

 © 2021 Andrea L. Piroddi and Maurizio Torregiani. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

American Journal of Engineering and Applied Sciences

Original Research Paper

Combining Q-Learning and Multi-Layer Perceptron Models

on Wireless Channel Quality Prediction

1,2Andrea L. Piroddi and 1Maurizio Torregiani

1Department of Computer Science, University of the People, Pasadena, California, USA
2Department of Computer Science, Università di Bologna, Campus di Cesena, Italy

Article history

Received: 17-01-2021

Revised: 01-03-2021

Accepted: 09-03-2021

Corresponding Author:

Andrea L. Piroddi

Department of Computer

Science, University of the

People, Pasadena, California,

USA
Email: andrea.piroddi@uopeople.edu

Abstract: One of the most complex challenges that wireless

communication systems will face in the coming years is the management of

the radio resource. In the next years, the growth of mobile devices, forecast

(CISCO, 2020), will lead to the coexistence of about 8.8 billion mobile

devices with a growing trend for the following years. This scenario makes

the reuse of the radio resource particularly critical, which for its part will

not undergo significant changes in terms of bandwidth availability. One

of the biggest problems to be faced will be to identify solutions that

optimize its use. This work shows how a combined approach of a

Reinforcement Learning model and a Supervised Learning model (Multi-

Layer Perceptron) can provide good performance in the prediction of the

channel behavior and on the overall performance of the transmission

chain, even for Cognitive Radio with limited computational power, such

as NB-IoT, LoRaWan, Sigfox.

Keywords: Q-Learning, Network Research, OpenaAI Gym, Network

Simulator, ns-3, Supervised Learning, Multi-Layer Perceptron

Introduction

The current communication networks are rather

complex dynamic systems; on the other hand, the

simulation tools we have, to estimate the behavior of

these architectures are based on simplified models that

are often unable to reproduce the interaction of the

multiple components involved such as the presence of

interferers and phenomena such fading, moving

obstacles, atmospheric events and last but not least the

characteristics of the surrounding environment that can

have a negative impact on the parameters of our system,

such as frequency, amplitude, delay, etc. It is also true

that networks today are able to produce a huge amount of

measurement data and metadata, which if properly

exploited could improve the management and interaction

between the different elements in the network (Samek et al.,

2017). Machine learning algorithms, Reinforcement

Learning specifically, are particularly well suited for this

purpose. The idea is to change the paradigm used so far,

in which the goal is to adapt the transmission to the

change in the characteristics of the channel in a new

methodology that aims to predict what the characteristics

of the channel will be in the instant preceding the

transmissive event. In the following sections we

introduce the concept of Cognitive Radio, then, we will

show a Supervised Learning model, applied to an indoor

context in which the system is able to predict the

behavior of the channel inside the premises and to adapt

some transmission parameters to guarantee a constant

BER value. Finally, referring to the precious work done

by (Gawłowicz and Zubow, 2019) in which it is

proposed to combine the two simulation tools Network

Simulator (NS-3) and OpenAI-Gym we present an

optimized Q-Learning algorithm, which allows the agent

to predict the behavior of the environment when sudden

interference occurs in the system and consequently

implementing the correct policy, in an Unsupervised

Learning set. Having a better link quality means having

higher ratio of successful reception and therefore a more

reliable communication. The original contribution of this

paper is the following: By appropriately combining two

Machine Learning methodologies, it is possible to

predict the behavior of the radio channel with a low

computational cost, making this approach suitable for

application in environments where terminals have

limited computing capacity, as in IoT systems,

LoRaWan and Sigfox. This translates into longer battery

life and the possibility of increasing the number of

terminals in the area served by a single node.

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

140

Background

“A Cognitive Radio is the application of intelligent

processing and adaptation to a wireless communications

system” (Rondeau and Bostian, 2009). The basic idea is

to make our network element an entity capable of

learning, through the observation of environmental

parameters, the behavior of the transmission channel and

predicting its variations by acting in such a way as to

optimize its performance in terms of throughput, power,

coding scheme, energy consumption and at the same

time minimizing interference to other devices.

In Fig. 1 we show an example of the policy that the

agent implements, foreseeing a variation of the

characteristics of the transmission channel. Since long

time, in wireless communications we have learned how

to describe the channel used for transmission, using

different parameters, such as the operating frequency, the

type of transmission medium (e.g., air, water), the type

of environment (e.g., indoor, outdoor, urban, etc. …), the

relative position of communicating parts (e.g., line of

sight, not line of sight). The physical layer technology

implemented in the transmitter and receiver includes

blocks, such as the antenna, the frequency shifter, the

sampler, the synchronizer, etc. The link layer is

responsible for the correct delivery of the data frame,

therefore includes header assembly and disassembly

techniques and payload encoding and decoding, as well

as mechanisms for correcting and checking errors and

retransmissions. While the quality of a link is eventually

influenced by a relatively limited number of

observations, the so-called set of metrics.

