves 

dealing with noisy or imperfect data, such as variations in 

surface conditions or environmental factors. ICA's 

robustness to noisy data and its ability to converge to 

robust solutions make it suitable for handling such 

challenges in defect detection applications.  

Overall, while the imperialist competitive algorithm 

has limitations, its strengths in multidimensional 

optimization, global optimization capability, adaptability 

to data characteristics and robustness to noisy data make 

it a promising approach for defect detection in concrete. 

However, careful parameter tuning and consideration of 

problem-specific constraints are essential for achieving 

optimal performance in real-world applications. 

In this research, MATLAB is utilized to develop the 

ICA codes. The code is written in a multi-algorithm file 

format to help faster and feasible analysis. This MATLAB 

code implements the Imperialist Competitive Algorithm 
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(ICA) for optimizing a given cost function. The code first 

sets up the problem parameters, including the name of the 

cost function, the network structure and the search space 

boundaries. It then initializes the algorithmic parameters, 

such as the number of countries, initial imperialists and 

the number of decades for the optimization process. The 

main loop of the algorithm iterates over a specified 

number of decades, during which it performs assimilation, 

revolution, empire possession and imperialistic 

competition operations. Additionally, the code includes 

options for plotting the evolution of imperialists and the 

minimum and mean costs over the iterations. Finally, 

the algorithm terminates after the specified number of 

decades and it returns the best network and its 

corresponding cost. This code is suitable for optimizing 

the parameters of a neural network model for defect 

detection in concrete, as it efficiently explores the 

solution space and balances exploration with 

exploitation, potentially leading to improved detection 

accuracy and robustness. 
Moreover, the MATLAB toolbox is exploited to 

define the artificial neural network (Hugenschmidt, 2002) 
method for predicting the data of dependent and 
independent variables. Although there are special 
functions in MATLAB to define the neural network 
algorithm, a very specific method Imperial Competitive 

Algorithm (ICA) is used to write and define all 
parameters, exclusively. In the Imperial Competitive 
Algorithm (ICA) method, random samples are generated. 
Each sample is called a country (Mohammadi-Ivatloo et al., 
2012; Vapnik, 1998). The instruction of ICA is as follows: 

 

✓ Each sample is called a country 

✓ Countries (samples) are divided into two main groups 

o Imperialist: Imperialist countries control the 

colonies based on their power 

o Colony: Each imperialist has some colonies 

according to the powerfulness 
 

The Imperialist Competitive Algorithm (ICA) is 
employed to train a neural network model using the 
provided dataset. The dataset consists of input features 
and corresponding output values. Initially, the data was 
preprocessed, including normalization of input and 
output variables to ensure consistent scaling across the 

dataset. The dataset was then divided into training and 
testing sets, with 80% of the data used for training and 
the remaining 20% for testing. 

For the neural network architecture, a feedforward 
neural network with two layers is constructed, comprising 
five neurons in the hidden layer and the number of output 

neurons corresponding to the number of output variables. 
The training goal for the network was set at 0.0001 to 
optimize the network's performance. 

After training the neural network using the ICA 

algorithm, the model's performance is assessed on both 

the training and testing datasets. The Mean Squared Error 

(MSE) is calculated to evaluate the model's accuracy, with 

lower MSE values indicating better performance. 

Additionally, the correlation coefficient is computed to 

assess the relationship between the actual and predicted 

output values, with values closer to 1 indicating 

stronger correlations. 

Results and Discussion 

In this study, a linear regression plot is used to explore 

the relationship between two continuous variables. It 

depicts how a dependent variable changes with respect to 

an independent variable. In a linear regression plot, data 

points are typically scattered around a straight line, which 

represents the best-fitting linear relationship between the 

variables. The slope of the line indicates the strength and 

direction of the association between the variables, while 

the intercept represents the value of the dependent 

variable when the independent variable is zero. 

Additionally, the plot may include confidence intervals or 

prediction intervals around the regression line to assess 

the uncertainty of the estimated relationship. 

Figure 4 shows the linear regression of compressive 

strength versus compressive frequency. As it is obvious, 

the correlation coefficient of this model is about 98%, 

indicating a high accuracy of the result. Equation 7 

indicates the relationship between dependent and 

independent variables of compressive strength and 

frequency. In order to check the accuracy of this 

relationship, the p-value is compared to the significant 

level. The result section of Fig. 4 shows the p-value is 

2𝑒−16 presenting that the null hypothesis should be 

rejected. Therefore, the alternative hypothesis is accepted. 

