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ABSTRACT 

Engineering design under uncertainty has gained considerable attention in recent years. A great multitude of 
new design optimization methodologies and reliability analysis approaches are put forth with the aim of 
accommodating various uncertainties. Uncertainties in practical engineering applications are commonly 
classified into two categories, i.e., aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty arises 
because of unpredictable variation in the performance and processes of systems, it is irreducible even adding 
more data or knowledge. On the other hand, epistemic uncertainty stems from lack of knowledge of the system 
due to limited data, measurement limitations, or simplified approximations in modeling system behavior and it 
can be reduced by obtaining more data or knowledge. More specifically, aleatory uncertainty is naturally 
represented by a statistical distribution and its associated parameters can be characterized by sufficient data. If, 
however, the data is limited and can be quantified in a statistical sense, epistemic uncertainty can be 
considered as an alternative tool in such a situation. Of the several optional treatments for epistemic 
uncertainty, possibility theory and evidence theory have proved to be the most computationally efficient and 
stable for reliability analysis and engineering design optimization. This study first attempts to provide a better 
understanding of uncertainty in engineering design by giving a comprehensive overview of its classifications, 
theories and design considerations. Then a review is conducted of general topics such as the foundations and 
applications of possibility theory and evidence theory. This overview includes the most recent results from 
theoretical research, computational developments and performance improvement of possibility theory and 
evidence theory with an emphasis on revealing the capability and characteristics of quantifying uncertainty 
from different perspectives. Possibility and evidence theory-based reliability methods have many advantages 
for practical engineering when compared with traditional probability-based reliability methods. They can work 
well under limited data while the latter need large amounts of information, more than possible in engineering 
practice due to aleatory and epistemic uncertainties. The possible directions for future work are summarized. 
 
Keywords: Possibility Theory, Evidence Theory, Design Optimization, Per Formability Improvement, 

Various Uncertainties, Theoretical Research, Computational Development 
 

1. INTRODUCTION 

Uncertainty is one of the greatest challenges for 
engineering design (Huang et al., 2008; 2009; 2011a; 2011b; 
2012a; Huang, 2012; Zhang et al., 2010a). Over the past 

two decades, there has been an ever-increasing tendency to 
take uncertainty analysis into account. Various uncertainties 
can be observed in engineering practices across multiple 
spatial and temporal scales, as well as phases of product 
design (Liu et al., 2009; 2012; Greene et al., 2011); these 
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must be carefully dealt with in engineering design activity. 
In fact, uncertainty is associated with both the qualitative 
and quantitative characteristics of design problems, hence, 
we first present classifications, theories and design 
considerations to provide a better understanding of 
uncertainty. A holistic review is then provided of alternative 
approaches to dealing with epistemic uncertainty and applying 
these approaches to design practices. 
 The characteristics of uncertainty depend on the 
mathematical theory within which problem situations are 
formalized (Klir, 1995). Generally speaking, each 
mathematical theory can characterize only some of the 
specific types of uncertainty. A more general theory can, 
of course, characterize more types of uncertainty. The 
theories and methods that we recommand will shed light 
on dealing with practical problems in engineering design. 

1.1. Definitions and Classifications of 

Uncertainty 

 Different terms have been used as synonyms for 
uncertainty. For examples, words such as unsuredness, 
indefiniteness, unpredictability, indeterminacy, 
changeability, irregularity, arbitrariness, ambiguity, 
vagueness, randomness, variability and haphazardness 
provide various perspectives and/or specific nuances 
in meaning.  
 Uncertainty has several definitions. To some extent, it 
is associated with phenomena that are questionable, 
problematical, poorly defined or determined, lacking certain 
knowledge, or liable to change/vary (Klir and Folger, 1988). 
Uncertainty is also related to degree of belief in the validity 
of a particular proposition or datum (Agarwal et al., 2004; 
Kangas and Kangas, 2004). Based on the existing 
descriptions, Zimmermann (2000) gave a more general 
definition for uncertainty as follows.  
 Uncertainty implies that in a certain situation a 
person does not dispose about information which 
quantitatively and qualitatively is appropriate to describe, 
prescribe or predict deterministically and numerically a 
system, its behavior or other characteristics. 
 Uncertainty is also classified in several different ways 
by the literature. For example, Nikolaidis and Haftka (2001) 
reviewed the types of uncertainty involved in risk 
assessment problems and classified them into irreducible 
(random) and reducible uncertainty. The former is due to 
inherent randomness in physical phenomena or processes 
whereas the latter is due to a lack of knowledge. As their 
names imply, collecting data can reduce reducible 
uncertainty but not irreducible uncertainty. Oberkampf et al. 
(2000; 2004) considered a third type of uncertainty, namely 
error, which is defined as a recognizable deficiency in 
modeling    and     simulation    that is not due to lack of 