Fig. 1: Agent policy

Table 1: Metrics that can be used to measure the link quality

 Software-base Sides involved Gathering method
Link quality Hardware --- Image ------------------ --------------------- Related

metrics base PRR-based RNP-based Score-based based Topological Rx Tx Passive Active base-metric(s)

RSSI ✓ ✓ ✓ RSS, SNR

LQI ✓ ✓ ✓ Vendor-specific

SNR ✓ ✓ ✓ RSS, noise floor

BER ✓ ✓ ✓ -

PRR ✓ ✓ ✓ PER

WMEWMA ✓ ✓ ✓ PER, PRR

4B ✓ ✓ ✓ ✓ ✓ LQI, PRR, ACK, broadcast

LQ, NLQ ✓ ✓ ✓ ✓ -

ETX ✓ ✓ ✓ ✓ LQ, NLQ

4C ✓ ✓ ✓ LQI, PRR, SNR, RSSI

TRIANGLE ✓ ✓ ✓ SNR, LQI

Image-based ✓

Topological ✓

Event: The receiving

node is becoming

interfered

Transmitting power = 26 dBm

Modulation = QPSK

Transmitting power = 23 dBm

Modulation = QPSK Policy 1: Improve transmitting power

St

St+1

St+1

Policy 2: Changing the modulation

Transmitting power = 23 dBm

Modulation = OFDM

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

141

Table 1 (Cerar et al., 2018) collects the metrics that can

be used to measure the radio link quality. Each metric can

also be used as an input for another metric. So-called

hardware-based metrics, such as Received Signal Strength

Indicator (RSSI), Link Quality Indicator (LQI), Signal to

Noise Ratio (SNR) and Bit Error Rate (BER) are produced

directly from devices and depend on the underlying metrics,

such as the Noise Figure, specific to one or another

supplier. It is clear, looking at the table, that the number of

the independent variables is bounded. However, recently,

like additional input, the Topological (surrounding space)

feature was taken into consideration, which presupposes the

exchange of information on several levels, where the

Learning Quality Estimator (LQE) is informed about the

distance from the base station (or access point), etc... In this

study we considered the development of a model based on

topological data and classical metrics.

The classic approaches of channel resources

management are based on measurement data report sent

by the terminal to the central entity and decision action

provided by the central unit to the terminal. These

algorithms are managed centrally by the control unit that

sends the actions to be performed by the terminal, such

as a handover on a different node, or an increase in

transmission power, or a change in modulation. This

methodology presents a criticality: The device must

always be connected with the central unit, otherwise the

connection will be disrupted. Any unexpected variation

of the radio parameters, such as sudden interference, can

cause packet loss and the need to retransmit several

times both the payload and the channel control packets.

Essentially, the terminal is never autonomous in deciding

which action to take in order to maintain the connection.

In the event of sudden changes in the surrounding

conditions, our terminal must be able to autonomously

interpret the data collected and implement a decision that

allows it to prevent the loss of the connection with the

central unit. This is the reason why we propose the

combined use of supervised and unsupervised learning

methods in the management of radio resources.

System Architecture

Dataset and Layout

To verify our idea, we used an excellent dataset made

available to the scientific community by Gonzalez-Ruiz -

University of New Mexico (Gonzalez-Ruiz et al., 2011).

The wireless channel measurements were collected

indoor over a floor of the ECE building. at UNM along

several routes. Figure 2 shows the floor plan as well as

the regions where the measurements were taken. The

triangular symbol shows the position of the transmitter.

The position of the origin is also marked. Measurements

are made in different regions marked by R and were

collected with a router acting as the Transmitter (Tx) and a

Pioneer robot that carries a WiFi card acting as a Receiver

(Rx). Both transmitter and receiver are omni-directional.

The WiFi card is an Atheros ar5006x WiFi card, operating

at 2.4 GHz. The coordinates (x, y, z) of the origin are set

to be (0, 0, 0). The unit used in this document and the data

files is meter. The transmitter’s location is (0.115, 0.11,

1.5). There is a total of 16 regions of measurements (R1-

R16) and each region contains several routes of

measurements. There is a total of 67 routes. The total

number of measures is 12463, that is a solid dataset to

work with. The data are in the format shown in Table 2.

Column 4 is the measured RSSI (Received Signal

Strenght Indicator) of the signal in dBm.

