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Abstract: One of the most complex challenges that wireless 

communication systems will face in the coming years is the management of 

the radio resource. In the next years, the growth of mobile devices, forecast 

(CISCO, 2020), will lead to the coexistence of about 8.8 billion mobile 

devices with a growing trend for the following years. This scenario makes 

the reuse of the radio resource particularly critical, which for its part will 

not undergo significant changes in terms of bandwidth availability. One 

of the biggest problems to be faced will be to identify solutions that 

optimize its use. This work shows how a combined approach of a 

Reinforcement Learning model and a Supervised Learning model (Multi-

Layer Perceptron) can provide good performance in the prediction of the 

channel behavior and on the overall performance of the transmission 

chain, even for Cognitive Radio with limited computational power, such 

as NB-IoT, LoRaWan, Sigfox.  
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Introduction 

The current communication networks are rather 

complex dynamic systems; on the other hand, the 

simulation tools we have, to estimate the behavior of 

these architectures are based on simplified models that 

are often unable to reproduce the interaction of the 

multiple components involved such as the presence of 

interferers and phenomena such fading, moving 

obstacles, atmospheric events and last but not least the 

characteristics of the surrounding environment that can 

have a negative impact on the parameters of our system, 

such as frequency, amplitude, delay, etc. It is also true 

that networks today are able to produce a huge amount of 

measurement data and metadata, which if properly 

exploited could improve the management and interaction 

between the different elements in the network (Samek et al., 

2017). Machine learning algorithms, Reinforcement 

Learning specifically, are particularly well suited for this 

purpose. The idea is to change the paradigm used so far, 

in which the goal is to adapt the transmission to the 

change in the characteristics of the channel in a new 

methodology that aims to predict what the characteristics 

of the channel will be in the instant preceding the 

transmissive event. In the following sections we 

introduce the concept of Cognitive Radio, then, we will 

show a Supervised Learning model, applied to an indoor 

context in which the system is able to predict the 

behavior of the channel inside the premises and to adapt 

some transmission parameters to guarantee a constant 

BER value. Finally, referring to the precious work done 

by (Gawłowicz and Zubow, 2019) in which it is 

proposed to combine the two simulation tools Network 

Simulator (NS-3) and OpenAI-Gym we present an 

optimized Q-Learning algorithm, which allows the agent 

to predict the behavior of the environment when sudden 

interference occurs in the system and consequently 

implementing the correct policy, in an Unsupervised 

Learning set. Having a better link quality means having 

higher ratio of successful reception and therefore a more 

reliable communication. The original contribution of this 

paper is the following: By appropriately combining two 

Machine Learning methodologies, it is possible to 

predict the behavior of the radio channel with a low 

computational cost, making this approach suitable for 

application in environments where terminals have 

limited computing capacity, as in IoT systems, 

LoRaWan and Sigfox. This translates into longer battery 

life and the possibility of increasing the number of 

terminals in the area served by a single node. 
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Background  

“A Cognitive Radio is the application of intelligent 

processing and adaptation to a wireless communications 

system” (Rondeau and Bostian, 2009). The basic idea is 

to make our network element an entity capable of 

learning, through the observation of environmental 

parameters, the behavior of the transmission channel and 

predicting its variations by acting in such a way as to 

optimize its performance in terms of throughput, power, 

coding scheme, energy consumption and at the same 

time minimizing interference to other devices. 

In Fig. 1 we show an example of the policy that the 

agent implements, foreseeing a variation of the 

characteristics of the transmission channel. Since long 

time, in wireless communications we have learned how 

to describe the channel used for transmission, using 

different parameters, such as the operating frequency, the 

type of transmission medium (e.g., air, water), the type 

of environment (e.g., indoor, outdoor, urban, etc. …), the 

relative position of communicating parts (e.g., line of 

sight, not line of sight). The physical layer technology 

implemented in the transmitter and receiver includes 

blocks, such as the antenna, the frequency shifter, the 

sampler, the synchronizer, etc. The link layer is 

responsible for the correct delivery of the data frame, 

therefore includes header assembly and disassembly 

techniques and payload encoding and decoding, as well 

as mechanisms for correcting and checking errors and 

retransmissions. While the quality of a link is eventually 

influenced by a relatively limited number of 

observations, the so-called set of metrics. 

