

 © 2021 Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

American Journal of Engineering and Applied Sciences

Original Research Paper

Modelling IoT Systems with UML: A Case Study for

Monitoring and Predicting Power Consumption

1,2Marla Teresinha Barbosa Geller and 2,3Anderson Alvarenga de Moura Meneses

1CEULS/ULBRA-Lutheran University Center, Santarém, PA, Brazil
2Laboratory of Computational Intelligence, Federal University of Western Pará, Santarém, PA, Brazil
3Graduate Program in Amazon Natural Resources, Federal University of Western Pará, Brazil

Article history

Received: 26-10-2020

Revised: 19-01-2021

Accepted: 22-01-2021

Corresponding Author:

Marla Teresinha Barbosa

Geller

CEULS/ULBRA – Lutheran

University Center, Santarém,

PA, Brazil

Email: marla.geller@gmail.com

Abstract: Software Engineering has evolved to meet the growing

complexity of current systems and the resources of the Unified Modeling

Language (UML) enable the modeling of such systems in different views.

The Internet of Things (IoT) paradigm appears with very peculiar

characteristics such as the heterogeneity of its physical and virtual

components that must be integrated. Designing systems of this nature is a

challenge and modeling using UML is consolidating itself as a resource to

overcome this challenge. The objective of this work is to present some

proposals for UML extensions already available in the literature, to

represent IoT systems. Then, we present a case study with those models for

representing a small energy monitoring system with artificial intelligence

for power consumption forecast.

Keywords: Unified Modelling Language, Internet of Things, Software

Engineering, Power Consumption, Energy Efficiency

Introduction

The internet is the basis for the organization in
networks in the information age, extending its ubiquitous
characteristics to various technologies in order to form
the Internet of Things (IoT; Serpanos and Wolf, 2017).
The IoT interconnects systems and objects in different

scales, consisting in complex systems called Cyber-
Physical Systems (CPSs). The IoT technology enables
the integration of several heterogeneous objects, for
example a simple object with Radio Frequency
Identification (RFID) or an autonomous vehicle; or yet,
objects with great computational power or with limited

computational resources.
The integration of such objects must be based on

standardized communication protocols which use
intelligent interfaces in a transparent way, for generating
data in exponential quantity and variety (Bacquet et al.,
2018), besides enabling prediction for decision making

when implemented with Artificial Intelligence (AI)
models. Such IoT characteristics represent a great
opportunity for improving work and life conditions, with
benefits in areas such as transportation, health care and
electric power. However, new challenges also emerge
such as heterogeneity, reusability, adaptability, security,

analysis of massive amount of data, demanding the
investigation of methods for the development of such
systems (Ciccozzi and Spalazzese, 2016).

The usage of software engineering principles for the

implementation of IoT systems is still being adapted.

Although formal bases and a well structured project must

be necessary, modeling IoT systems is still challenging.

According to (Pressman, 2006), software engineering

objectives include the best understanding of the problem,

using resources such as Unified Modelling Language

(UML) diagrams for modelling complex systems.

According to (Zambonelli, 2016), software engineering,

as a discipline, needs to identify resources and more

general problems that characterizes IoT systems, for

representing the integration of its elements in a model.

The UML uses diagrams that enable a graphical

vision of the systems elements and their integration,

although it must be extended and adapted for an IoT

system representation. Some authors (Thramboulidis and

Christoulakis, 2016; Robles-Ramirez et al., 2017;

Reggio, 2018) propose the use of the UML for IoT

systems, with the suggestion of extensions. One of the

benefits of using UML for IoT is the great number of

resources available. The challenge of modelling an IoT

system is the sufficiency level of details for the

engineers to implement it and at the same time

abstracting complexities for a high-level understanding

for system configuration.

In this sense, developing IoT systems for power

monitoring is a challenging task, taking into account the

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

82

diversity of internet-enabled devices, sensors, as well as
systems requirements and the type of decision-making
that is targeted. Thus, the main contributions of the
present work are: (1) Demonstrating how researchers are

developing UML for IoT systems; and (2) proposing an
IoT model for a power consumption prediction and
monitoring software, with Artificial Intelligence (AI).