Having a clear picture of our environment, we

supposed the occurrence of an interferential source in a

random point of our layout. The interference source will

be a stationary signal over time, with transmission power

of 0 dBm, center frequency and bandwidth the same as

those used by the router and fixed position. We thought

the interfering signal subject to the fading and path loss

according to the Multi-Wall indoor Model (Publications

Office of the EU, 1999) that is:

1

4
20log

typeN

dB c wi wi f fi

R
L L N L N L

 (1)

Where:

Lc = Constant loss

Nwi = N. of penetrated walls of type i

Lwi = Loss of walls of type i

Nf = N. of penetrated floors

Ntype = N. of wall types

Lf = floor loss

Since the loss due to floor penetration experimentally

appears to be non-linear with the number of crossed

floors, then an alternative version of the MWiM model

has been proposed:

2

1

1

4
20log

f

t f

N

N ype N

d c wi f f

b

wii

R
L B L N L N L

 (2)

Typical parameter values are: Lc = 0 dB, Lwi = 3-5 dB,

Lf = 15-20 dB, b = 0.46.

Table 2: Format of dataset

Column 1 Column 2 Column 3 Column 4

x position of the y position of the Distance between Received signal

receiver (m) receiver (m) transmitter and receiver (m) strength (dBm)

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

142

Fig. 2: ECE building basement. At University of New Mexico - a colormap of the measured RSSI is superimposed on the blueprint

Fig. 3: RSSI-measured data and theoretical path loss

In Fig. 3 we can see the trend of the RSSI measured

in one of the paths in Region 2.

SINR Modeling

SINR is usually defined for a specific receiver (or

user). For a receiver positioned at some point x in space,

its corresponding SINR value is given by:

P

SINR x
I N

 (3)

where, P is the received signal (of interest) power, I is
the power of the other (interfering) signals in the
network and N is the noise term, which may be
random or a constant. In the following we are going to
consider an Additive White Gaussian Noise (AWGN).

R12

R2

R14

R1 R5

R13
R15

R3

R6 R16

Origin

R7

R8
R9

R11 R10

R4

x

y

-16 dBm

-28 dBm

-41 dBm

-53 dBm

-65 dBm

-78 dBm

Log plot

-35

-40

-45

-50

-55

R
S

S
I-

d
B

m

0.8 0.9 1.0 1.1 1.2 1.3

Log (distance)

Measured data

Path loss

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

143

The propagation model leads to a model for the SINR
(Andrews et al., 2010): Consider a collection of n
transmitters located at points x1 to xn in the plane or
3D space. Then for a user located, for example, at x =
0, the SINR for a signal coming from i-th base station
(xi) is given by:

oo o

o io ii

o

i

h r

h XN
SINR

 (4)

where, hio is the power fading coefficient of the

channel to the receiver of interest “o” from node “i”,

i is the power of transmitter “i” and φ is the set of

interfering nodes (φ is a subset of all possible

transmitters). The desired transmitter is at distance r

from the desired receiver, while the i-th interferer is at

distance Xi away. In our case we can consider

numerator as the measured RSSI. The component can

be seen as the Interference
ii ioi

Xh

 signal that

reach our receiver from the interference source (α is

the path loss exponent >2) and the term No is the

Noise Power in the origin, given by:

 10 010log 30N BN (5)

N0 is the Noise Power Spectral Density given by: N0

= kBT (kB is the Boltzmann’s constant: 1.381023J/K) and

T is the system temperature (K). This means that we can

calculate the SINR in each point of the floor. Figure 4

shows the SINR measured in Region 2.

Our goal is to predict the behavior of the transmission

channel to choose the policy for optimizing the

performance of our system. For simplicity, we will

consider the optimization of the throughput. So, the basic

idea is to use the most appropriate Modulation and

Coding Scheme according to the prediction. To do this it

is needed a prediction of the BER. One technique used to

determine the quality of a digital transmission system is

measuring its Bit Error Ratio (BER). The BER estimate

is obtained by comparing the transmitted sequence of

bits to the one received and counting the number of

errors. The ratio between the bits received in error and

the number of total bits received is the BER:

Err

bits

N
BER

N
 (6)

This is a statistical process, so the measured BER

only approaches the actual BER if the number of bits

tested approaches infinity. In most cases we need only

testing if the BER is less than a pre-defined threshold.

The number of bits needed will depend only on the

BER threshold and on the required confidence level.

Figure 5 (Nordin, 2012) shows how the BER varies

as a function of the Dynamic Subcarrier Allocation -

SINR based on the type of Modulation and Coding

Schemes (MCSs) being used.