 

 

 
Fig. 1: Agent policy 

 
Table 1: Metrics that can be used to measure the link quality 

  Software-base    Sides involved Gathering method 
Link quality Hardware --------------------------------------------- Image  ------------------ --------------------- Related 

metrics base PRR-based RNP-based Score-based based Topological Rx Tx Passive Active base-metric(s) 

RSSI ✓      ✓  ✓  RSS, SNR 

LQI ✓      ✓  ✓  Vendor-specific 

SNR ✓      ✓  ✓  RSS, noise floor 

BER ✓      ✓  ✓  - 

PRR  ✓     ✓  ✓  PER 

WMEWMA  ✓     ✓  ✓  PER, PRR 

4B   ✓    ✓ ✓ ✓ ✓ LQI, PRR, ACK, broadcast 

LQ, NLQ   ✓    ✓ ✓  ✓ - 

ETX   ✓    ✓ ✓  ✓ LQ, NLQ 

4C    ✓   ✓  ✓  LQI, PRR, SNR, RSSI 

TRIANGLE    ✓   ✓  ✓  SNR, LQI 

Image-based     ✓ 

Topological      ✓ 

Event: The receiving 

node is becoming 

interfered 

Transmitting power = 26 dBm 

Modulation = QPSK 

Transmitting power = 23 dBm 

Modulation = QPSK Policy 1: Improve transmitting power 

St 

St+1 

St+1 

Policy 2: Changing the modulation 

Transmitting power = 23 dBm 

Modulation = OFDM 
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Table 1 (Cerar et al., 2018) collects the metrics that can 

be used to measure the radio link quality. Each metric can 

also be used as an input for another metric. So-called 

hardware-based metrics, such as Received Signal Strength 

Indicator (RSSI), Link Quality Indicator (LQI), Signal to 

Noise Ratio (SNR) and Bit Error Rate (BER) are produced 

directly from devices and depend on the underlying metrics, 

such as the Noise Figure, specific to one or another 

supplier. It is clear, looking at the table, that the number of 

the independent variables is bounded. However, recently, 

like additional input, the Topological (surrounding space) 

feature was taken into consideration, which presupposes the 

exchange of information on several levels, where the 

Learning Quality Estimator (LQE) is informed about the 

distance from the base station (or access point), etc... In this 

study we considered the development of a model based on 

topological data and classical metrics.  

The classic approaches of channel resources 

management are based on measurement data report sent 

by the terminal to the central entity and decision action 

provided by the central unit to the terminal. These 

algorithms are managed centrally by the control unit that 

sends the actions to be performed by the terminal, such 

as a handover on a different node, or an increase in 

transmission power, or a change in modulation. This 

methodology presents a criticality: The device must 

always be connected with the central unit, otherwise the 

connection will be disrupted. Any unexpected variation 

of the radio parameters, such as sudden interference, can 

cause packet loss and the need to retransmit several 

times both the payload and the channel control packets. 

Essentially, the terminal is never autonomous in deciding 

which action to take in order to maintain the connection. 

In the event of sudden changes in the surrounding 

conditions, our terminal must be able to autonomously 

interpret the data collected and implement a decision that 

allows it to prevent the loss of the connection with the 

central unit. This is the reason why we propose the 

combined use of supervised and unsupervised learning 

methods in the management of radio resources.  

System Architecture 

Dataset and Layout 

To verify our idea, we used an excellent dataset made 

available to the scientific community by Gonzalez-Ruiz - 

University of New Mexico (Gonzalez-Ruiz et al., 2011). 

The wireless channel measurements were collected 

indoor over a floor of the ECE building. at UNM along 

several routes. Figure 2 shows the floor plan as well as 

the regions where the measurements were taken. The 

triangular symbol shows the position of the transmitter. 

The position of the origin is also marked. Measurements 

are made in different regions marked by R and were 

collected with a router acting as the Transmitter (Tx) and a 

Pioneer robot that carries a WiFi card acting as a Receiver 

(Rx). Both transmitter and receiver are omni-directional. 

The WiFi card is an Atheros ar5006x WiFi card, operating 

at 2.4 GHz. The coordinates (x, y, z) of the origin are set 

to be (0, 0, 0). The unit used in this document and the data 

files is meter. The transmitter’s location is (0.115, 0.11, 

1.5). There is a total of 16 regions of measurements (R1-

R16) and each region contains several routes of 

measurements. There is a total of 67 routes. The total 

number of measures is 12463, that is a solid dataset to 

work with. The data are in the format shown in Table 2. 