IoT and UML

UML Background

The UML is a language of general usage for

specifying, visualizing, constructing and documenting
artifacts of the software system (Booch et al., 1999). One
of its objectives is the standardization of different
methods that already existed for representing object-
oriented systems. Its current version (2.5.1) has 14
diagrams which represent static and behavior aspects of

a system (OMG, 2017). With the increasing complexity
of current systems, the UML has aggregating extension
for specifying several systems characteristics, which
includes pervasive computing, distributed computing,
multiplatform systems, etc.

IoT Background

The IoT has emerged as a technology with

application in several areas such as health care, business

and transportation. The IoT is based on existing

technologies such as sensor networks and internet

protocols (Serpanos and Wolf, 2017).

The main elements that compose an IoT system are
sensors, software, communication system and actuators,
which generate a massive amount of data. The way such

devices interact is given by the architecture of the system.
Issues related to data collection, storage, representation,
retrieval and usage are implicit to such systems.

The main input of IoT-based applications is data
continuously generated in several physical or virtual
devices in order to offer services for the users. Such

big data generated and made available by an IoT
system is a helpful input for decision-making, with the
possibility of application of AI for tasks such as
preprocessing and data analysis. Thus, AI is the
technology that helps an IoT system to give sense to
the overwhelming amount of data.

Modeling IoT Systems with UML

Representations of IoT systems using UML resources
are discussed in the present section. Although there is
not a standard and sufficiently representative language
for IoT systems, the UML is one of the visual modelling
resources that is making possible the usage of extensions
for representing such systems.

According to (Eterovic et al., 2015), an IoT system

may be represented by two types of languages: Textual

and visual. The authors propose the usage of UML

resources as visual language, for representing the various

parts of an IoT system as:

 Things – Basic element of an IoT system represented

by the UML diagram of components. In this sense,

components communicate and build an IoT system

 Annotation – Resource for specifying the type of

objetcs as <<virtual>>, or a collection of objects as

<<subsystem>>, etc

 Encapsulation and subsystems – Collection of

objects that are part of a same context

 Items – Components of an object, which are

classified in three groups: Input (e.g., sensors),

output (e.g., actuators, switches and SMS messages)

and software components, represented by classes

with their respective stereotype (<<input>>,

<<output>>, or <<component>>) and are grouped

inside the objects. The items communicate through

interfaces represented by three forms: Circle,

semicircle and the stereotype <<interface>>

 Ports – The internal structure of a system with its

objects, items and relationships is represented by

ports, which show how the subsystems interact with

each other. A subsystem may be represented as a

black box or a white box

 Rules – Rules are represented as methods inside a

UML class and relate to items and ports

Figure 1 shows such elements of the model proposed

by (Eterovic et al., 2015). Two subsystems, House and

Work are interconnected by the port pTemp which

connects the input device <<input>> Temperature

through the interface iTemp. The subsystem work is

represented as a black box whereas the subsystem House

is represented as a white box.

Thramboulidis and Christoulakis (2016) state that the

IoT brings along great opportunities for companies to

reach better performance in global and distributed

environments. However, IoT is at an initial phase and

demands research for the development and

standardization of safe and reliable technologies for

efficient decision-making. Those authors investigate the

development of UML4IoT, which integrate CPS and the

IoT. It describes a framework for orienting the

challenges introduced by the usage of the IoT in the

process of products development.

UML4IoT presents two ways of modelling the

interface of simple intelligent objects: (a) Using the

UML class diagram and extensions for specifying a part

of the system and (b) using source code in Java, if high

level projects are not sufficiently represented by UML

resources. The UML4IoT is Object-Oriented (OO) and

use the class diagrams with extensions, forming a profile

for a particular domain.

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

83

Fig. 1: UML elements used in an IoT model (Eterovic et al., 2015)

Fig. 2: UML extensions used in the UML4IoT proposal. Adapted from (Thramboulidis and Christoulakis, 2016)

According to (Thramboulidis and Christoulakis,

2016), in an IoT system there are components which

request services, represented in the model by the UML

stereotype <<realizes>>. The stereotype <<interface>>

represents the interfaces that enable the communications

between the systems components.