Fig. 4: SINR in region 2

SINR plot

40

30

20

10

0

-10

-20

S
IN

R
-d

B
m

6 8 10 12 14 16 18 20

Distance between Rx and access point (m)

Calculated data

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

144

Fig. 5: BER performance of Dynamic Subcarrier Allocation (DSA)-SINR across different MCSs

Multi-Layer Perceptron Model

The Multilayer Perceptron (MLP) is an artificial

neural network model (Fig. 6) that maps set of input data

into a set of appropriate output data. It is made up of

multiple layers of nodes in a direct graph, with each

layer completely connected to the next. Except for

incoming nodes, each node is a neuron with a non-linear

activation function. Multilayer Perceptron uses a

supervised learning technique called backpropagation for

network training. MLP is a modified version of the

classical Linear Perceptron and can differentiate data that

are not linearly separable. The fact that it is a supervised

neural network clearly suggests that this part of our

optimization involves the interaction with a central entity

that will update the policy. We will use sigmoid, also

known as the logistic function, as the activation function:

1

ˆ
1 z

y z
e

 (7)

the output obtained after the forward extension is known

as the expected value (ŷ).

Learning Algorithm

The learning algorithm is composed by two parts:

Backpropagation and optimization. In the

backpropagation process a loss function is used to know

an estimate of how far we are from our desired solution.

Generally, the Mean Square Error (MSE) is chosen as

the loss function for regression problems and the cross

entropy for classification problems. Given a regression

problem its loss function is the mean square error, which

squares the difference between the actual (yi) and the

predicted (ŷi) value:

2

ˆ
i i iMSE y y (8)

The loss function is computed for the entire training

dataset and its average is called the cost function C:

2

1

1
ˆ

n

i ii
C MSE y y

n
 (9)

To find the best weights for our Perceptron, we need

to realize how the cost function changes in relation to

weights and biases. This is done with the help of

gradients. So, we need to identify the gradient of the cost

function with respect to weights and bias.

We compute the gradient of the cost function C using

the partial derivation, with respect to the weight wᵢ. Since

the cost function does not depend directly on the related

weight wᵢ, we use the chain rule:

ˆ
i i

C C y z

w y z w

 (10)

Equation 11 shows the gradient of the cost function

(C) with respect to the predicted value (ŷ):

2

1 1

1 1
ˆ ˆ2

ˆ ˆ

n n

i i i ii i

C
y y y y

y y n n

 (11)

100

101

102

103

B
it

 E
rr

o
r

R
at

e
(B

E
R

)

-10 0 10 20 30 40

Signal-to-Noise Ratio (SNR) in (dB)

BPSK 1/2 16 QAM 1/2

QPSK 1/2 16 QAM 3/4

QPSK 3/4 64 QAM 3/4

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

145

Be y = [y1, y2,… yn] e ŷ = [ŷ1, ŷ2,… ŷₙ] the line vectors

of actual and predicted values. So, the above equation is

simplified as:

2

ˆ
ˆ

C
sum y y

y n

 (12)

Equation 13 compute the gradient of the predicted

value with respect to z:

2

1 1

1 11

1 1
1 1

1 11

z

z zz

z

z zz

y e
z

z z z e ee

e
z z

e ee

 (13)

Equation 14 shows the gradient of z with respect to

the weight wᵢ is:

1

n

i i ii
i i i

z
z x w b x

w w w

 (14)

So, we get:

2

ˆ 1 i

i

C
sum y y z z x

w n

 (15)

It is theoretically considered that the bias has an input

of constant value 1.

Let's now turn to the optimization. Optimization is the

selection of the best weights and the perceptron bias. For

example, choosing gradient descent as the optimization

algorithm, it changes the weights and bias, proportionally

to the negative of the gradient of the cost function with

respect to the corresponding weight or bias. The learning

rate (α) is a hyperparameter that is used to control how

much the weights and bias are changed.

Fig. 6: Multi-layer perceptron model

Weights and bias are updated as follows and back-

propagation and gradient descent are repeated until

convergence:

i i

i

C
w w

w

 (16)

C
b b

b

 (17)

Application of the MLP to the Prediction of the MCS

Starting from our indoor environment dataset, we can

train the MLP to identify the correct policy for choosing

the MCS. As input values we have the position of the

receiver, its distance from the access point, the received

RSSI levels and the measured SINR levels, as output

value we want our system to indicate which MCS to use

(Fig. 5) or if it is the case to change carrier. We then

build our MLP using Python code and the Scikit-learn

library. Scikit-learn is a Python module integrating a

wide range of state-of-the-art machine learning

algorithms for medium-scale supervised and

unsupervised problems (Pedregosa et al., 2011). To

import the dataset and make it available as input to the

Scikit-learn MLP we used Pandas. Pandas is an open-

source library which provides high-performance and data

analysis tools for Python (Pandas Devel. Team, 2020).

LP-Classifier trains iteratively, as, at each time step, the

partial derivatives of the loss function with respect to the

model features are calculated to update the parameters.