Column 4 is the measured RSSI (Received Signal 

Strenght Indicator) of the signal in dBm. 

Having a clear picture of our environment, we 

supposed the occurrence of an interferential source in a 

random point of our layout. The interference source will 

be a stationary signal over time, with transmission power 

of 0 dBm, center frequency and bandwidth the same as 

those used by the router and fixed position. We thought 

the interfering signal subject to the fading and path loss 

according to the Multi-Wall indoor Model (Publications 

Office of the EU, 1999) that is: 
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Where: 

Lc = Constant loss 

Nwi = N. of penetrated walls of type i 

Lwi = Loss of walls of type i 

Nf = N. of penetrated floors 

Ntype = N. of wall types 

Lf = floor loss 

 

Since the loss due to floor penetration experimentally 

appears to be non-linear with the number of crossed 

floors, then an alternative version of the MWiM model 

has been proposed: 
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Typical parameter values are: Lc = 0 dB, Lwi = 3-5 dB, 

Lf = 15-20 dB, b = 0.46. 

 
Table 2: Format of dataset 

Column 1 Column 2 Column 3 Column 4 

x position of the y position of the Distance between Received signal 

receiver (m) receiver (m) transmitter and receiver (m) strength (dBm) 
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Fig. 2: ECE building basement. At University of New Mexico - a colormap of the measured RSSI is superimposed on the blueprint 

 

 
 

Fig. 3: RSSI-measured data and theoretical path loss 

 

In Fig. 3 we can see the trend of the RSSI measured 

in one of the paths in Region 2. 

SINR Modeling 

SINR is usually defined for a specific receiver (or 

user). For a receiver positioned at some point x in space, 

its corresponding SINR value is given by: 

 
P

SINR x
I N

 (3) 

 
where, P is the received signal (of interest) power, I is 
the power of the other (interfering) signals in the 
network and N is the noise term, which may be 
random or a constant. In the following we are going to 
consider an Additive White Gaussian Noise (AWGN). 
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The propagation model leads to a model for the SINR 
(Andrews et al., 2010): Consider a collection of n 
transmitters located at points x1 to xn in the plane or 
3D space. Then for a user located, for example, at x = 
0, the SINR for a signal coming from i-th base station 
(xi) is given by: 
 

oo o

o io ii

o

i

h r

h XN
SINR








 









 (4) 

 

where, hio is the power fading coefficient of the 

channel to the receiver of interest “o” from node “i”, 

i is the power of transmitter “i” and φ is the set of 

interfering nodes (φ is a subset of all possible 

transmitters). The desired transmitter is at distance r 

from the desired receiver, while the i-th interferer is at 

distance Xi away. In our case we can consider 

numerator as the measured RSSI. The component can 

be seen as the Interference 
ii ioi

Xh







  signal that 

reach our receiver from the interference source (α is 

the path loss exponent >2) and the term No is the 

Noise Power in the origin, given by: 

 

 10 010log 30N BN    (5) 

 

N0 is the Noise Power Spectral Density given by: N0 

= kBT (kB is the Boltzmann’s constant: 1.381023J/K) and 

T is the system temperature (K). This means that we can 

calculate the SINR in each point of the floor. Figure 4 

shows the SINR measured in Region 2. 

Our goal is to predict the behavior of the transmission 

channel to choose the policy for optimizing the 

performance of our system. For simplicity, we will 

consider the optimization of the throughput. So, the basic 

idea is to use the most appropriate Modulation and 

Coding Scheme according to the prediction. To do this it 

is needed a prediction of the BER. One technique used to 

determine the quality of a digital transmission system is 

measuring its Bit Error Ratio (BER). The BER estimate 

is obtained by comparing the transmitted sequence of 

bits to the one received and counting the number of 

errors. The ratio between the bits received in error and 

the number of total bits received is the BER: 

 

Err

bits

N
BER

N
  (6) 

 

This is a statistical process, so the measured BER 

only approaches the actual BER if the number of bits 

tested approaches infinity. In most cases we need only 

testing if the BER is less than a pre-defined threshold. 

The number of bits needed will depend only on the 

BER threshold and on the required confidence level.  

Figure 5 (Nordin, 2012) shows how the BER varies 

as a function of the Dynamic Subcarrier Allocation - 

SINR based on the type of Modulation and Coding 

Schemes (MCSs) being used. 