It means that there is a slope of the line which was initially 

supposed to be zero. Based on this equation, the 

compressive strength of concrete can be computed among 

this frequency range.  

 

𝑌 = −9804.639 + 3.474 (𝑋) + 399.7 (7) 

 

Additionally, a Quantile-Quantile plot (Q-Q plot) is 

used to assess whether a dataset follows a particular 

probability distribution, such as the normal distribution. It 

compares the quantiles of the dataset with the quantiles 

of a theoretical distribution, typically plotted along the 

x-axis and y-axis, respectively. In a Q-Q plot, if the points 

approximately follow a straight line, it suggests that the 

dataset is consistent with the theoretical distribution. 

Deviations from the straight line indicate departures from 

the assumed distribution. Q-Q plots are particularly useful 

for identifying deviations from normality in a dataset, 

which is important for making valid statistical inferences 

when using parametric methods like linear regression or 

Analysis of Variance (ANOVA). 
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Fig. 4: Linear regression for compressive strength-

compressive frequency 
 

 
 
Fig. 5: Compressive strength-frequency: Residual and 

normal Q-Q plot 
 

 
 
Fig 6: Compressive strength-compressive wave velocity: 

Regression, residual and normal Q-Q plot 
 

Figure 5, the residual, Q-Q plots and the results for the 

compressive strength-frequency model are shown. The 

residual plot presents that there is no randomly distributed 

data. In other words, this model has a nonlinear 

relationship. The Q-Q plot approves nonlinearity since it 

does not have a completely uniform distribution. This 

model can be declared to have a heavy-tailed distribution 

pattern. Both the R-squared and adjusted R-squared 

exhibit exceptional accuracy, surpassing 99%. Figure 6 

shows the regression criteria of compressive strength-

compressive wave velocity for which the correlation 

coefficient is 0.979. The rejection of the null hypothesis 

is warranted by the low p-value (below 0.05), indicating 

the acceptance of the model equation (Fig. 6). Figure 7, 

the compressive velocity and frequency have very good 

regression. In other words, the correlation coefficient 

tends to be 1.00 and the R-squared error is 1.00 as well. 

The Q-Q plot has a lighted tail trend meaning that the 

values are smaller than the expected predicted values.  
In the ICA method, the training data set constitutes 

80%, with the remaining 20% allocated for testing. 

Random samples are generated using the rand perm 
command, producing row vectors of data sets. 
Subsequently, the network data set, training and cost 
function are defined. In the context of defining a regression 
model, a comparison is made between the real output and 
the network output. The Mean Squared error parameters 

have been defined to find out this error percentage and the 
correlation coefficient of the data set is calculated based on 
the linear regression.  

The trained neural network demonstrates promising 
performance on both the training and testing datasets. 

Specifically, the Mean Squared Error (MSE) values for 
the compressive frequency-strength and compressive 
wave velocity datasets are 0.0039 for both the training and 
testing datasets (as illustrated in Figs. 8 and 10). These 
low MSE values indicate that the model accurately 
captures the relationships between the input features and 

the corresponding output variables. Additionally, the 
correlation coefficients for the training and testing 
datasets are 0.9942, as depicted in Figs. 9 and 11, 
respectively. These high correlation coefficients signify 
strong correlations between the actual output values and 
the predictions made by the neural network model. 
 

 
 
Fig. 7: Compressive frequency-compressive wave velocity: 

Regression, residual and normal Q-Q plot 
 

 
 
Fig. 8: Imperial competitive algorithm method for linear 

regression, compressive frequency-strength 
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Fig. 9: Imperial competitive algorithm method-prediction of 

real-network, compressive frequency-strength 

 

 
 
Fig. 10: Imperial competitive algorithm method for linear 

regression, compressive wave velocity-strength 

 

 
 

Fig. 11: Imperial competitive algorithm method-prediction of 

real-network, compressive wave velocity-strength 

The effectiveness of the trained neural network model 
is further underscored by visualizations. A plot comparing 
the real output values with the network's predicted output 

values for the training dataset vividly demonstrates the 
model's capability to approximate the target function. This 
plot serves as tangible evidence of the model's accuracy 
and proficiency in capturing the underlying patterns 
within the data. Furthermore, a Quantile-Quantile (Q-Q) 
plot provides a comprehensive view of the correlation 

between the real output and the network output across 
different quantiles of the dataset. This visualization 
confirms the model's consistency and accuracy across 
various segments of the dataset, reinforcing its reliability 
and effectiveness. 