In the Fig. 2, the ClassA which provides services for

the ClassC has its methods stereotyped as

<<OperationResource>>, whereas ClassB, which uses

ClassC’s services has its methods stereotyped as

<<ObservableResource>>. Such extensions and other

defined by the profile UML4IoT enable the

transformation of a UML OO traditional approach to a

Representional State Transfer (REST) architecture

(Thramboulidis and Christoulakis, 2016).

Reggio (2018) uses the UML for specification of

the functional and non-functional requirements of IoT

systems, in the Service-Oriented Architecture (SOA)

paradigm. The method proposed is the IoTReq.

According to the author, an IoT system present

peculiar characteristics which need specific methods

for representing their requirements, implementing a

hardware and software intersection. The IoTReq

method proposes the domain modeling, passing to an

extended domain modeling, definition of the strategic

objectives, specification of operational objectives

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

84

(functional requirements) and the definition of the

technological objectives (non-functional objectives),

as shown in Fig. 3.

According to the SOA paradigm followed by the

IoTReq method, an IoT system has participants which

use and provide services through an architecture and as

such it is modelled. For static vision of the model the

participant objects are stereotyped as <<participant>>.

Such objects provide and use services through ports that

are stereotyped as <<service>> for services provided and

as a tilde (“~”) before the service’s name for services

used, as shown in Fig. 4. In Fig. 4, ClassA provides the

services serv1 and serv2, whereas ClassB uses such

services. Both classes are stereotyped as

<<participant>>, since both are parts of the IoT system.

Patnaik and Snigdh (2019) report the main concepts

and abstractions related to the IoT paradigm which can be

represented with UML resources. The use case diagram,

for example, designates functional requirements of the

system, actors as well as objectives of the application. The

class diagram represents a static model with the systems

objects and their relationships. Sequence, Collaboration,

Activity and state diagrams model the interactions and the

component and deployment diagrams are suggested when

necessary. The authors refer to (Zambonelli, 2016) as a

basis for their proposal.

Fig. 3: Overview of the IoTReq method (Reggio, 2018)

Fig. 4: UML stereotypes for the static view of an IoT system. Adapted from (Reggio, 2018)

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

85

Ciccozzi and Spalazzese (2016) propose the

method MDE4IoT and use the resources of the base

subset for executable UML models – Foundational

UML (fUML) and its action language ALF described

in (OMG, 2018; 2017) for describing the system’s

functionalities. Software allocations for the hardware

and hardware components are represented through the

component diagram. The consistency between the

models is enabled by MDE4IoT from several

standpoints since the UML is used for creating

specific domain profiles having a unique metamodel

as a basis (Ciccozzi and Spalazzese, 2016).

Prehofer and Chiarabini (2013) propose the combination

of two approaches for modeling IoT systems: A model-

based approach together with mashup tools. Such proposal

is shown in Fig. 5 with the integration of the component

diagram and the Paraimpu tool (Pintus et al., 2012).

For the model-based approach, (Prehofer and

Chiarabini, 2013) use the class diagram as well as the

component diagram and map the physical entities in a

deployment diagram. The system behavior is modeled

with the sequence diagram, state machine diagram and

activity diagram as originally suggested by the UML.

Robles-Ramirez et al. (2017) present the IoTsec,

which uses UML extensions for security encapsulated in

UML nomenclature and stereotypes for modeling

common actors. The objective is to facilitate the

representation of security issues with a visual notation,

even if the developers are not completely familiar to

Internet security concepts.

The ThingML approach (Morin et al., 2017) includes

a set of tools and a methodology directed to IoT

applications, besides modeling with UML resources.

Editors, exports to UML and multiplatform code

generation are among those tools.

A Reference Architecture Model (RAM) of an IoT

system is represented with UML resources by (Bauer et al.,

2013), which discuss architecture issues in detail. An

extension of the language SysML (OMG Friedenthal et al.,

2006; Roudier and Apvrille, 2015) extended the notation

originating the SysML-sec version for capturing security

and protection issues. The authors define model-driven

environments with the Model-Driven Engineering (MDE)

for supporting the system development and use a tool for

automate the verification and formal simulation of

models, providing online feedback for UML diagrams.