 

 

 
Fig. 4: SINR in region 2 
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Fig. 5: BER performance of Dynamic Subcarrier Allocation (DSA)-SINR across different MCSs 

 

Multi-Layer Perceptron Model 

The Multilayer Perceptron (MLP) is an artificial 

neural network model (Fig. 6) that maps set of input data 

into a set of appropriate output data. It is made up of 

multiple layers of nodes in a direct graph, with each 

layer completely connected to the next. Except for 

incoming nodes, each node is a neuron with a non-linear 

activation function. Multilayer Perceptron uses a 

supervised learning technique called backpropagation for 

network training. MLP is a modified version of the 

classical Linear Perceptron and can differentiate data that 

are not linearly separable. The fact that it is a supervised 

neural network clearly suggests that this part of our 

optimization involves the interaction with a central entity 

that will update the policy. We will use sigmoid, also 

known as the logistic function, as the activation function: 
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the output obtained after the forward extension is known 

as the expected value (ŷ). 

Learning Algorithm 

The learning algorithm is composed by two parts: 

Backpropagation and optimization. In the 

backpropagation process a loss function is used to know 

an estimate of how far we are from our desired solution. 

Generally, the Mean Square Error (MSE) is chosen as 

the loss function for regression problems and the cross 

entropy for classification problems. Given a regression 

problem its loss function is the mean square error, which 

squares the difference between the actual (yi) and the 

predicted (ŷi) value: 
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The loss function is computed for the entire training 

dataset and its average is called the cost function C: 

 

 
2

1

1
ˆ

n

i ii
C MSE y y

n 
    (9) 

 

To find the best weights for our Perceptron, we need 

to realize how the cost function changes in relation to 

weights and biases. This is done with the help of 

gradients. So, we need to identify the gradient of the cost 

function with respect to weights and bias. 

We compute the gradient of the cost function C using 

the partial derivation, with respect to the weight wᵢ. Since 

the cost function does not depend directly on the related 

weight wᵢ, we use the chain rule: 
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Equation 11 shows the gradient of the cost function 

(C) with respect to the predicted value (ŷ): 
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Be y = [y1, y2,… yn] e ŷ = [ŷ1, ŷ2,… ŷₙ] the line vectors 

of actual and predicted values. So, the above equation is 

simplified as: 
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Equation 13 compute the gradient of the predicted 

value with respect to z: 
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Equation 14 shows the gradient of z with respect to 

the weight wᵢ is: 
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So, we get: 
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It is theoretically considered that the bias has an input 

of constant value 1. 

Let's now turn to the optimization. Optimization is the 

selection of the best weights and the perceptron bias. For 

example, choosing gradient descent as the optimization 

algorithm, it changes the weights and bias, proportionally 

to the negative of the gradient of the cost function with 

respect to the corresponding weight or bias. The learning 

rate (α) is a hyperparameter that is used to control how 

much the weights and bias are changed. 

 

 
 
Fig. 6: Multi-layer perceptron model 

Weights and bias are updated as follows and back-

propagation and gradient descent are repeated until 

convergence: 
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Application of the MLP to the Prediction of the MCS 

Starting from our indoor environment dataset, we can 

train the MLP to identify the correct policy for choosing 

the MCS. As input values we have the position of the 

receiver, its distance from the access point, the received 

RSSI levels and the measured SINR levels, as output 

value we want our system to indicate which MCS to use 

(Fig. 5) or if it is the case to change carrier. We then 

build our MLP using Python code and the Scikit-learn 

library. Scikit-learn is a Python module integrating a 

wide range of state-of-the-art machine learning 

algorithms for medium-scale supervised and 

unsupervised problems (Pedregosa et al., 2011). To 

import the dataset and make it available as input to the 

Scikit-learn MLP we used Pandas. Pandas is an open-

source library which provides high-performance and data 

analysis tools for Python (Pandas Devel. Team, 2020). 

LP-Classifier trains iteratively, as, at each time step, the 

partial derivatives of the loss function with respect to the 

model features are calculated to update the parameters. 

To prevent the overfitting phenomena, a regularization 

term can be added to the loss function. The Python code 

is used to upload data, that are represented as dense 

numpy arrays of floating-point values and to run the MLP 

classifier. We run the simulation with different values of 

both α, the number of hidden layers, the number of nodes 

in the hidden layers and the number of iterations Fig. 7 

shows the MLP Classifier configuration Row). 