knowledge. 
 When considering design problems, Robinson (1998) 
treated uncertainties using two alteratives, probabilistic 
and possibilistic methods, He pointed out that in exact 
system modeling, probabilistic techniques are characterized 
by random variables describing the various sources of 
uncertainties; these often referred to as reliability methods 
by structural engineers, are typically applied to systems 
of small or moderate complexity. In contrast, 
possibilistic techniques (often referred to as the fuzzy set 
theory or possibility theory) are typically applied to large 
and complex systems. 
 Zimmermann (2000) classified the causes of 
uncertainty (not types of uncertainty, as he emphasized) as: 
lack of information, abundance of information (complexity), 
conflicting evidence, ambiguity, error in measurement and 
subjective belief. Rowe (1994), on the other hand, classified 
uncertainty as metrical (measurement variability and 
uncertainty), structural (uncertainty due to the complexity of 
systems), temporal (uncertainty about future and past states 
of nature) and translational (uncertainty in explaining 
uncertain results). Ferson and Ginzburg (1996) used only 
two broad classes, namely ignorance and variability, where 
variability includes the variation between individuals and 
spatial and temporal variation. Ignorance refers to 
uncertainty due to lack of knowledge; the true value exists 
and it is fixed, but we do not know it. According to this 
definition, ignorance can be reduced by further study better 
measurement techniques and so on. Variability, on the other 
hand, remains the same no matter how many additional 
studies are conducted.  
 The three distinct categories of variability, uncertainty 
and error, proposed by Moens and Vandepitte (2004), 
which have been popularly accepted widely and used in 
modeling, are similar to classifications by Oberkampf et al. 
(2004) and Agarwal et al. (2004). It is noteworthy that the 
word uncertainty often refers to random variability. A 
distinction can also be made between aleatory uncertainty 
(referred to as variability, irreducible uncertainty, inherent 
uncertainty and stochastic uncertainty), epistemic 
uncertainty (referred to as reducible uncertainty, 
subjective uncertainty, state-of-knowledge uncertainty, 
model form uncertainty and simple uncertainty) and error 
(Oberkampf et al., 2000; 2004). Aleatory uncertainty 
regarding a quantity can often be distinguished from other 
types of uncertainty by its characterization as a random 
value with known distribution (Oberkampf et al., 2004). 
These classifications can be illustrated with their causations 
as shown in Fig. 1. 
 In view of descriptions of degrees of uncertainty and 
simplifications of systems, Klir and Folger (1988) and 
Klir and Yuan (1995) first reviewed various meanings of 
the word “uncertain”, then categorized uncertainty 
naturally into vagueness and ambiguity.  
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Fig. 1. A well-known classification of uncertainty (Oberkampf et al., 2000; 2004; Moens and Vandepitte, 2004) 
 

 
 
Fig. 2. Klir’s classification of uncertainty (Klir and Folger, 

1988; Klir and Yuan, 1995) 
 

Generally speaking, vagueness reveals the difficulty of 
making sharp or precise distinctions in the world and 
ambiguity, arises out of one-to-many relations. Klir and 
Folger (1988) also put forth a set of similar concepts for 
these two distinct forms of uncertainty; that is, vagueness is 
connected with such concepts as fuzziness, haziness, 
cloudiness, unclearness, indistinctiveness and shaplessness, 
whereas ambiguity is connected with such concepts as 
nonspecificity, one-to-many relations, variety, generality, 
diversity and divergence.  
 Klir’s classifications of uncertainty can be seen in 
Fig. 2. There the word vagueness has the same meaning 
as fuzziness and the word dissonance is sometimes 
replaced by conflict. Klir’s purpose was to provide a 
basic framework for characterizing the full scope of the 

concept of uncertainty and its relationship to the 
increasingly important concepts of information and 
complexity; his work plays a fundamental role in the 
relevant theories on uncertainty and information. 

1.2. Sources of Uncertainty 

 In order to develop a general methodology for 
quantifying various types of uncertainty, the vital and 
necessary first step is identifying of the sources of 
uncertainty. In different phases of modeling and 
simulation, uncertainty arises from the following 
(Robinson, 1998; Agarwal et al., 2004; Huang et al., 
2004; 2006c; 2009; 2012b):  
 
• External system parameters (load, temperature, 

radiation) 
• Internal system parameters (material properties) 
• Modeling of the physical system (conceptual or 

mathematical methods) 
• Observational uncertainty 
• Solution processes of the mathematical model 

(numerical or algorithmic uncertainty) 
• Representation of the numerical solution 
• Field data or experimental data  

1.3. Theories of Uncertainty Modeling 

 There is an abundant collection of theories regarding 
modeling all types of uncertainties.  
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Fig. 3. Families of theories of uncertainty (Nikolaidis and Haftka, 2001) 
 

Before fuzzy measure was proposed by Sugeno, 
probability theory (including classical or frequentist) was 
the dominant and most effective way to model 
uncertainty, especially stochastic uncertainty when 
sufficient information is available. This theory is not 
appropriate for reducible uncertainty and error, however, 
because the additivity axioms, which probability theory 
relies on, are unable to express lack of knowledge in 
scarce-data situations. For this reason, alternative 
uncertainty analysis tools such as imprecise probability 
and evidence theory, have been developed; they can be 
combined with probability theory to develop a 
framework in a specific field (Nikolaidis and Haftka, 
2001), e.g., risk assessment of systems when data is 
scarce (Nikolaidis and Haftka, 2001). Such a family of 
theories of uncertainty is presented in Fig. 3. 
 We need to note that these theories of imprecise 
probability (i.e., intervals of probabilities) and evidence 
theory don’t conflict with Bayesian or classical probability. 
Instead, they are tools that complement probabilistic 
methods for problems which probability theory cannot 
solve (Moller et al., 2006). These theories are flexible 
enough to model both nonspecificity and conflict types of 
uncertainty (see classification in Fig. 2). The fundamental 
measure in the most general theory is Sugeno’s fuzzy 
measure, which is less restrictive than measures in the other 
two theories of probability and possibility.  

1.4. Uncertainty Measures 

 After Klir overviews the various types of 
uncertainty, he discusses their relation to information and 
complexity and investigates in detail measures of the 
individual types of uncertainty (Klir and Folger, 1988; 

Klir, 1995; Klir and Yuan, 1995). Measures of types of 
uncertainty must be formulated in accordance with their 
own distinct framework. The understanding that 
measures are related to types of uncertainty has been 
widely accepted. The formulas are as shown in Table 1.  