Fig. 5: Component diagram integrated with mashups tools (Prehofer and Chiarabini, 2013)

Table 1: Methods that use UML and its extensions (Robles-Ramirez et al., 2017)

UML for IoT 1 2 3 4

UMLsec (OMG Friedenthal et al., 2006)

IoT-A (Bauer et al., 2013)

SysML (OMG Friedenthal et al., 2006)

SysMLsec (Roudier and Apvrille, 2015)

UML4IoT (Thramboulidis and Christoulakis, 2016)

ThingML (Morin et al., 2017)

IoTsec (Robles-Ramirez et al., 2017)

IoTReq (Reggio, 2018)

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

86

Thus, several methods for representing IoT systems
use existing resources. Table 1 summarizes those
methods, resources and approaches. The columns are the
characteristic presented by each method: (1) Specific
extensions for IoT; (2) reference and security models of
the systems; (3) UML extensions or visual
representation; and (4) security requirements model.

Case Study: Power Consumption Monitoring

and Prediction System – EnergySaver

In this section, a case study with the EnergySaver
system is presented. EnergySaver is a system for
monitoring and predicting power consumption with AI,
developed by the Laboratory of Computational Intelligence
of the Federal University of Western Pará, in Brazil. The
components of the system are represented in Fig. 6.

The EnergySaver system monitors electronic devices,

for example with a current sensor connected to a water

cooler at the laboratory, representing an edge device

(leaf node) of the IoT system. The sensor collects data

for the Arduino, which retransmits them to a Raspberry

Pi. The Raspberry Pi is responsible for transmitting data

to the server using the Message Queue Telemetry

Transport (MQTT; http://www.mqtt.org) protocol. Data

are stored in a MongoDB database (www.mongodb.com)

and sent to a webpage in real-time.

A Long-Short Term Memory (LSTM; Hochreiter and

Schmidhuber, 1997), a type of recurrent neural network,

was implemented, tested and deployed in the prediction

module for forecasting univariate time series (e.g., power

consumption data of a university building, or power

consumption data of an edge device).

Fig. 6: Layout of the power consumption monitoring and predicting system – EnergySaver.

Fig. 7: Activity diagram for modeling an IoT system

Water cool
RaspberryPy

Server flask

Sensor

Train

Test

Neural network LSTM

Web page

Mosquitto

MongoDB

Arduino

http://www.mqtt.org/
file:///C:/Users/WindowS%2010/Downloads/www.mongodb.com

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

87

Methodology

Our system modeling is based on Service-Oriented
Architecture (SOA), with the UML representation of the
domain model, service model, service architecture and
the security model. The modeling process was based on
(Thramboulidis and Christoulakis, 2016; Reggio, 2018;
Robles-Ramirez et al., 2017) and is shown in Fig. 7,
detailing the activities developed in three stages. The
first stage defines strategic objectives that are refined
into operational objectives, giving rise to functional
requirements. The second step models the system
components with the domain model, the services offered
and their architecture. The third stage of modeling
specifies security requirements and defines the
technology to be used through technological objectives.

Use case diagram without actors was used to define

functional and non-functional requirements. Following

Reggio's model (2018), thick lines were used to specify

the strategic objective (Fig. 8). The strategic objective is to

monitor and predict energy consumption and is subdivided

into sensor monitoring, viewing a web page and making

predictions. The dotted arrows show the connections

between them. Actors are not represented in this model.
Figure 9 to 11 show the EnergySaver system’s

operational objectives (requirements). Thin lines are
used for operational objectives that translate into
system requirements.

The second stage of the modeling shows the static
view of the system through the domain model with the
class diagram (Fig. 12). The purpose of this model is to
show the components of the system, which are
represented by stereotyped classes. The main classes are
identified with the <<participant>> stereotype, which in
the EnergySaver model are: Water cooler, sensor, web
page and LSTM neural network.

The service model for the use case “Update data set”
is represented by the sequence diagram (Fig. 13), where
the participating objects exchange messages by making
available and using services.

Classes participating in the service are stereotyped
with <<service>>. The services use two types of in/out
interface to specify the use or offer of a service
respectively.