To prevent the overfitting phenomena, a regularization

term can be added to the loss function. The Python code

is used to upload data, that are represented as dense

numpy arrays of floating-point values and to run the MLP

classifier. We run the simulation with different values of

both α, the number of hidden layers, the number of nodes

in the hidden layers and the number of iterations Fig. 7

shows the MLP Classifier configuration Row).

The chosen classification is the one shown in Fig. 8

considering BER 102:

Furthermore, we have opted for different

configurations both in terms of solver and type. Figure

9 shows some training loss curves obtained with

different learning strategies, such as Stochastic

Gradient Descend (SGD), Momentum, Nesterov

Accelerated Gradient and Adam.

Fig. 7: MLP Classifier configuration Row

x0

x1

xn

a0
(2)

a1
(2)

am
(2)

a1
(3)

ak
(3)

ŷ

1st layer 2nd layer 3rd layer

(input layer) (hidden layer) (output layer)

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

146

Fig. 8: Algorithm decision scheme for MCS policy

Fig. 9: Training loss curve for MCS choice

Stochastic gradient Descend performs a parameter

update for each training sample xi and label yi:

 ; ;i i

ww w C w x y (18)

SGD runs frequent updates with a high variance

producing a heavy fluctuation of the objective function.

Momentum is a method that aims to accelerate SGD in

the relevant direction by adding a fraction γ of the update

vector of the past time step to the current update vector:

 1t t wv v C w (19)

tw w v (20)

The momentum term increases updates for

dimensions whose gradients head in the same directions

and decreases them for dimensions whose gradients

change directions. The result is that it gains faster

convergence and reduced oscillation.

Nesterov Accelerated Gradient (NAG) is a way to

provide our momentum an approximation of the

subsequent position of the parameters, a rough sign

where our parameters are going to be:

 1 1t t w tv v C w v (21)

tw w v (22)

Adaptive Moment Estimation (Adam) is another

method that estimates adaptive learning rates for each

parameter. Besides storing an exponentially decreasing

average of past squared gradients vt, Adam strategy

keeps also an exponentially decreasing average of past

gradients mt, similar to momentum. For the sake of

brevity, gt is used to denote the gradient at time step t, so

Constant learning-rate Inv-scaling learning-rate Inv-scaling with Nesterov’s momentum

Constant with momentum Inv-scaling with momentum Adam

Constant with Nesterov’s momentum

0 50 100 150 200 250 300

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Number of iterations

T
ra

in
in

g
 s

et
 l

o
ss

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

147

gt,i is then the partial derivative of the objective function

to respect the parameter wi at time step t:

 , ,t i w t ig C w (23)

The decreasing averages of past gradient mt and past

squared gradient vt are computed as follows:

 1 1 11t t tm m g (24)

 2

2 1 21t t tv v g (25)

mt is an estimate of the first moment (the mean) and vt of

the second moment (the uncentered variance) of the

gradients, hence the name of the method. To counteract

these biases the strategy computes bias-corrected first

and second moment estimates:

1

ˆ
1

t
t t

m
m

 (26)

2

ˆ
1

t
t t

v
v

 (27)

Adam works fine in practice and competes to other

adaptive learning-method algorithms.

Results of MLP Prediction

Figure 9 shows the training loss curve for the choice

of the MCS. We have considered seven different

learning strategies:

 Constant learning-rate

 Constant with momentum

 Constant with Nesterov’s momentum

 Inv-scaling learning-rate

 Inv-scaling with momentum

 Inv-scaling with Nesterov’s momentum

 Adam

The convergence is reached after fifty iterations with

Adam strategy that appears as the most appropriate for

this scenario.

Table 3 shows the classification report using ADAM

learning strategy.

This shows that the level of accuracy is high, although

we must consider that this environment is far from being

realistic. We should take into account other interfering

elements and moving obstacles inside the set, in order to

make the scenario more accurate. On the other hand, it is

true that the more interferers there are, the greater the

contribution of measures that will be made available to the

central entity to recalculate the policy, because each

interferer works also as a data source. In any case, the

result obtained provides some interesting food for thought:

The accuracy of such a system can be different changing

the learning strategies. For example, using a constant

learning-rate policy, the obtained score is 0.984113,

while using an inv-scaling learning-rate the score is

0.743400 and with inv-scaling with Nesterov's

momentum the score is 0.770200. Furthermore, from

Table 3 it is noted that the most critical cases, i.e., those

in which it is necessary to be reasonably sure of the

prediction, are the two cases with less uncertainty.

Figure 10 shows the MLP’s policy distribution for the

64QAM Modulation and Coding Scheme.

