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Abstract: In this study, the natural frequencies of the pipe transporting an 

fluid resting on an elastic Winkler-type and the critical velocities of 

instabilities are obtained by the standard finite element method. A dynamic 

characteristic of a pipe carrying internal fluid undergoes mechanical load 
due to inertia effect of fluid, Coriolis force, fluid kinetic force due to fluid 

flow velocity, dynamic load due to inertia effect on the pipe structure. A 

numerical modal analysis is realized in the fluid-structure interaction 

configuration. One dimensional beam finite element is used for 

investigating the dynamic behavior of the thin pipe. According to the 

approved method, the different elementary matrices were extracted, which 

were including to a code called Matlab. We developed a program under 

Matlab with R2017b version, where computations are in the complex 

planes. The initial approach is based on some research and analytical 

models. The numerical results show satisfactory agreement with the 

analytical results. The increase in flow velocity, mass ratio and length 

reduced from the rigidity of the system. Regions and range of 
instabilities are presented by numerical aspects. We determined the 

influence of the different parameters on the static and dynamic 

instabilities of the system. 

 

Keywords: Pipe Conveying Fluid, Natural Frequency, Critical Velocity, 

Instability, Elastic Foundation, FEM, MATLAB 

 

Introduction 

The study of the subject of pipes vibrations under the 

internal flow is very interesting and forked. Researcher 

Païdoussis was able to present a book (Paidoussis and 

Moon, 1988) containing all his research and results, 

linear and non-linear equations, using analytical and 

experimental methods as well as factors affecting this 

behavior, whether geometrics and physics. The book 

contains more than 40 of his researches and has become 

a reference for every researcher in this field. Some of his 

research, ancient (Paidoussis and Li, 1992) and modern 

(Païdoussis et al., 2007; Kheiri and Païdoussis, 2015), 

dealt with the concept of instabilities (static instability 

and dynamic instability). Accordingly, the researcher 

(Doaré and de Langre, 2000) has found new analytical 

formulas and that calculates the critical flow velocity 

inside a fixed-free tube on an elastic foundation, this was 

done using the Galerkin method and the same search for 

the boundary conditions: Pinned-pinned and clamped-

clamped (Doaré and de Langre, 2002). Then, he 

studied elsewhere the role of boundary conditions in 

the instability of one-dimensional systems (Doaré and 

de Langre, 2006). The importance of the subject of 

instability and its impact in industrial life requires a lot 

of research and studies. We find that (Chellapilla and 

Simha, 2007), studied the effect of elastic foundation 

Pasternak-type on the critical velocity of a fluid-

conveying pipe. Same work with adoption Pasternak-

Winkler model in (Chellapilla and Simha, 2008) Similar 

to the analytical method adopted in most of these 

researches (Galerkin method), there are others who used 

analytical method to study vibration of pipe with internal 

flow as differential quadrature method (Lin and Qiao, 

2008), differential transformation method (Ni et al., 

2011) and such a generalized integral transform 

technique (Gu et al., 2013). The aforementioned 

methods provided significant and valuable results, but 
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they remain classic and sophisticated methods, so we 

find researchers using numerical methods as a method of 

spectral element modeling in (Lee and Park, 2006) and 

such as finite element method (Sadeghi and Karimi-Dona, 

2011; Mostafa, 2014). Dahmane et al. (2016) studied 

the pipe vibration under internal flow by calculating 

the natural frequencies with different parameters and 

they were coupled the two Commercial solvers, Fluent 

of fluid mechanical (CFD) and ANSYS Workbench 

code. The results were very impressive and 

satisfactory. The numerical methods that depend on 

the finite elements have proven to be effective in 

terms of results, speed in operation and easy in 

analysis when dealing with a coupling fluid-structure 

problem, see in the references (Mostafa, 2014; 

Dahmane et al., 2016; Jiya et al., 2018; Marzani et al., 

2012). In the present study, calculation methods have 

been developed for the analysis of instabilities in 

pinned-pinned pipe systems. Modeling of structure-

fluid was conducted by the standard finite element 

method. So, finite element beam type with two 

degrees of freedom per node was used. The natural 

frequencies and the critical velocities of the system 

are calculated using a program developed on 

MATLAB-R2017b language. After studying the 

convergence and the numerical approach for our 

program, several examples were studied. We performed 

several calculations to study instability, taking into 

account: Fluid velocity, mass ratio, length and elastic 

foundation. This allows us to analyze instabilities and 

know factors that affect its regions and margin (range).  