The chosen classification is the one shown in Fig. 8 

considering BER 102: 

Furthermore, we have opted for different 

configurations both in terms of solver and type. Figure 

9 shows some training loss curves obtained with 

different learning strategies, such as Stochastic 

Gradient Descend (SGD), Momentum, Nesterov 

Accelerated Gradient and Adam. 

 

 
 
Fig. 7: MLP Classifier configuration Row 
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Fig. 8: Algorithm decision scheme for MCS policy 
 

 
 

Fig. 9: Training loss curve for MCS choice 
 

Stochastic gradient Descend performs a parameter 

update for each training sample xi and label yi: 
 

 ; ;i i

ww w C w x y      (18) 

 

SGD runs frequent updates with a high variance 

producing a heavy fluctuation of the objective function. 

Momentum is a method that aims to accelerate SGD in 

the relevant direction by adding a fraction γ of the update 

vector of the past time step to the current update vector: 

 

 1t t wv v C w     (19) 

 

tw w v   (20) 

 

The momentum term increases updates for 

dimensions whose gradients head in the same directions 

and decreases them for dimensions whose gradients 

change directions. The result is that it gains faster 

convergence and reduced oscillation. 

Nesterov Accelerated Gradient (NAG) is a way to 

provide our momentum an approximation of the 

subsequent position of the parameters, a rough sign 

where our parameters are going to be: 
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Adaptive Moment Estimation (Adam) is another 

method that estimates adaptive learning rates for each 

parameter. Besides storing an exponentially decreasing 

average of past squared gradients vt, Adam strategy 

keeps also an exponentially decreasing average of past 

gradients mt, similar to momentum. For the sake of 

brevity, gt is used to denote the gradient at time step t, so 
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gt,i is then the partial derivative of the objective function 

to respect the parameter wi at time step t: 
 

 , ,t i w t ig C w  (23) 

 
The decreasing averages of past gradient mt and past 

squared gradient vt are computed as follows: 
 

 1 1 11t t tm m g      (24) 

 

  2
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mt is an estimate of the first moment (the mean) and vt of 

the second moment (the uncentered variance) of the 

gradients, hence the name of the method. To counteract 

these biases the strategy computes bias-corrected first 

and second moment estimates: 
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Adam works fine in practice and competes to other 

adaptive learning-method algorithms. 

Results of MLP Prediction 

Figure 9 shows the training loss curve for the choice 

of the MCS. We have considered seven different 

learning strategies: 

 

 Constant learning-rate 

 Constant with momentum 

 Constant with Nesterov’s momentum 

 Inv-scaling learning-rate 

 Inv-scaling with momentum 

 Inv-scaling with Nesterov’s momentum 

 Adam 

The convergence is reached after fifty iterations with 

Adam strategy that appears as the most appropriate for 

this scenario. 

Table 3 shows the classification report using ADAM 

learning strategy. 

This shows that the level of accuracy is high, although 

we must consider that this environment is far from being 

realistic. We should take into account other interfering 

elements and moving obstacles inside the set, in order to 

make the scenario more accurate. On the other hand, it is 

true that the more interferers there are, the greater the 

contribution of measures that will be made available to the 

central entity to recalculate the policy, because each 

interferer works also as a data source. In any case, the 

result obtained provides some interesting food for thought: 

The accuracy of such a system can be different changing 

the learning strategies. For example, using a constant 

learning-rate policy, the obtained score is 0.984113, 

while using an inv-scaling learning-rate the score is 

0.743400 and with inv-scaling with Nesterov's 

momentum the score is 0.770200. Furthermore, from 

Table 3 it is noted that the most critical cases, i.e., those 

in which it is necessary to be reasonably sure of the 

prediction, are the two cases with less uncertainty. 

Figure 10 shows the MLP’s policy distribution for the 

64QAM Modulation and Coding Scheme. 