Fig. 8: Strategic objectives of the IoT system

Fig. 9: IoT system operational objectives (requirements)

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

88

Fig. 10: IoT system operational objectives (requirements)

Fig. 11: IoT system operational objectives (requirements)

Fig. 12: Domain model (classes) of the IoT system

For the IoT system modeled, the update service is

represented by the service class “Update” with its

interfaces (UpdateIn and UpdateOut) in the sequence

diagram. The LSTM network is responsible for

predicting information based on data stored in the

database (see the Service Model “make prediction” in

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

89

Fig. 14). The objects participating in this service are:

The data set, the LSTM neural network and the web

page. The sequence of exchanging messages between

these objects includes details of the network's functions

with their input and forget gates, as well as training and

testing the network.

The services architecture was modeled in the third

stage of the process, using the class diagram, with the

representation of the publisher/subscriber

communication interfaces. The system classes use ports,

represented by small rectangles for the interfaces to

exchange services, as in Fig. 15. As an example, the

services exchanged between the Arduino and the

Raspberry Pi. The Arduino device provides the reading

of the data and calculates the average and makes it

available to the Raspberry Pi.

Fig. 13: Service model of the IoT System

Fig. 14: Service model of the use case “make prediction”

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

90

Fig. 15: Classes interfaces with the exchange of services

Fig. 16: Lane model to specify the different levels of the system

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

91

Fig. 17: Web page access authentication requirement

Fig. 18: EnergySaver technological goals

The security model is based on the work of

(Robles-Ramirez et al., 2017). Activity diagram

organizes in lanes the different levels of the

application showing the activities and components

that are part of each level. Thus, it is possible to see

the need to implement a security protocol for each

level, as shown in Fig. 16.

Figure 17 exemplifies the representation of a security

requirement for accessing the web page. In this way, the

requirements for all levels can be represented.

The technological objectives of the system will be the

basis for non-functional requirements. They can be

represented, according to (Reggio, 2018), with use cases

with dotted lines, as shown in Fig. 18. Use case model

specifies the technologies used for each operational

objective. Thus, to validate the sensor (operational

objective) it is necessary a Variac voltage regulator and

and a multimeter. MongoDB and NoSql technologies are

used to store data. The MQTT protocol is used to send

data to Arduino and Raspberry Pi. In order to make the

predictions, an LSTM neural network is deployed. Flask

is the server used for the system and the results are

displayed on a web page.

Conclusion

With UML resources, it is possible to represent a

small IoT system, following the proposals of several

authors (Thramboulidis and Christoulakis, 2016;

Robles-Ramirez et al., 2017; Reggio, 2018). Different

stages of the system implementation produced very

consistent models, including functional and non-

functional requirements that were represented by the

UML use cases. The domain model was specified with

the classes and their relationships. The class diagram

Use flask server

Validate sensor Send data to Arduino

Send data to server

Update data set

Send data to raspberry

NaSql-MongoDB

technology

Show results

WebPage

Validate multimeter

Get voltage variation

Use MQTT protocol

Predict using LSTM

Train and test network

LSTM network

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

92

and the sequence diagram with its communication

interfaces modeled the services of the system,

including AI tools, which enables pattern recognition

and decision-making, making sense of the massive

amount of data in IoT systems. Classes with ports and

interfaces were used to design the services

architecture. The activity diagram showed a security

model for the different levels of the IoT system.

The challenge of modeling IoT systems lies in their

heterogeneity, due to its physical and virtual components

that are integrated, forming a complex system. UML

resources are able to represent the different views of an

IoT application (static, behavioral, security, etc.) using

its diagrams and extensions.

The need to visually represent IoT systems was the

motivation for researchers to use the UML resources,

giving rise to several proposals. Just as UML emerged

to standardize the representation of OO systems in

1999, the current effort is to standardize it to a

consistent UML for IoT.

Acknowledgment

A.A.M.M. acknowledges Banco da Amazônia S.A.

(BASA) for supporting this research (Project Energy

Monitoring System using Internet of Things, Big Data

and Machine Learning).

Author’s Contributions

Marla Teresinha Barbosa Geller: Research,

methodology, visualization, writing-original draft.

Anderson Alvarenga de Moura Meneses:
Conceptualization, supervision, writing-review and editing.

Ethics

This article is original and contains unpublished

material. The authors have read and approved this

manuscript and no ethical issues are involved.

References

Bacquet, J., Riemenschneider, R., & Jensen, P. W.