1.5. Design Under Uncertainty 

 Because nature doesn’t adhere to determinism, the 
development of uncertainty analysis in engineering 
science has received increased attention, from both the 
epistemological and methodological perspectives. It is 
generally believed that unless the impact of uncertainties is 
considered, a design solution may be sensitive to variations 
in input which will lead to a loss of system performance, or 
to a potential risk of violating critical design constraints (Du 
and Chen, 2004). As a result, design under uncertainty has 
been applied increasingly in practice.  
 The characteristics and formulations of uncertainty 
have to be mathematically quantified before design 
optimization is conducted. A real design or decision 
problem involving uncertainty may be formalized in all 
theories of uncertainty. Each is a certain mathematical 
model of the specific situation; for example, as depicted 
in Fig. 3, probability theory can model decision 
situations in terms of conflicting degrees of belief which 
are mutually exclusive. On the other hand, possibility 
theory can model a decision situation in terms of 
conflict-free, or nonspecificity degrees of belief which 
are presented as nested subsets of alternatives (Klir, 
1995; Huang, 1997). Moreover, each method of handling 
uncertainty emphasizes a different paradigm.  
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Table 1. A summary of measures of uncertainty by Klir and Folger (1988) 
Type Name Formula Notation 
 Hartley information I(N) = log2 N N: cardinality of a crisp set 
Classical   P: Probability distribution 
 Shannon entropy ( ) 2i i

n

i 1
H P p log p

=
= −∑  P= (p1, p2, …, pn) ∏: possibility distribution 

General U-uncertainty ( ) ( )i 2 ii 1

n

i 1
U log+

=
Π = π − π∑  ∏ = (1 2 3) membership function µA(x): 

   (or possibility distribution) C : fuzzy complement 
Vagueness Measure of fuzziness ( ) ( ) ( )( )C A A

x X
f A | X | | x C x |

∈
= − µ − µ∑  

 Measure of onspecificity ( ) ( ) 2
A

V m m A log | A |
∈

= ∑
F

 m: basic assignment  

Ambiguity Measure of dissonance ( ) ( ) ( )2
A

E m m A log Pl A
∈

= − ∑
F

 F: set of focal element F: set of focal element 

 Measure of confusion ( ) ( ) ( )2
A

C m m A log Bel A
∈

= − ∑
F

 

 
For example, robust design is expected to improve the 
quality of a product by minimizing the effects of input 
variation, whereas a reliability-based design approach 
focuses on maintaining design feasibility at expected 
probabilistic levels (Huang, 1995; 1996; Tu and Choi, 1999). 
 The traditional way of defining design problems, 
such as optimization problems, is to create a model of 
the system that assumes that it is exact and deterministic. 
Recently, a number of non-deterministic approaches for 
design problems have emerged, mainly in response to 
criticism of the credibility of standard probabilistic 
analysis which ignores information on epistemic 
uncertainty (Huang et al., 2008; 2009; 2012a). Adding 
non-probabilistic methods to traditional design methods 
makes it more difficult for a designer to choose the best 
method to use. The common non-probabilistic 
techniques used to model uncertainties include 
possibility theory and evidence theory, which are the 
main tools to be discussed in the rest of this study. 
 The aim of this section is to present a holistic 
view on design optimization under uncertainty in the 
context of possibility theory and evidence theory 
when data is insufficient. 

2. THEORETICAL FOUNDATIONS OF 

POSSIBILITY THEORY AND 

EVIDENCE THEORY 

2.1. Possibility Theory 

 Possibility theory was formulated by Zadeh (1978). 
As one of three constituents of fuzzy theory (the others 
are fuzzy set theory and fuzzy logic) (Klir, 2000), 
possibility theory provides a theoretical framework for 
practical applications of fuzzy theory. Zadeh (1978) 
points out in his paper that, much of the information on 
which decisions are based more possibilistic rather than 

probabilistic in nature. Based on this premise, Zadeh 
proposes the theory of possibility, analogous to but 
different from probability theory, to express the intrinsic 
fuzziness of natural language and uncertainty 
information. Zadeh focuses on information’s meaning, 
rather than its measure. He provides a set of ways of 
analyzing and translating propositions expressed in 
natural language by computing the possibility 
distribution of a set of fuzzy relations. 
 As noted by Dubois and Prade (1983; 1988), the 
original goal of possibility theory is finding a 
mathematical tool for further studying fuzzy language 
and approximate reasoning, thus extending and 
systematizing possibility theory. Klir and Folger 
(1988); Klir (1995) and Klir and Yuan (1995) 
concluded that possibility theory emerged as a natural 
tool for modeling and handling uncertainty involving 
knowledge expressed in natural language and 
represented by fuzzy propositions. Kaufmann (1983) 
thought that the role possibility theory plays for fuzzy 
sets is analogous to that mathematical expectancy 
plays in probability theory and that such valuation 
agrees with information available subjectively. 
 In general, possibility theory is one of several formal 
mathematical systems suitable for characterizing and 
analyzing situations that involve various types of 
uncertainties (Klir, 2000). Due to practical demands, a 
variety of interpretations of each of these formal systems 
for possibility theory have been studied, in 
correspondence with diverse types of uncertainty. A 
representative but not total list is the possibilistic 
interpretation by Dubois and Prade (1983), the modal 
logic interpretation by Klir (2000), the DST (or evidence 
theory) interpretation examined and compared by 
Sudkamp (1992) and Klir and Yuan (1995) and the 
fuzzy-set interpretation by Zadeh (1978) and Klir 
(referred to as standard form later as and revised form). 
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2.1.1. Definition of Possibility 