In conclusion, the results affirm the successful 

application of the Imperialist Competitive Algorithm 

(ICA) in training a neural network model for the provided 

dataset. Through its robust optimization capabilities, the 

ICA algorithm facilitated the creation of a neural network 

model that not only achieved accurate predictions but also 

established strong correlations between the input features 

and the output variables. These findings underscore the 

potential of the trained model for effective decision-

making and predictive analysis in the domain. 

Support Vector Machines (SVM) 

SVM represents a potent and adaptable family of 
machine learning algorithms extensively employed in 
both classification and regression endeavors. Smola and 
Schölkopf (2004) developed the SVM. SVM is 
fundamentally a supervised learning algorithm adept at 

categorizing data points into distinct classes by 
identifying the optimal hyperplane that maximizes the 
separation between these classes. Essential to SVM are 
the "support vectors," which denote the data points 
positioned near the decision boundary and the algorithm 
strives to maximize the distance between these support 

vectors and the hyperplane. 
Support Vector Machines (SVMs) present a robust and 

versatile approach to defect detection in concrete 
structures. These algorithms are well-suited for this task 
due to several key factors. Firstly, SVMs excel in binary 
classification tasks, making them adept at distinguishing 

between defective and non-defective concrete samples 
based on various features like texture, color, composition, 
or structural properties. Through the process of margin 
maximization, SVMs find the optimal hyperplane that 
best separates the data points of different classes while 
maximizing the margin, thus enhancing their 

discriminative power. Moreover, SVMs can handle non-
linear relationships in the data using the kernel trick, 
which maps the data into a higher-dimensional feature 
space where it becomes linearly separable. This capability 
is crucial for capturing complex patterns and non-linear 
decision boundaries inherent in concrete defect detection 

tasks. Additionally, SVMs offer robustness to overfitting 
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through regularization parameters, striking a balance 
between bias and variance to ensure generalization to 
unseen data. In concrete defect detection, where accurate 

classification of unseen samples is paramount, this 
robustness is invaluable. Furthermore, SVMs perform 
effectively in high-dimensional spaces, making them 
suitable for datasets with numerous features such as those 
encountered in concrete defect detection. Finally, SVMs 
provide interpretable decision boundaries, allowing 

domain experts to understand and interpret the model's 
decisions, which is essential for gaining insights into the 
factors contributing to concrete defects. In fact, SVMs 
offer a powerful and interpretable approach for defect 
detection in concrete structures, leveraging their ability to 
handle non-linear relationships, robustness to overfitting, 

effectiveness in high-dimensional spaces and 
interpretability to enhance the maintenance and safety 
assessment of infrastructure. 

In the realm of classification, the SVM objective is to 

discern a hyperplane within an n-dimensional space that 

effectively segregates data points into their respective 

classes, ensuring maximal distance from the hyperplane. 

Termed "support vectors," these data points exert 

significant influence on the hyperplane's positioning due 

to their proximity, ultimately defining the classifier's 

margin. The pursuit of an optimal hyperplane involves 

selecting one with the maximum margin, representing the 

utmost separation between data points from both classes. 

Hyperplanes serve as decisive boundaries for classifying 

data points, where those falling on either side are assigned to 

different classes, with the hyperplane's dimension contingent 

upon the number of features. Support vectors, being those 

in closest proximity to the hyperplane, play a pivotal role 

in determining its position and orientation. The removal 

of support vectors alters the hyperplane's location, 

underscoring their crucial role in SVM construction. 
The SVM algorithm aims to maximize the margin 

between data points and the hyperplane, with hinge loss 

serving as the pivotal loss function. In scenarios where 
there is no misclassification, the model updates the 
gradient solely from the regularization parameter. 
However, in the event of misclassification, where the 
model erroneously predicts the class of a data point, the 
loss, in conjunction with the regularization parameter, is 

incorporated for gradient update. This comprehensive 
overview illuminates the key facets of SVM, providing 
insights into its classification mechanism and the pivotal role 
played by support vectors in optimizing model performance. 
For more details about using SVM in construction and civil 
engineering refer to (Damirchilo et al., 2021; Damirchilo, 