(2018). Future Trends in IoT. In: Next Generation in

Internet of Things, Vermesan, O., & Bacquet, J.,

(Eds.), River Publishers Series in Communications,

pp: 9-17. ISBN: 9788770220071.

Bauer, M., Boussard, M., Bui, N., Carrez, F., &

Francois, C. (2013). Internet of Things –

Architecture IoT-A, Deliverable D1.5 – Final

architectural reference model for the IoT v3.0.

Internet of Things - Architecture (IoT-A).

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The

Unified Modeling Language User Guide Addison-

Wesley. Reading.

Ciccozzi, F., & Spalazzese, R. (2016, October). Me4iot:

supporting the internet of things with model-driven

engineering. In International Symposium on

Intelligent and Distributed Computing (pp. 67-76).

Springer, Cham.

Eterovic, T., Kaljic, E., Donko, D., Salihbegovic, A., &

Ribic, S. (2015, October). An Internet of Things

visual domain specific modeling language based on

UML. In 2015 XXV International Conference on

Information, Communication and Automation

Technologies (ICAT) (pp. 1-5). IEEE.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural computation, 9(8), 1735-1780.

Morin, B., Harrand, N., & Fleurey, F. (2017). Model-

based software engineering to tame the iot jungle.

IEEE Software, 34(1), 30-36.

OMG Friedenthal, S., Moore, A., & Steiner, R. (2006,

July). OMG systems modeling language (OMG

SysML) tutorial. In INCOSE Intl. Symp (Vol. 9, pp.

65-67).

OMG. (2017). Action Language for Foundational UML

(Alf); Concrete Syntax for a UML Action Language;
Version 1.1. https://www.omg.org/spec/ALF/1.1/PDF

OMG. (2018). Semantics of a Foundational Subset for

Executable UML Models (fUML). Version 1.4.

OMG Document Number: formal/2018-12-01

https://www.omg.org/spec/FUML/1.4/PDF.

(Retrieved Jan 10, 2020).

Patnaik, K. S., & Snigdh, I. (2019). Modelling and

Designing of IoT Systems Using UML Diagrams:

An Introduction. In Integrating the Internet of

Things Into Software Engineering Practices (pp.

36-61). IGI Global.

Pintus, A., Carboni, D., & Piras, A. (2012, April).

Paraimpu: a platform for a social web of things. In

Proceedings of the 21st International Conference on

World Wide Web (pp. 401-404).

Prehofer, C., & Chiarabini, L. (2013). From IoT

mashups to model-based IoT. In W3C Workshop on

the Web of Things.

Pressman, R. S. (2006). Engenharia de Software,

McGrawHill, 6a.

Reggio, G. (2018, May). A UML-based proposal for IoT

system requirements specification. In Proceedings of

the 10th International Workshop on Modelling in

Software Engineering (pp. 9-16).

Robles-Ramirez, D. A., Escamilla-Ambrosio, P. J., &

Tryfonas, T. (2017, November). IoTsec: UML

extension for Internet of things systems security

modelling. In 2017 International Conference on

Mechatronics, Electronics and Automotive

Engineering (ICMEAE) (pp. 151-156). IEEE.

https://www.omg.org/spec/ALF/1.1/PDF
https://www.omg.org/spec/FUML/1.4/PDF

Marla Teresinha Barbosa Geller and Anderson Alvarenga de Moura Meneses / American Journal of Engineering and Applied Sciences 2021, 14 (1): 81.93

DOI: 10.3844/ajeassp.2021.81.93

93

Roudier, Y., & Apvrille, L. (2015, February). SysML-

Sec: A model driven approach for designing safe

and secure systems. In 2015 3rd International

Conference on Model-Driven Engineering and

Software Development (MODELSWARD) (pp.

655-664). IEEE.

Serpanos, D., & Wolf, M. (2017). Internet-of-things

(IoT) systems: architectures, algorithms,

methodologies. Springer.

Thramboulidis, K., & Christoulakis, F. (2016).

UML4IoT—A UML-based approach to exploit IoT

in cyber-physical manufacturing systems.

Computers in Industry, 82, 259-272.

Zambonelli, F. (2016). Towards a general software

engineering methodology for the Internet of Things.

arXiv preprint arXiv:1601.05569.