 Possibility is a subjective measure that expresses the 
extent to which, either, a person thinks that an event can 
occur or, alternatively, the available evidence shows that 
an event will occur (De-Cooman, 1997; Nikolaidis and 
Haftka, 2001). 
 In 1949, Shackle was convinced of the need for a 
formal mathematical system in terms of possibility 
theory in economics. He defined possibility, in 1961, as 
the degree to which it is likely for an event to occur. 
Moreover, he stated that possibility should be used 
instead of probability when the conditions under which 
we have to make a decision under uncertainty cannot be 
reproduced (Liu et al., 2009). 
 The term possibilistic first occurred in the study on 
possible automata presented by (Gaines and Kohout, 
1975), but it is Zadeh who coined the concepts of 
possibility measure, possibility distribution and 
possibility theory, in which the definition of possibility is 
quite different from that of modal logic (Zadeh, 1978; 
Klir, 2000). According to Zadeh, a proposition that 
associates an uncertain quantity with a fuzzy set induces 
a possibility distribution for this quantity which provides 
information about the values this quantity can assume. 
 Another interpretation, which is based on evidence 
theory, denotes that possibility is the limit of plausibility 
for a body of evidence that is nested (Shafer, 1976; Klir 
and Yuan, 1995). 
 Possibility is also viewed as an upper bound of 
probability (Zadeh, 1978; Klir, 2000). Giles (1982) a 
definition of possibility according to which the 
possibility of an event is the smallest amount in an 
interval of [0, 1]. 

2.1.2. Standard Fuzzy-Set Interpretation of 

Possibility Theory 

 Among all the multifarious interpretations of 
possibility theory, the well-known fuzzy-set 
interpretation has proved to be the most prominent and 
useful. This is mainly because fuzzy set is widely used 
and possibility theory palys an important role in 
approximate reasoning. 
 Let X denote a variable that takes values in a universe 
of discourse, U and F is a fuzzy set on U, whose 
membership function, µF (u), shows the compatibility of 
an assigned value, u, from X with the concept of F. If F 
acts as an elastic constraint on possible values that may be 
assigned to X, then F is a fuzzy restriction on X (or 
associated with X); it is referred to as R(X). A fuzzy 
proposition, “X is F”, can be described as Equation 1: 

R(X) F=   (1) 
 
 In the view of the possibility hypothesis, there is no 
other information regarding X except the proposition “X 
is F”. Thus the proposition associates a possibility 
distribution, ΠX, with X which is postulated to be equal 
to R(X),  i.e., ΠX can be expressed as Equation 2: 
 

X R(X)Π =   (2) 
 
 Correspondingly, let πX denote the possibility 
distribution function associated with X (or the possibility 
distribution function of ΠX), then the degree of 
possibility of X = u for all u ∈ U, is defined as 
numerically equal to the degree of membership function 
when X = u. Formally: 
 

X Fu U,     (u) (u)∀ ∈ π = µ  (3) 
 
 Equation 3 formulates the connection between 
membership degrees and possibility degrees, in a more 
general framework, by the proposition “X is F”. 
 Let ΠX be the possibility distribution associated with 
a variable, X, which takes value in U. Then the 
possibility measure, π(A), is defined as a number in [0, 
1]. When A is a nonfuzzy (crisp) subset of U, we have: 
  

{ } ( ) ( )X
u A

ossP X A A sup u
∈

∈ ≡ π ≡ π   (4) 

 
 When A is a fuzzy subset of U, a more general 
definition of possibility measure is as follows: 
 

{ } ( ) ( ) ( )( )A Xoss
u U

P X is A A sup u u
∈

≡ π ≡ µ ∧ π  (5) 

 
 Let A and B be arbitrary fuzzy subsets of U, the 
following Equation 6 and 7 are induced from Equation 4 
and (5): 
 
( ) ( ) ( )A B A Bπ = π ∨ πU   (6)  

 

 It can be derived that, ( ) ( )( )max A , A 1π π = : 

 
( ) ( ) ( )A B A Bπ ≤ π ∧ πI  (7) 

 
 Zadeh’s primary contribution is that he introduces a 
meaningful connection between fuzzy propositions and 
possibility measures, a connection that has been widely 
adopted in literature as the standard fuzzy-set 
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interpretation of possibility theory. As argued in his paper, 
by employing the concept of a possibility distribution, it is 
possible to translate a proposition expressed in natural 
language into a procedure. This manipulates the 
probability distribution using the combination rules of 
fuzzy sets and particularly of fuzzy restrictions (Dubois 
and Prade, 1980). In this study, Zadeh did not, however, 
address the connection between possibility measures and 
dual necessity measures; that work was done later. 

As seen in the above interpretation, we can conclude 
that interpretations such as the initial fuzzy set (Zadeh, 
1978) occurred naturally because of the similarity between 
the mathematical structures of possibility measures and 
fuzzy sets. In possibility theory, the underlying families of 
nested sets comprise focal element, whereas in fuzzy sets, 
these families comprise α-cuts (Klir, 2000). 