Fig. 10: 64QAM distribution

Table 3: Classification report using ADAM learning strategy

 Precision Recall F1-score Support

#64QAM 1.00 1.00 1.00 499

#16QAM 0.99 0.98 0.98 310

#8BPSK 0.96 0.99 0.97 269

#QPSK 0.98 0.96 0.97 188

#change carrier 1.00 1.00 1.00 1850

Accuracy 0.99 3116

Macro avg 0.99 0.98 0.99 3116

Weighted avg 0.99 0.99 0.99 3116

where the training set is 75% of the available data and the testing set is the remaining 25%; Recall = TP/(TP + FN) (TP = True

Positive, FN = False Negative, FP = False Positive, TN = True Negative); Precision = TP/(TP + FP); f1-score =

2*(precision*recall)/(precision + recall); accuracy = (TP + TN)/(TP + TN + FP + FN)

Access point

Interface

64 QAM

0 5 10 15 20

20

10

0

-10

-20

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

148

However, the MLP’s are trained in batch mode and

remain static after training, therefore the estimator is not

adaptable to persistent changes in the link. Batch or

offline training of ML algorithms (Banerjee and Basu,

2007) means that the model is trained, optimized and

evaluated once on the training and test sets available and

must be completely retrained later to accommodate

possible changes in the file dissemination of updated data.

In practice, this corresponds sporadic updates, for

example, once every few hours and once for day

depending on how the whole system was designed. For in

the case of embedded devices, the device must be fully or

partially reprogrammed (Ruckebusch et al., 2016). This

consideration therefore prompted us to evaluate whether it

was possible to add an unsupervised approach to the MLP

so that the agent can self-learn the most suitable policy

as the surrounding conditions change.

Reinforcement Learning Approach

Suppose our agent, to whom a central entity has sent

a policy, is experiencing sudden interference. We

consider, for example, the problem of radio channel

selection. It will take some time before the new policy is

recalculated and sent back to our agent. So, the objective

of the agent is to choose for the next time slot a channel

with no interference. Suppose the external interference has

a periodic pattern, sweeping over all channels one to four

in the same order. The agent must now autonomously

learn a strategy that allows him to avoid the interfered

time slots. In this case a Reinforcement Learning

approach, in particular a Q-Learning Model, can be the

solution. In this sense, our simulation environment

transfers control to the agent, who autonomously identifies

the appropriate policy for the new situation.

Q-Learning Model

In this case we have to take into account the protocol

stack of our system, as learning, now, takes place in real

time. To do this we can use ns-3. Ns-3 is a discrete-event

network simulator for Internet systems (ns-3 project,

2020). In order to make ns-3 communicate with a

Reinforcement Learning algorithm in OpenAI-gym we

used ns3-gym. OpenAI Gym is a toolkit for

Reinforcement Learning (RL) widely used in research.

Ns3-gym is a framework that integrates both OpenAI

Gym and ns-3 (Gawłowicz and Zubow, 2019).

Q-Learning is a model-free application of machine

learning, that is the AI "agent" does not need to know the

environment that it will be in. Indeed, the same

algorithm can be used across different environments.

Once defined the environment, everything is splitted into

"states" and "actions."

The states are observations of the environment and

the actions are the choices the agent has made based on

the observation. Table 4 shows the RL mapping that has

been used by Gawlowicz.

The agent doesn't really need to know anything about

the environment. For each environment, the agent can

query for how many actions are possible. In this case,

there are "4" actions. When the agent steps the

environment, it act with a 0, 1, 2 or 3 as its "action" for

each step. Each time it does this, the environment will

return to him the new state, a reward, whether the

environment is done and then any extra info that some

envs might have. A “0” means go to timeslot 1, 1 means

go to TS 2 and so on. All the agent needs to know is

what the options for actions are and given a state, what

the reward of performing a chain of those actions would

be. The agent knows he can take 4 actions at any given

time. That's the "action space". Now, we need the

"observation space." In this gym environment, the

observations are returned from resets and steps. The

“observation” is given by the information of which of

the four time slots is interfered at that time.

The way Q-Learning works is based on a "Q" value per

action possible per state. This produces a table. To figure

out all of the possible states, the agent can either query the

environment or just simply has to engage in the

environment for a while to figure it out. It will check this

table to determine the moves. When the agent is being

"greedy" and trying to "exploit" its environment, it will

choose to take the action that has the highest Q value for

this state. However, sometimes, especially at the beginning,

it may decide to "explore" and choose a random action.