2021; Smola and Schölkopf, 2024). 
The provided Python script facilitates defect detection 

in concrete utilizing a statistical approach, particularly 
leveraging Support Vector Machines (SVMs) for pattern 
recognition. The script begins by importing essential 
libraries such as os, pandas, numpy and modules from 

scikit-learn. It then sets the working directory to the 
location where the data files are stored. Ranges for each 
defect category (control, void, corrosion) are defined 

based on various concrete properties like shear velocity, 
compressive velocity, frequency, modulus of elasticity, 
shear modulus and compressive strength. The 
load_dataset () function reads CSV files containing data 
for each defect category and combines them into a single 
dataset. The dataset is then split into training and testing 

sets using the train_test_split () function from scikit-learn. 
The train_model () function trains an SVM classifier 
using the training data. Evaluating the Model: The 
evaluate_model () function assesses the trained model's 
performance on the testing data and prints a classification 
report. The predict_defect_category () function takes 

input parameters for concrete properties and predicts the 
defect category (control, void, corrosion) based on the 
predefined ranges. The main function prompts the user to 
enter concrete property values, creates an input 
parameters list and predicts the defect category using the 
trained SVM model. The main () function orchestrates the 

entire process by calling the aforementioned functions in 
sequence. It loads the dataset, trains the SVM model, 
evaluates its performance and finally predicts the defect 
category based on user input. The main function is 
invoked to execute the defect detection process when the 
script is run as the main program. Overall, this script 

offers an automated approach to detect defects in concrete 
by employing SVM-based pattern recognition, providing 
a systematic method to classify concrete samples into 
different defect categories based on their properties. 

Reinforced Concrete Defects Classification with 

Support Vector Machine 

This research explores the application of SVM in the 
classification of defects in reinforced concrete structures. 
The defects under consideration include void, corrosion 

and debonding, with a specific range defined for each 
type. Notably, due to the close proximity of corrosion and 
debonding ranges, they are treated as a single corrosion 
group in our analysis. Support Vector Machine (SVM) 
was originally designed for binary classification tasks, where 
it separates data into two classes using a hyperplane in a high-

dimensional space. However, there are strategies to extend 
SVMs for multi-class classification, such as the One-vs-All 
(OvA) and One-vs-One (OvO) approaches. Figure 12 
represents the hyperplane and support vectors for three 
classes (corrosion, void and control) while considering 
two features (shear velocity and compressive strength).  

In this research, we used the OvO method which 

compares each pair of classes. Each classifier is trained to 

distinguish between two classes. In the OVO method, the 

resulting class is obtained by majority votes of all 

classifiers. Table 3 represents an example of how SVM 

compares 3 classes and selects corrosion with a majority 

vote of 2.  
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Fig. 12: Representation of classification of corrosion, void and 

control based on two features 

 

Table 3: Multi-class classification based on OVO method 

representation 

 Corrosion  Corrosion Void vs  

Class vs void vs control control Total 

Corrosion 1 1 0 2 

Void 1 0 0 1 

Control 0 1 0 1 

 
Table 4: Classification metrics for defects classes in 

reinforced concrete 

 Metrics 

 ---------------------------------------------------- 

Defect category Precision Recall F1-score 

Control 0.50 0.50 0.50 

Corrosion 0.50 1.00 0.67 

Void 0.00 0.00 0.00 

 
Table 5: Representing the SVM classification of defects in 

reinforced concrete structures 

Features Scenario 1  Scenario 2   Scenario 3 

Shear velocity 4000 6500 9000 

Compressive velocity 5000 9000 130000 

Shear frequency 750 2000 3000 

Compressive frequency 2100 3000 5000 

Young's modulus 1580 4000 6000 

Shear modulus 300 1000 2000 

Compressive strength 2895 5000 7000 

Defect category Corrosion Void Control 

 
The primary objective of this study is to leverage SVM 

to classify defects based on seven key features of 

reinforced concrete. These features encompass shear 

velocity, compressive velocity, shear frequency, 

compressive frequency, young modulus, shear modulus 

and compressive strength. The SVM model categorizes 

each defect into one of three groups: Void, corrosion, or a 

control group representing the absence of defects.  