2.1.3. Some Extensions on the Standard 

Interpretation 

 Dubois and Prade (1988) gave a more detailed 
interpretation of possibility theory. De-Cooman (1997) 
systemized the existing views), especially with regard to 
uncertain measures. They pointed out that possibility theory 
denotes uncertainty of a proposition by means of a pair of 
fuzzy measures, i.e., possibility measure, Poss (A) and 
necessity measure, Nec (A). Possibility theory might be 
characterized in terms of either of these measures 

( ) ( )( )oss ossP A , P A , or expressed as ( ) ( )( )oss ecP A ,N A  

equivalently.  
Necessity measure is defined, as being one of the 

two dual formulations, in the sense that can be expressed 
as Equation 8: 
 

( ) ( )ec ossN A 1 P A= −   (8) 

 

 Analogous to the additive axiom of probability 
measure, possibility measure satisfies the following 
axiomatic requirement, which is expressed as Equation  9: 

 

( ) ( ) ( )( )oss oss ossP A B max P A ,P B=U   (9) 

 

 Some basic properties in Equation 10-13 of the two 
fuzzy measures can be induced (Dubois and Prade, 1988; 
Klir and Yuan, 1995; De-Cooman, 1997): 
 

( ) ( ) ( )( )ec ec ecN A B min N A ,N B=I   (10) 

 

( ) ( )( )oss ossmax P A ,P A 1=   (11) 

( ) ( )( )ec ecmin N A ,N A 0=   (12) 

 
( ) ( )oss ecP A N A≥   (13) 

2.1.4. Revised Fuzzy-Set Interpretation of 

Possibility Theory 

 After introducing the most common axiomatic 
characterizations of possibility theory and some basic 
properties of possibility measure, we’d like to 
summarize a revised fuzzy-set interpretation of 
possibility theory, proposed to overcome the 
difficulties of the standard interpretation when applied 
to subnormal fuzzy sets (i.e., height of a fuzzy set F, 

( )= u ¹1F F

uÎU

h supµ ), as discussed by Klir (2000).  

The difficulty with subnormal fuzzy sets was first 
recognized by Yager (1986), who demonstrated that the 
standard interpretation expressed by Equation 3 is not 
coherent when F is subnormal, it proved to be one of the 
key properties of possibility theory, as expressed by inequality 
Equation 13, that does not come into existence when hF<1. 

In order to overcome the defect, Yager proposed a new 
function, called a measure of certainty, to take the place of 
the necessity function, which is given by Equation 14: 
 

( ) ( ) ( )( )ert oss ecC A min P A , N A=   (14) 
 

Dubois and Prade (1987) pointed out that such 
replacement violates Equation 10, one of the basic 
requirements of possibility theory. As a result, Dubois 
and Prade (1987) suggested keeping the necessity 
function but replacing Equation 8 with a generalized 
equation, which is expressed as Equation 15: 
 

( ) ( )Fec ossN A h P A= −   (15) 

 
This is then converted to Equation 8 when F is 

normal and satisfies both Equation 10 and 13 for any 
subsets of U, hence it sounds more reasonable. 

To address the still-existing severe deficiencies 
argued by Klir (2000), they modified possibility theory 
to adapt to subnormal fuzzy sets by replacing Equation 4, 
8 and 9 respectively. This can be seen in their paper (Klir, 
2000), with the complementary case in which A = U or 

i
i I

A U
∈

=U , where I is an arbitrary index set. 

Obviously, all of the above previous work is more 
an interpretation of systems that are based on a given 
modification of possibility theory, rather than an 
essential fuzzy-set interpretation of possibility theory. 
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Table 2. The revised fuzzy-set interpretation of possibility 
theory proposed by Klir (2000) 

Standard Interpretation Revised interpretation 

X F(u) (u)π = µ  X F F

F F

(u) (u) c

         (u) 1 h

π = µ +

= µ + −
 

( ) ( )F Fu U
m u inf  u

∈
= µ  ( ) ( )F F Fu U

m u inf  u 1 h
∈

= µ + −  

( )
( )

F F
A P x

m A h 1
∈

= <∑  ( )
( )

F
A P x

m A 1
∈

=∑  

( ) ( ) ( )( )F Aoss
u U

P A sup min u , u
∈

≡ µ µ  
( )

( ) ( )( )F F A

o ss
u U

P A s u p m in

u 1 h , u
∈

≡

µ + − µ
 

 
When study returns to fuzzy-set interpretation, the 
possibility distribution function, π(u), satisfies the 
following equation for subnormal fuzzy set, which is 
expressed as Equation 16: 
 

( )
u U
sup u 1
∈
π =   (16) 

 
 To consider the connection between possibility 
theory and evidence theory, Klir (2000) revised some 
definitions as in Table 2. 

where function, m, is called a basic probability 
assignment function in evidence theory and cF is a 
constant for each given fuzzy set, F. When Equation 16 
is satisfied, then cF = 1-hF. 

Klir’s direction for improving the initial 
interpretation of possibility theory can thus be 
summarized briefly as: 
 
• Keep coherent all fuzzy sets, regardless of whether 

they are normal or not, so they violate no property of 
possibility theory 

• Capture the evidence expressed by any given fuzzy 
proposition, mF, which carries information in the 
framework of evidence theory 

• Be meaningful on intuitive grounds 

2.2. Evidence Theory 

 The origins of evidence theory, also called 
Dempster-Shafer Theory (DST), can be traced back to 
the work by Dempster (1967) which developed a system 
of upper and lower probabilities that do not satisfy 
additivity. Following Dempster’s work, it was his student, 
Shafer (1976) and Liu et al. (2009) who extended 
Dempster’s probability to the theory of evidence in 1976, 
including a more thorough explanation of belief 
functions. The name “Dempster-Shafer theory” was 
coined by Barnett in a paper which marked the entry of 
the belief functions into the field of artificial intelligence 
(Aughenbaugh and Paredis, 2005). 