These random actions are the way our model will learn

better moves over time. Q values are updated this way:

 1, 1 , max ,new

t t t t t t
a

Q s a Q s a r Q s a (28)

Where:

rt = Reward

 = Discount factor

max
a

Q(st+1, a) = Estimate of optimal funture value

 = Learning rate

Q(st, at) = old value

Table 4: Reinforcement learning mapping

Observation Occupation on each channel in the current time slot

Actions Set the channel to use for the next time slot

Reward +1 in case of no collision with interferer; -1 otherwise

Gameover If more than 3 collisions occur during the last ten time-slots

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

149

Fig. 11: Learning performance of Q-learning model

The Discount is a measure of how much the agent

wants to care about future reward rather than about

immediate reward. Typically, this value is between 0 and

1. The higher the better, because the purpose of Q

Learning is, indeed, to learn a chain of events that ends

with a positive outcome, so it's natural that the agent put

greater importance on long terms gains rather than short

term ones. The max_future_q is determined after the

agent has performed its action already and then it

updates its previous values based partially on the next-

step's best Q value. Over time, once the agent has

reached the objective, this "reward" value gets slowly

backpropagated, one step at a time, per episode.

Results of Q-Learning Model

Figure 11 shows the learning performance using a

modified version of the Q-Learning algorithm used by

Gawlowicz. The modified version of the algorithm can

be found in a GitHub Repository1. The main difference

we introduced, compared to the original version, is

related to the libraries used. We have eliminated the

dependence on libraries such as Tensorflow and Keras.

These libraries in fact, while ensuring high

performance, use AVX instructions which may not run

on older CPUs. In the original version we could see

that after 80 episodes the agent will be able to perfectly

predict the next channel state from the current

observation so avoiding any collision with the

interference. In our modified version we need some

more episodes, about 600 episodes. On the other hand,

the advantage is that the modified version can be used

even on Cognitive Radio with limited computational

power, such as NB-IoT, Sigfox and LoRaWan devices,

because it does not require GPU support and high

performing CPU, since in the prediction were not

employed high performance numerical computation

tools such as (Tensorflow, 2019; Keras, n.d.).

1 https://github.com/apirodd/apirodd/projects?query=is%3Aopen

Table 5: Time complexity comparisons for RL algorithms

on episodic MDP. T = KH is the total number of

steps, H is the number of steps per episode, S is the

number of states and A is the number of actions

(source (Jin et al., 2018))

 Algorithm Time Space

Model-based RLSVI Õ(TS2A2) O(S2A2H)

 UCRL2 (TS2A) O(S2AH)

 Agrawal and Jia

 UCBVI Õ(TS2A)

 Vucq

Model-free Q-learnig (greedy) O(T) O(S2AH)

 (if 0 initialized)

 Delayed Q-learning

 Q-learning (UCB-H)

 Q-learning (UCB-B)

 Lower bound - -

Discussion

It has been shown in (Xu and Gu, 2020) that neural

Q-learning with Multiple Layers finds the optimal policy

with O(1/sqrt(T)) convergence rate if the neural function

approximator is sufficiently overparameterized, where T

is the number of iterations.

Table 5 from (Jin et al., 2018), shows that the Time

complexity for the Model-free scenario is O(T) where T

is the total number of steps.

In real-time applications, the appropriate task

representation or suitable initial Q-values is very

important. In fact, prior results indicated that

reinforcement learning algorithms are exponential in “n”

(number of states), thus limiting their practical use if this

set is high dimensional. In (Koenig and Simmons, 1993)

has been shown that such algorithms are tractable if we

use appropriate initial Q-values.

Further studies are moving towards the analysis of a

multi-agent interaction (Multi Agent Reinforcement

Learning-MARL). This would allow the different

devices to cooperate by identifying a multi-agents

Average rewards

Max rewards

Min rewards

0 500 1000 1500 2000 2500 3000 3500 4000

Learning performance
100

80

60

40

20

0

Number of episodes

P
er

ce
n
ta

g
e

o
f

co
rr

ec
t

p
re

d
ic

at
io

n
s

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

150

policy, addressing the sequential decision-making

problem when they are operating in a common

environment. Each agent aims to optimize its own long-

term reward by interacting with the environment and

other agents (Busoniu et al., 2008), in particular, both

the evolution of the system state and the return received

by each agent are influenced by the joint actions of all

agents (Zhang et al., 2019).

Conclusion

Over the next few years, the growth of mobile

devices will grow steadily while the radio resource will

remain substantially unchanged. It is therefore necessary

to provide strategies for an optimized use of the radio

channel. In this study we have shown a possible

approach to face the problem, highlighting how the

combined use of supervised learning and reinforcement

learning models applied to predicting the behavior of the

transmission channel can provide interesting results on

the performance of the entire system.

Author’s Contributions

Andrea L. Piroddi: Designed the research plan,

organized the study and participated in all experiments

(In particular, he wrote and ran the Machine Learning

Codes.), coordinated the data-analysis and contributed to

the writing of the manuscript.