The data analysis is performed using the Python 

programming language, with the SVM modeling 

facilitated by the scikit-learn library. The dataset utilized 

for this study is presented in Table 2 and the data is split 

into training and test sets using the train_test_split 

function from scikit-learn. Specifically, 80% of the data is 

allocated for training, while the remaining 20% is 

reserved for testing. 

The results of the SVM classification are evaluated 

using precision, recall and F1-score, as outlined in Table 4.  

Precision serves as a metric for assessing the accuracy 

of positive predictions, while recall measures the 

classifier's ability to correctly identify positive cases in the 

dataset. The F1-score, regarded as the harmonic mean of 

precision and recall, provides a comprehensive evaluation 

of the model's performance. 

Table 5 depicts three scenarios for presenting values 

of seven features and SVM detects defects in each 

scenario based on these feature values. The defect 

categories in scenarios 1, 2 and 3 are corrosion, void and 

control, respectively. 

The absence of a comprehensive and complete 

comparison of results from different algorithms and the 

lack of comparison with other algorithms in this study 

could be attributed to various factors. Firstly, the research 

appears to have primarily focused on specific Artificial 

Intelligence (AI) and Machine Learning (ML) methods, 

such as linear regression, Imperial Competitive Algorithm 

(ICA) and Support Vector Machines (SVM), for 

analyzing Impact Echo test data to classify defects in 

reinforced concrete structures. The primary aim was to 

assess the effectiveness of these selected methods rather 

than conducting a broad comparison with alternative 

algorithms. Secondly, conducting a thorough comparison 

of multiple algorithms requires significant resources, 

including time, computational power and expertise. Given 

the complexity of the study's methodology and the need 

for detailed analysis and validation, a prioritization of 

in-depth examination of a few selected algorithms over a 

broader comparison is made by the researchers. Thirdly, 

the study is designed with specific research objectives and 

a defined scope, focusing on the development and 

evaluation of AI and ML techniques for defect 

classification using nondestructive testing methods. 

Extending the comparison to a wide range of algorithms 

could have exceeded the intended scope. Finally, the 

researchers relied on existing literature and established 

methods in the field of nondestructive testing and defect 

classification in reinforced concrete structures. 

Consequently, the proposed algorithms have been 

evaluated against these established methods rather than 

conducting a comprehensive comparison with 

alternative algorithms. 

Conclusion 

This research studies different statistical methods, 

machine learning and neural network methods to 
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determine the type of defects inside reinforced concrete 

structures. By using the methodologies described in this 

study, researchers can predict the type of defects using 

nondestructive test methods. On the top of the 

explanations, the results can be ordered as follows. 

The impact Echo test can be employed to accurately 

obtain the required data for defect detection of existing 

concrete structures.  

The paper employed linear regression analysis to 

investigate the relationship between compressive strength 

and frequency in concrete, revealing high correlation 

coefficients exceeding 98% and providing a mathematical 

equation (Eq. 7) to represent the relationship. 

Q-Q plots were utilized to assess the normality of the 

dataset and identify deviations from expected 

distributions, enhancing understanding of the data's 

characteristics, including nonlinearity and distribution 

patterns and validating statistical inferences drawn from 

the linear regression models. These insights contributed to 

the study's findings and provided practical implications 

for predicting concrete properties based on frequency and 

velocity parameters. 

The ICA method with the trained neural network 

exhibits promising performance on both training and 

testing datasets, with low MSE values of 0.0039 for 

compressive frequency-strength and compressive wave 

velocity datasets. High correlation coefficients of 0.9942 

for both training and testing datasets indicate strong 

correlations between actual output values and predictions 

made by the neural network model. 

Visualizations further underscore the effectiveness of 

the trained neural network model, with a plot comparing 

real and predicted output values for the training dataset 

demonstrating the model's capability to approximate the 

target function. Additionally, a Quantile-Quantile (Q-Q) 

plot provides a comprehensive view of the correlation 

between real output and network output across different 

quantiles of the dataset, confirming the model's 

consistency and accuracy. These results affirm the 

successful application of the Imperialist Competitive 

Algorithm (ICA) in training a neural network model, 

indicating its potential for effective decision-making and 

predictive analysis in the domain. 

The support vector machine method classifies the 

category of defects based on impact echo results and 

displays the defect’s type per user-input data. 
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