Evidence theory could be viewed as a branch of 
mathematics which studies empirical evidence in order 
to construct a coherent picture of reality (Fioretti, 2004). 
It can narrow down a hypothesis set with the 
accumulation of evidence and it allows for a 
representation of ignorance due to uncertainty in the 
evidence (Bhattacharya, 2000). When ignorance has the 
value of zero, the Dempster-Shafer model is reduced to 
the standard Bayesian model. Thus, the Dempster-Shafer 
theory is an attempt to generalize probability theory by 
introducing a rule for combining distinct bodies of 
evidence (Beynon et al., 2000); it is thus actually a 
numerical method of evidential reasoning. Compared 
with Bayesian theory, evidence theory feels closer to our 
human perception and reasoning processes. Its ability to 
assign uncertainty or ignorance to propositions is a 
powerful tool for dealing with a large range of problems 
that otherwise would seem intractable (Wu et al., 2002). 

There have been many interpretations of the 
Dempster-Shafer theory, (Jumarie, 1994; Kohlas and 
Monney, 1994; Rowe, 1994; Utkin, 1994; Wang, 1994; 
Wonneberger, 1994; Yager et al., 1994; Cai et al., 1995a; 
1995b) including probabilistic approaches and 
nonprobabilistic ones. Also, there have been many 
closely related developments in recent years. The most 
influential version of the theory is still Shafer’s 
presentation in his book A Mathematical Theory of 
Evidence (Shafer, 1976), which we follow in providing a 
brief introduction of evidence theory.  

Evidence theory starts with defining a frame of 
discernment that is a set of mutually exclusive 
“elementary” propositions; it can be viewed as a finite 
sample space in probability theory. Evidence theory uses 
two measures, Belief (Bel) and Plausibility (Pl), which 
are used to characterize uncertainty. In the Dempster-
Shafer theory, evidence is represented by the basic 
probability assignment and the combination rule of 
evidence is discussed.  

2.2.1. Basic Concepts of Evidence Theory 

 Liu et al. (2009); Klir (1995) and Shafer (1976) let 
U denote a finite, nonempty universal set that represents 
the entire collection of elements having the same 
characteristics, which is usually called a Frame of 
Discernment (FD) in DS theory. Let ℘(U) denote the 
power set of U, set A is a collection of some elements of U. 
Then, available evidence can be expressed with respect to 
the nonnegative function as Equation (17) and (18): 

 

( ) [ ] m :  U 0,1℘ →  (17) 
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 Such that ( )m 0∅ =  and: 
 

( )
( )A U

m A 1
∈℘

=∑   (18) 

 
 This function, m, is called a Basic Probability 
Assignment (BPA) (or mass function). For each set, A ∈ 
℘(U), the function value, m(A), measures the degree of 
evidence supporting the claim that a specific element of 
U belongs to set A , as well as the degree to which we 
believe that such a claim is warranted (Klir, 1995). 
 Given a basic probability assignment, m, each set, A 
∈ ℘(U), for which m (A) ≠ 0, is called a focal element 
and the value, m(A), is called the weight of A. The family, 
F , of all the focal elements of m characterizes the subsets 
of the frame of discernment on which all the available 
evidence rests. The pair ( ),mF is called a body of evidence 

(or belief structure) denoted by m. 

2.2.2. Belief and Plausibility Measures 

 Two large classes of fuzzy measures, referred to as 
the belief measure and plausibility measure, respectively, 
characterize the mathematical theory of evidence. Given 
a basic probability assignment, m, the two measures are 
correspondingly defined by the Equation 19 and 20: 
 

( ) ( )
B A

Bel A m B
⊆

= ∑   (19) 

 

( ) ( )
B A

Pl A m B
∩ ≠∅

= ∑   (20) 

 
 They show that Bel and Pl give the lower and upper 
bounds of the event, respectively. They are mutually dual 
in the sense that one of them can be uniquely 
transformed by the other, as seen in the Equation 21: 
 

( ) ( )Pl A 1 Bel A= −   (21) 

 
where, A  is the classical complement of A. This 
definition reflects the fact that all basic assignments must 
sum to 1, as seen in Equation 15. 
 An inverse procedure is also possible for all A ∈ 
℘(U), e.g., (Klir, 1995) Equation 22: 
 

( ) ( ) ( )|A B|

B A
m A 1 Bel B

−

⊆
= −∑  (22) 

 
 Belief and plausibility measures satisfy both the 
axioms of fuzzy measures (Klir and Yuan, 1995) and the 
following additional axioms in Equation 23 and 24: 
 

( ) ( ) ( ) ( )1 2 1 2 1 2Bel A A Bel A Bel A Bel A A≥ + −U I  (23) 

 
 
Fig. 4. Relation of belief measure and plausibility measure 
 

( ) ( ) ( ) ( )1 2 1 2 1 2Pl A A Pl A Pl A Pl A A≤ + −I U   (24) 
 
and then the following properties can be derived 
Equation 25: 
 

( ) ( )Bel A Bel A 1+ ≤  (25) 
 

( ) ( )Pl A Pl A 1+ ≥   (26) 
 
 Bel(A) in Equation 26 represents the total evidence 
or belief that the elements belong to A. The total 
evidence or belief, Pl(A) in Equation 27, represents, 
moreover, the additional evidence or belief 
corresponding to the focal elements overlapping with A 

(Henkind and Harrison, 1988; Klir and Parviz, 1992). 
Thus, the relation between the two dual measures is: 
 

( ) ( )Pl A Bel A≥   (27) 
 
 Equation 18 and 27 can be visualized by Fig. 4 (Klir 
and Parviz, 1992).  