Vibration Equation 

The problem to be considered is the free vibration 
analysis of a fluid-conveying pipe on an elastic 

foundation Winkler-model. Vibration motion equation is 

based on Bernoulli–Euler elementary beam theory. The 

physical model of pipe conveying fluid with Winkler-

type is shown in “Fig. 1”. “Figure 2a” shows forces on 

fluid element while, “Fig. 2b” shows forces and moment 

of pipe element. The pipe is long and straight L 

conveying an incompressible fluid, where U is mean 

velocity; the motions are small (dX ≈ δs), “Fig. 2a”. The 

pipe rests on an elastic foundation Winkler-type soil of 

modulus K, “Fig. 1”. In the “Fig. 2”, ms and mf masses 

per unit length of the incompressible fluid and the 
structure, respectively. The Boundary conditions for 

pinned-pinned pipe are: 

 
2 2
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| | | | 0X X X L X L

y y
Y Y

X X
   

 
   
 

 (1) 

 

The equation for conveying pipe carrying fluid on a 

Winkler elastic foundation is given as (Paidoussis and 

Moon, 1988): 
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The “Equation (1)” is a fourth-order partial 

differential equation in two independent variables 

subject to various boundary conditions.  

 

 

 
Fig. 1: Representation of the pipe-conveying fluid resting on an elastic Winkler-type 
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Fig. 2: (a) Forces on fluid element; (b) forces and moments on pipe element δs (Paidoussis and Moon, 1988) 

 

Finite Element Discretization 

The equation of element deflection for straight 

one-dimensional beam elements could have the form 

(Rao, 2017; 2011): 
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where: 

[Ni] = Represent the shape function 

Wi(T) = The function which represents the 

displacements shape, “Equation (4)” and, 

rotation at the nodes, “Equation (5)” 

 

The “Equation (3)” becomes: 
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Elementary Matrices 

Using the energy principle (Rao, 2017; Zhai et al., 

2011), where the potential (deformation) energy of the 

solid element can be expressed: 
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And the kinetic energy of the solid element can be 

expressed: 
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The kinetic energy of the fluid element can be 

expressed by (Mostafa, 2014; Marzani et al., 2012): 

 
2

1

2
f f

dW dW
T m U dX

dX dT

 
  

 
  (9) 

 

The potential energy over the length of elastic 

foundation can be expressed by (Mostafa, 2014; Jiya 

et al., 2018): 
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where, [Ks], [Kf], [M], [C] and [F] respectively, the 

structure stiffness, the fluid stiffness, the masses, the 

damping and the foundation matrices of the system. 

The Natural Frequencies 

After using the Lagrange principle (Dahmane et al., 

2020a), the equation of motion by finite element method is: 

 

          0M q qC K q    (16) 

 

where, [K] is the rigidity (global stiffness) of the system: 

  s fK K K         (17) 

 

The solution of Equation (16) is very complicated 

with presence of damping, so we use the variable change 

method (state-space): 

 

0Ez Gz   (18) 

 

where the state variable is: 
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The matrices [E] and [G] are calculated through 

variable-change as the following: 
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If, the solution of Equation (16) is taken as: 

 

     .expq E t  (22) 

 

In addition, λ is eigenvalues of the system and the 

{E} corresponding eigenvectors of this value: 

 

j   (23) 

 

In addition, the solution of equation is sought in the 
general form: 
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The system equation of government can be 

transformed from state space by: 
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I is a unity matrix. 

We ask ourselves: 

 

1 1

0 I
H

M K M C 

 
  

  
 (26) 

 

Eigenvalues are complex; they give in the form: 
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m m mRe j    (27) 

 

Re : The real part of the eigenvalue and is the damping 

of the system 

Ω : The imaginary part of the Eigen value, is therefore 

the proper pulsation of our system 

 
The characteristics of the roots are obtained here, 

using the Matlab code (Dahmane et al., 2020b). 