 

 
 
Fig. 10: 64QAM distribution 

 
Table 3: Classification report using ADAM learning strategy 

  Precision Recall F1-score Support 

#64QAM 1.00 1.00 1.00 499 

#16QAM 0.99 0.98 0.98 310 

#8BPSK 0.96 0.99 0.97 269 

#QPSK 0.98 0.96 0.97 188 

#change carrier 1.00 1.00 1.00 1850 

Accuracy     0.99 3116 

Macro avg 0.99 0.98 0.99 3116 

Weighted avg 0.99 0.99 0.99 3116 

where the training set is 75% of the available data and the testing set is the remaining 25%; Recall = TP/(TP + FN) (TP = True 

Positive, FN = False Negative, FP = False Positive, TN = True Negative); Precision = TP/(TP + FP); f1-score = 

2*(precision*recall)/(precision + recall); accuracy = (TP + TN)/(TP + TN + FP + FN) 
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However, the MLP’s are trained in batch mode and 

remain static after training, therefore the estimator is not 

adaptable to persistent changes in the link. Batch or 

offline training of ML algorithms (Banerjee and Basu, 

2007) means that the model is trained, optimized and 

evaluated once on the training and test sets available and 

must be completely retrained later to accommodate 

possible changes in the file dissemination of updated data. 

In practice, this corresponds sporadic updates, for 

example, once every few hours and once for day 

depending on how the whole system was designed. For in 

the case of embedded devices, the device must be fully or 

partially reprogrammed (Ruckebusch et al., 2016). This 

consideration therefore prompted us to evaluate whether it 

was possible to add an unsupervised approach to the MLP 

so that the agent can self-learn the most suitable policy 

as the surrounding conditions change. 

Reinforcement Learning Approach 

Suppose our agent, to whom a central entity has sent 

a policy, is experiencing sudden interference. We 

consider, for example, the problem of radio channel 

selection. It will take some time before the new policy is 

recalculated and sent back to our agent. So, the objective 

of the agent is to choose for the next time slot a channel 

with no interference. Suppose the external interference has 

a periodic pattern, sweeping over all channels one to four 

in the same order. The agent must now autonomously 

learn a strategy that allows him to avoid the interfered 

time slots. In this case a Reinforcement Learning 

approach, in particular a Q-Learning Model, can be the 

solution. In this sense, our simulation environment 

transfers control to the agent, who autonomously identifies 

the appropriate policy for the new situation. 

Q-Learning Model 

In this case we have to take into account the protocol 

stack of our system, as learning, now, takes place in real 

time. To do this we can use ns-3. Ns-3 is a discrete-event 

network simulator for Internet systems (ns-3 project, 

2020). In order to make ns-3 communicate with a 

Reinforcement Learning algorithm in OpenAI-gym we 

used ns3-gym. OpenAI Gym is a toolkit for 

Reinforcement Learning (RL) widely used in research. 

Ns3-gym is a framework that integrates both OpenAI 

Gym and ns-3 (Gawłowicz and Zubow, 2019).  

Q-Learning is a model-free application of machine 

learning, that is the AI "agent" does not need to know the 

environment that it will be in. Indeed, the same 

algorithm can be used across different environments. 

Once defined the environment, everything is splitted into 

"states" and "actions." 

The states are observations of the environment and 

the actions are the choices the agent has made based on 

the observation. Table 4 shows the RL mapping that has 

been used by Gawlowicz. 

The agent doesn't really need to know anything about 

the environment. For each environment, the agent can 

query for how many actions are possible. In this case, 

there are "4" actions. When the agent steps the 

environment, it act with a 0, 1, 2 or 3 as its "action" for 

each step. Each time it does this, the environment will 

return to him the new state, a reward, whether the 

environment is done and then any extra info that some 

envs might have. A “0” means go to timeslot 1, 1 means 

go to TS 2 and so on. All the agent needs to know is 

what the options for actions are and given a state, what 

the reward of performing a chain of those actions would 

be. The agent knows he can take 4 actions at any given 

time. That's the "action space". Now, we need the 

"observation space." In this gym environment, the 

observations are returned from resets and steps. The 

“observation” is given by the information of which of 

the four time slots is interfered at that time.  

The way Q-Learning works is based on a "Q" value per 

action possible per state. This produces a table. To figure 

out all of the possible states, the agent can either query the 

environment or just simply has to engage in the 

environment for a while to figure it out. It will check this 

table to determine the moves. When the agent is being 

"greedy" and trying to "exploit" its environment, it will 

choose to take the action that has the highest Q value for 

this state. However, sometimes, especially at the beginning, 

it may decide to "explore" and choose a random action. 