2.2.3. Postulates 

 The following postulates are assumed, which shape 
the foundation of evidence theory (Beynon et al., 2000) 
in Shafer’s interpretation (Shafer, 1976): 
 
Postulate1 = Chance is the limit of the proportion of 

positive outcomes among all outcomes 
Postulate2 = Chances, if known, should be used as belief 

functions 
Postulate3 = Evidence combination refers to the pooling, 

or accumulating, of distinct bodies of 
evidence 

Postulate4 = Dempster’s rule can be used on belief 
functions for evidence combination 

2.2.4. Bodies of Evidence 

2.2.4.1. Algebraic interpretation (Kohlas and 

Monney, 1994) 

 Evidence theory is connected with the description 
and analysis of possibly incomplete and uncertain 
information relative to a certain precise question. 
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 In an abstract setting, we call two sets, H and A, of 
elements the hypotheses and argument, respectively. 
Then the triplet (H, A, s) where s is an allocation of support 
is called a body of arguments. This simple algebraic 
structure acts as the foundation for evidence theory.   
 In the body of arguments, (H, A, s), not all 
arguments in A may be equally likely. Some may be 
more probable than others. Thus, some hypotheses may 
become more credible than others, depending on the 
likelihood of the arguments supporting them. 
 The likelihood of arguments can be measured by 
probabilities, however, the Boolean algebra, A, may be 
too large to associate a probability with every element. 
As is usual in probability theory we consider a sub-σ-
algebra, A0 contained in A and associate a probability, P 
(α), with every element, α, of A0. Thus P (α) is a 
probability measure on A0. The quintuple (H, A, A0, P, s) 
is called a body of evidence. 

2.2.4.2. Axiomatic Interpretation (Fioretti, 2004) 

 Suppose that empirical evidence is measurable and 
available as sets of numbers, ( ) ( ) ( ){ }1 2m A ,m A , ,m UL , 

which represent the amounts of evidence that support 
subsets, { }1, 2A A ,L , of a frame of discernment in U, 

respectively. Then each set of numbers, { }1 2 Um ,m , ,mL , 

is called a body of evidence, where the number m is 
generally normalized to satisfy, which is expressed as 
Equation 28: 
 

( ) ( ) ( )i
i

m A m U 1,      where m U 0+ = >∑   (28) 

 
 The numbers, { }1 2m ,m ,L , represent amounts of 

empirical evidence supporting alternative possibilities 

{ }1, 2A A ,L . Their meaning is clarified using an example 

of belief formation from the biotech industry and the 
ensuing discussion which is presented in (Fioretti, 2004).  

2.2.5. Combinations of Evidence 

2.2.5.1. Types of Evidence (Sentz and Ferson, 

2002) 

 We consider four types of evidence from multiple 
sources that impact the choice of how information is to 
be combined: 
 
• Consonant evidence  
• Consistent evidence  
• Arbitrary evidence  
• Disjoint evidence  

 Evidence theory is such a framework that can handle 
these various evidentiary types by combining a notion of 
probability with the traditional conception of sets. 

2.2.5.2. Rules of Combinations 

 Sometimes the available evidence may come from 
different sources. Such bodies of evidence can be 
aggregated using existing rules of combination 
(Agarwal et al., 2004). In other words, combination rules 
are the special types of aggregation methods for data 
obtained from multiple sources. Commonly used 
combination rules are listed below (Sentz and Ferson, 
2002; Fan and Zuo, 2006a; 2006b): 
 
• The Dempster rule of combination 
• Discount t combination method 
• Yager’s modified Dempster’s rule 
• Inagaki’s unified combination rule 
• Zhang’s center combination rule 
• Dubois and Prade’s disjunctive consensus rule 
• Fan and Zuo’s improved combination rules 
• Mixing or averaging 
• Convolutive X-averaging 
 
 Other rules include Smets’ rule, qualitative 
combination rule and Yen’s rule (Agarwal et al., 2004). 

2.2.5.3. Dempster’s Rule of Combination 

 Although there is always a debate about the suitability 
of combination rules, Dempster’s rule of combination is one 
of the most popularly used rules and could be viewed as the 
core of the Dempster-Shafer fusion method. The 
combination (called the joint m12) is calculated in the 
following manner, whicih is expressed as Equation 29: 
 
( )( ) ( )

( ) ( )

( ) ( )

1 2 12

1 2

1 2

B C A

B C

m m A m A

m B m C
,      A

1 m B m C
=

=∅

⊕ =

∑
= ≠ ∅

− ∑
I

I

  (29) 

 
where, B and C denote propositions from each source 
(m1 and m2). 
 Because of the normalization factor in the 
denominator, Dempster’s rule is not suitable for cases 
where there are many inconsistencies in the available 
evidence, however, it is appropriate where there is some 
degree of consistency or sufficient agreement among the 
opinions of different sources (Agarwal et al., 2004). 
When there is little or no consistency among the 
evidence from different sources, the mixing or averaging 
rule (Sentz and Ferson, 2002) and the improved 
combination rule (Fan and Zuo, 2006a; 2006b) are 
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available. Recent studies on combination rules fall into 
two categories: the methods modifying Dempster rule 
and the methods correcting original evidence sources 
(Florea et al., 2009). 