We introduce the non-dimensional variables and 

parameters: 
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Numerical Results 

This research seeks to study the two types of 

instabilities and this comes by calculating the two critical 

velocities in the static pattern (buckling) and the 

dynamic pattern (flutter), that accompanies the 

disappearance of the first natural frequency in both 
cases. Results will be discussed for various values of 

flow velocity, mass ratio, length L and elastic foundation 

for pinned-pinned pipes. The physical parameters as: 

Elastic modulus of structure is (211 GPa); 

incompressible fluid (H2O), density is (1000 kg/m3); 

elastic structure (pipe), density is (7850 kg/m3). The 

geometrical parameters as: Pipe length is (1÷2 m); the 

thickness corresponds β belongs to [0.1, 0.6]; outer 

diameter of the pipe is (0.03 m).  

Instability study mainly depends on calculating the 

first frequencies of the tube structure under the 
influence of pressure resulting from increasing flow 

velocities, passing through the first critical velocity 

where the resulting force are identical to the so-called 

buckling (static instability). This stage continues for a 

period of time (instability range) that coincides with 

absence of the first mode of vibration, up to the 

second critical velocity that corresponds to dynamic 

instability (flutter).  

Along the static instability range, the structure passes 

from linear to non-linear, where the system suffers from 

severe fatigue. So, our research deals with the study of 

the transition period between static instability and 

dynamic instability. 

The cases can be divided into three according to the 

parameters effect (masse ratio, length and elastic 

foundation). In the case one, firstly the convergence was 

performed for a velocity U = 100 m/s, 15 elements have 

been adopted, 13 elements are sufficient for three first 

modes Fig. 3.  

The numerical results are obtained by DTM and 

FEM for masse ratio β = 0.1. The results obtained are 

similar, Fig. 4.  

The same study for β = 0.3 and β = 0.5 with the 

adoption of the numerical method. Figures 5 and 6 

shows these calculations. These figures present almost 

the same natural frequencies and the same first critical 

velocity; this what many researchers believe [1, 9], but 

the physic (dimensional) results show variations in 

values and this is what we see in the following figure. 

So, the Fig. 7 shows the physical results accompanying 

the non-dimensional results in the Figs. 5 and 6 for β = 

0.3 and β = 0.5, respectively.  

For U ≡ 0 (very low velocity), the variation for the 

first frequency is 12%, it is the same for both other 

frequencies. For U ≡ Ucr, the variation between the two 

states is equal 30%, whereas the critical velocity is 

reduced with 33% corresponding to the dynamic 

instability (flutter).  

The variation for instability static range is 33%. This 

means that raising the value of β weakens the structure 

rigidity, which leads to decrease natural frequencies and, 

of course, critical velocities. Part of this variation is 

shown in the previous figures in the use of the number of 

iterations in terms of velocity, so that it is more severe in 

Fig. 4 compared to the two that followed.  

From another perspective, these big variations are 

caused by the passage of a large amount of fluid that 

generates Coriolis forces by positive damping, which 

grows with time, leading to a decrease in system rigidity 

and consequently the frequencies.  

The Figs. 8 and 9 shows the action of this damping 

effect, which is manifested in the form of real part of the 

first natural frequency where β = 0.3 and fluid velocity is 

limited to the field [0.8].  

The second case, we calculated the first three natural 

frequencies as a function of the fluid velocity for three 

different lengths (L = 1, L = 1.5, L = 2), Figs. 10 and 11 in 

order to study its effect on instability of both types. So, the 

Fig. 12 represents the variations for two mass ratios. 

The variations show that length has significant 

effect on the rigidity, which lowers the frequencies of 

the system according to the fluid velocity and 

consequently quickly reaches the first critical velocity 

of buckling. The biggest variation here is equal to 

44%. The change in the level of instability range is 

evident, increasing with the increase in length. The 

Fig. 12 shows critical velocities (static part) of 

pinned-pinned pipe as function of the masse ratio in 

the field [0.6] for different lengths. The results show 

that the critical velocity of flow diminishes as the 

length parameter increases. 
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Mass Ratio Effect 
 

 
 

Fig. 3: Convergence of the first three natural frequencies of pinned-pinned pipe conveying fluid, with U = 100 m/s, β = 0.5 

 

 
 
Fig. 4: Dimensionless frequency for various values of u, for the lowest three modes of a pipe conveying fluid, DTM (Ni et al., 2011) 