Maurizio Torregiani: Participated in all

experiments, mainly contributing on the radio

propagation aspects inside the paper. Verified the

consistency of results of the experiments and contributed

to the writing of the manuscript.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Andrews, J. G., Ganti, R. K., Haenggi, M., Jindal, N., &

Weber, S. (2010). A primer on spatial modeling and

analysis in wireless networks. IEEE

Communications Magazine, 48(11), 156-163.
https://doi.org/10.1109/MCOM.2010.5621983

Banerjee, A., & Basu, S. (2007, April). Topic models

over text streams: A study of batch and online

unsupervised learning. In Proceedings of the 2007

SIAM International Conference on Data Mining

(pp. 431-436). Society for Industrial and Applied

Mathematics.
https://doi.org/10.1137/1.9781611972771.40

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A

comprehensive survey of multiagent reinforcement

learning. IEEE Transactions on Systems, Man and

Cybernetics, Part C (Applications and Reviews),

38(2), 156-172.
https://doi.org/10.1109/TSMCC.2007.913919

Cerar, G., Yetgin, H., Mohorčič, M., & Fortuna, C.

(2018). Machine Learning for Wireless Link Quality

Estimation: A Survey. arXiv preprint

arXiv:1812.08856.
https://doi.org/10.1109/COMST.2021.3053615

CISCO. (2020). Cisco Annual Internet Report (2018-2023)

White Paper. CISCO.

Gawłowicz, P., & Zubow, A. (2019, November). Ns-3

meets OpenAI gym: The playground for machine

learning in networking research. In Proceedings of

the 22nd International ACM Conference on

Modeling, Analysis and Simulation of Wireless and

Mobile Systems (pp. 113-120).

https://doi.org/10.1145/3345768.3355908

Gonzalez-Ruiz, A., Ghaffarkhah, A., & Mostofi, Y.

(2011). A comprehensive overview and

characterization of wireless channels for networked

robotic and control systems. Journal of Robotics,

2011. https://doi.org/10.1155/2011/340372

Jin, C., Allen-Zhu, Z., Bubeck, S., & Jordan, M. I. (2018).

Is Q-learning provably efficient?. arXiv preprint

arXiv:1807.03765. https://arxiv.org/abs/1807.03765

Keras. (n.d.). Keras: The Python Deep Learning library.

https://keras.io/

Koenig, S., & Simmons, R. G. (1993, July). Complexity

analysis of real-time reinforcement learning. In

AAAI (pp. 99-107).

http://www.ri.cmu.edu/pub_files/pub1/koenig_sven

_1993_1/koenig_sven_1993_1.pdf
Nordin, R. (2012). An Investigation of Self-Interference

Reduction Strategy in a Spatially Correlated MIMO
Channel. Journal of Computer Networks and
Communications, 2012.
https://doi.org/10.1155/2012/424037

ns-3 project. (2020). ns-3 Tutorial.

https://www.nsnam.org/docs/tutorial/html/

Pandas Devel. Team. (2020). Pandas Documentation.

https://pandas.pydata.org/docs/
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., ... & Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. the Journal
of machine Learning research, 12, 2825-2830.
https://www.jmlr.org/papers/volume12/pedregosa11
a/pedregosa11a.pdf?source=post_page-----------------

Publications Office of the EU. (1999). COST Action

231. Publications Office of the EU.
https://op.europa.eu/en/publication-detail/-

/publication/f2f42003-4028-4496-af95-

beaa38fd475f

https://keras.io/

Andrea L. Piroddi and Maurizio Torregiani / American Journal of Engineering and Applied Sciences 2021, 14 (1): 139.151

DOI: 10.3844/ajeassp.2021.139.151

151

Rondeau, T. W., & Bostian, C. W. (2009). Artificial

intelligence in wireless communications. Artech

House.

Ruckebusch, P., De Poorter, E., Fortuna, C., &

Moerman, I. (2016). Gitar: Generic extension for

internet-of-things architectures enabling dynamic

updates of network and application modules. Ad

Hoc Networks, 36, 127-151.
https://doi.org/10.1016/j.adhoc.2015.05.017

Samek, W., Stanczak, S., & Wiegand, T. (2017). The

convergence of machine learning and

communications. arXiv preprint arXiv:1708.08299.

https://arxiv.org/abs/1708.08299

TensorFlow. (2019). TensorFlow: An open source

machine learning framework for everyone.

https://www.welcome.ai/tech/deep-

learning/tensorflow

Xu, P., & Gu, Q. (2020, November). A finite-time

analysis of Q-learning with neural network function

approximation. In International Conference on

Machine Learning (pp. 10555-10565). PMLR.
http://proceedings.mlr.press/v119/xu20c.html

Zhang, K., Yang, Z., & Başar, T. (2019). Multi-agent

reinforcement learning: A selective overview of

theories and algorithms. arXiv preprint

arXiv:1911.10635. https://arxiv.org/abs/1911.10635