These random actions are the way our model will learn 

better moves over time. Q values are updated this way: 

 

        1, 1 , max ,new

t t t t t t
a

Q s a Q s a r Q s a           (28) 

 

Where: 

rt = Reward  

 = Discount factor  

max
a

Q(st+1, a) = Estimate of optimal funture value  

 = Learning rate  

Q(st, at) = old value 

 
Table 4: Reinforcement learning mapping 

Observation Occupation on each channel in the current time slot 

Actions Set the channel to use for the next time slot 

Reward +1 in case of no collision with interferer; -1 otherwise 

Gameover If more than 3 collisions occur during the last ten time-slots 
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Fig. 11: Learning performance of Q-learning model 

 

The Discount is a measure of how much the agent 

wants to care about future reward rather than about 

immediate reward. Typically, this value is between 0 and 

1. The higher the better, because the purpose of Q 

Learning is, indeed, to learn a chain of events that ends 

with a positive outcome, so it's natural that the agent put 

greater importance on long terms gains rather than short 

term ones. The max_future_q is determined after the 

agent has performed its action already and then it 

updates its previous values based partially on the next-

step's best Q value. Over time, once the agent has 

reached the objective, this "reward" value gets slowly 

backpropagated, one step at a time, per episode. 

Results of Q-Learning Model 

Figure 11 shows the learning performance using a 

modified version of the Q-Learning algorithm used by 

Gawlowicz. The modified version of the algorithm can 

be found in a GitHub Repository1. The main difference 

we introduced, compared to the original version, is 

related to the libraries used. We have eliminated the 

dependence on libraries such as Tensorflow and Keras. 

These libraries in fact, while ensuring high 

performance, use AVX instructions which may not run 

on older CPUs. In the original version we could see 

that after 80 episodes the agent will be able to perfectly 

predict the next channel state from the current 

observation so avoiding any collision with the 

interference. In our modified version we need some 

more episodes, about 600 episodes. On the other hand, 

the advantage is that the modified version can be used 

even on Cognitive Radio with limited computational 

power, such as NB-IoT, Sigfox and LoRaWan devices, 

because it does not require GPU support and high 

performing CPU, since in the prediction were not 

employed high performance numerical computation 

tools such as (Tensorflow, 2019; Keras, n.d.). 

                                                           
1 https://github.com/apirodd/apirodd/projects?query=is%3Aopen 

Table 5: Time complexity comparisons for RL algorithms 

on episodic MDP. T = KH is the total number of 

steps, H is the number of steps per episode, S is the 

number of states and A is the number of actions 

(source (Jin et al., 2018)) 

 Algorithm Time Space 

Model-based RLSVI Õ(TS2A2) O(S2A2H) 

 UCRL2 (TS2A) O(S2AH) 

 Agrawal and Jia 

 UCBVI Õ(TS2A) 

 Vucq 

Model-free Q-learnig ( greedy) O(T) O(S2AH) 

 (if 0 initialized) 

 Delayed Q-learning 

 Q-learning (UCB-H) 

 Q-learning (UCB-B) 

 Lower bound - -  

 

Discussion 

It has been shown in (Xu and Gu, 2020) that neural 

Q-learning with Multiple Layers finds the optimal policy 

with O(1/sqrt(T)) convergence rate if the neural function 

approximator is sufficiently overparameterized, where T 

is the number of iterations.  

Table 5 from (Jin et al., 2018), shows that the Time 

complexity for the Model-free scenario is O(T) where T 

is the total number of steps.  

In real-time applications, the appropriate task 

representation or suitable initial Q-values is very 

important. In fact, prior results indicated that 

reinforcement learning algorithms are exponential in “n” 

(number of states), thus limiting their practical use if this 

set is high dimensional. In (Koenig and Simmons, 1993) 

has been shown that such algorithms are tractable if we 

use appropriate initial Q-values. 

Further studies are moving towards the analysis of a 

multi-agent interaction (Multi Agent Reinforcement 

Learning-MARL). This would allow the different 

devices to cooperate by identifying a multi-agents 
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policy, addressing the sequential decision-making 

problem when they are operating in a common 

environment. Each agent aims to optimize its own long-

term reward by interacting with the environment and 

other agents (Busoniu et al., 2008), in particular, both 

the evolution of the system state and the return received 

by each agent are influenced by the joint actions of all 

agents (Zhang et al., 2019). 

Conclusion 

Over the next few years, the growth of mobile 

devices will grow steadily while the radio resource will 

remain substantially unchanged. It is therefore necessary 

to provide strategies for an optimized use of the radio 

channel. In this study we have shown a possible 

approach to face the problem, highlighting how the 

combined use of supervised learning and reinforcement 

learning models applied to predicting the behavior of the 

transmission channel can provide interesting results on 

the performance of the entire system. 
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