(xxx) and FEM (̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶  ̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶), β = 0.1 

 

 
 

Fig. 5: Dimensionless frequency for various values of u, for the lowest three modes of a pipe conveying fluid, β = 0.3 
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Fig. 6: Dimensionless frequency for various values of u, for the lowest three modes of a pipe conveying fluid, β = 0.5 

 

 
 

Fig. 7: Three proper modes on fluid velocity function of pinned-pinned pipe conveying fluid, (a) β = 0.3 
 

 
 

Fig. 8: Three proper modes on fluid velocity function of pinned-pinned pipe conveying fluid, (b) β = 0.5
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Elastic Foundation Effect 

The final case of this research deals with the study 

of the elastic foundation on system instabilities. Table 

1 presents the critical velocities for static instability of 

the pinned-pinned pipe as functions of the foundation 

stiffness k, with β = 0.5.  

The variation in results is evident, especially for high 

Winkler parameter. The “Fig. 13” shows elastic 

foundation effect (k = 103) on the variation of the first 

modes as a function of the fluid velocity. Compared to 

the first case (k = 0), we find that the largest variation in 

the frequency values is equal to 70%, while the 

instability range lowers by 36% and the critical velocity 

that corresponds to dynamic instability is 9.859. 
 
Table 1: The critical velocity parameter for various values of 

Winkler-model (k) 

k values Critical velocity Variation % 

0.1 3.142 0.12 
1 3.158 1.60 
10 3.298 4.43 
100 4.472 35.59 
200 5.489 22.74 
300 6.348 15.64 
400 7.049 11.04 
500 7.226 2.51 
1000 8.0596 11.53 

 

 

 
Fig. 9: Real part of the first Eigen mode as function of fluid velocity 

 

Length Effect 

 

 
 
Fig. 10: Two proper modes on fluid velocity function of pinned-pinned pipe conveying fluid for different length, (a) β = 0.3, (b) β = 
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Fig. 11: Two proper modes on fluid velocity function of pinned-pinned pipe conveying fluid for different length, (b) β = 0.5 

 

 
 

Fig. 12: Critical velocities of pinned-pinned pipe as function of the masse ratio for different lengths 

 

 

 
Fig. 13: Effect of foundation stiffness on the natural frequency of the pinned-pinned pipe at different fluid velocities, β = 0.5 
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Conclusion 

In this study, we have studied the instabilities of 

pinned-pinned pipe carrying incompressible fluid. The 

numerical aspect with the finite method gives 

solutions in a complex plane by determining the Eigen 

modes. Numerical results give the natural frequencies 

and critical velocity that characterized instabilities. 

Several examples were processed to determine the 

influence of the fluid flow velocity and different 

physical and geometrical parameters on the 

phenomenon of fluid-structure interaction. The main 

findings can be summarized as follows: 

 

1. The first conclusion which one can draw from this 

study is that the frequencies of the system fluid-

structure depend on the physical and geometrical 

factors 

2. We observe that instability appears when the 

velocity exceeds a threshold called critical velocity 

of instability, when the first proper mode is zero 

3. The results obtained numerically are similar to those 

obtained by the semi-analytical method for the 
determination of the first natural frequencies 

4. We have noticed that increasing β slightly decreases 

the natural frequencies of the system and 

consequently decreases their critical velocities 

5. The length parameter decreases the frequencies and 

critical fluid velocities and leads to an increase in 

the instability margin 

6. Winkler elastic foundation increases the natural 

frequencies of the system and consequently the 

critical velocities, while the range of static 

instability is decreasing. What distinguishes most 

of this research from others is its discussion of the 
axis of instability and what it means in this field 

that is why we did some analysis and calculation 

in this research, hoping to continue with other 

work in the same field 
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Nomenclature 

 

x : Cartisan coordinate 

y : Cartesian coordinate 

u : Velocity 

U : Velocity of fluid 

t : Time 

P : Pressure 
M : Moment of inertia 

m : Mass 

 : Pipe element 

ms : Mass per unit length 

mf : Mass per unit of a conveying fluid 

EI :  Flexural rigidity 

A :  Cross- section area 

L : Lengh of pipe 

k : Dimensionless winkler foundation 

 : Mass ration  

E : Elastic modulus of pipe 