2.2.6. Advantages of Evidence Theory 

 Hegarat-Mascle et al. (1997); Agarwal et al. (2004) 
and Nikolaidis and Haftka (2001): 
 
• Evidence theory can model both reducible and 

irreducible uncertainty when the amount of 
information available is small. For instance, one can 
express his ignorance of the likelihood of a certain 
event being extremely small by assigning a large 
plausibility and a low belief to it, which appears as a 
more flexible and general approach than the 
Bayesian one 

• Evidence theory provides a measure of the 
uncertainty in estimating of risk. The wider the gap 
between plausibility and belief in the previous 
example, the greater the uncertainty about the 
estimated risk of the event 

• Evidence theory considers not only single or 
individual classes, but also unions of classes 

2.2.7. Disadvantages of Evidence Theory 

 In the present literature, the criticism of the 
Dempster-Shafer theory of evidence is crucially based on 
the following points (Kozine and Filimonov, 2000): 
 
• Failure to produce rational results in the case of 

inconsistent combined pieces of information 
according to Dempster’s rule of combination  

• Inability to combine opinions of different people 
with overlapping experiences, especially in safety 
analysis application (Wu et al., 1990) 

• Be formally incoherent in safety assessment similar 
to the theory of probability 

 
 To implement the Dempster-Shafer and possibility 
theories into risk and reliability analyses, Kozine and 
Filimonov (2000) also encountered some difficulties that 
could not be solved in the frameworks of these theories. 
They summarize the main drawbacks as follows: 
 
• Combination of homogeneous bodies of evidence 
• Combination of inconsistent pieces of information 
• Judgments admitted in elicitation 
• Dependence of imprecision on the amount of 

information  
 
 This indicates, in a final personal opinion, 
Dempster’s rule of combination can produce formally 
incoherent inferences. 

3. COMPARISON OF POSSIBILITY 
THEORY AND PROBABILITY THEORY 

 When Zadeh (1978) proposed the possibility theory, 
he pointed out that additional insight into the distinction 
between probability and possibility may be gained by 
comparing the concept of a possibility measure with the 
familiar concept of a probability measure. Since then, the 
debate between possibility theory and probability theory has 
been on-going. We believe that the focus should be on the 
specific practical surroundings a certain method is available 
to, rather than which is better than the other. After all, each 
concept is useful in its own domain and blending is normal 
in several situations, as Kaufmann (1983) said. 

There are rich studies that compare probability 
theory with possibility theory, or with fuzzy sets theory 
and evidence theory (Liu et al., 2009; 2012; Greene et al., 
2011; Klir and Yuan, 1995; Misra and Soman, 1995; 
Utkin et al., 1995; Cai, 1996; Cayrac et al., 1996; Ferson 
and Ginzburg, 1996; Huang, 1996; Utkin and Gurov, 
1996). Discussions mainly focus on the aspect of axiom, 
from which we conclude that a principal difference 
between these theories is that the probability theory’s 
additivity axiom (about the probability of the disjointed 
events uniting) is replaced with less restrictive axioms. 
Some comparisons consider the notion of consistency 
between possibilities and probabilities (Delgado and 
Moral, 1987; Dubois and Prade, 1983). Some focus on 
the transformations from probabilities and possibilities to 
evidence theory (Klir and Parviz, 1992). Their 
comparisons are quantitative in terms of both efficiency 
and expressiveness, but cannot give the exact 
relationship between probabilities and possibilities. Thus 
Drakopoulos (1995) studies extensions of the universal 
sets, mapping among probabilities, possibilities and 
fuzzy sets in order to specify their important 
relationships. Other comparisons are from the angle of 
design rather than theory. Chen et al. (1999) compare 
probabilistic and fuzzy set models for design against 
uncertainty when there is limited information about the 
statistics of the uncertainty or modeling error. They 
conclude that if there is sufficient information for 
building accurate probabilistic models of uncertainties, 
probabilistic methods are better than fuzzy set methods. 
Soundappan et al. (2004) compare evidence theory and 
Bayesian theory for uncertainty modeling and decision-
making under uncertainty. 
 Although each measure or concept of the different 
theories is useful in its own domain and has its own 
definition and application, consideration and blending is 
normal in several situations (Kaufmann, 1983). 
Comparisons are necessary in order to evaluate and 
characterize those measures.  
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3.1. Similarities 

 Both possibility theory and probability theory are 
used for uncertainty analysis and quantification. They are 
both subsumed under the mathematical theory of 
evidence (or DST). 
 Possibility theory has been based on distributions in 
the same way as probability theory has been. Fuzzy 
variables are associated with possibility distributions in 
the same way as random variables are associated with 
probability distributions.  
 Possibility measures, analogous to probability 
measures, constitute tools for representing and 
quantifying uncertainty. Probability and possibility 
measures, i.e., fuzzy measures, are all nonnegative 
and monotonic (Klir and Yuan, 1995; Nikolaidis and 
Haftka, 2001). 

3.2. Differences 

Generally, although probability and possibility 
measures are both tools for representing uncertainty and 
their adopted theories and methods are related to each 
other, the two concepts are essentially different. Unlike 
probability, possibility is not subject to repeated 
experiments and hence does not refer to statistic properties. 
Moreover, in terms of observating various circumstances, 
a probability measure assesses odds of occurrence, 
whereas possibility assesses degree of ease. Hence, unlike 
the classical probability theory which is best suited to 
aleatory uncertainty, possibility theory is usually used to 
quantify only epistemic uncertainty. With a view to the 
information involved, probability is a quantitative ratio 
scale of uncertainty while possibility is a quasi-qualitative 
ordinal scale. Thus there is an opinion (Dubois et al., 1993) 
that there is no more information included in a possibility 
distribution than in a probability distribution. We analyze 
and discuss both in the following. 
 Let U be the universal set and A be a set of crisp 
subsets of U; comparisons of some basic formulae in 
possibility theory and probability theory are given in 
Table 3. To some extent, probability is a ratio scale of 
uncertainty while possibility can be considered as an 
ordinal scale. Consequently, the numerical values for 
probability have their own meaning. On the other hand, 
the essential information from a possibility distribution is 
the order of elements for possibilities; numerical values 
considered are just an expedient way of specifying the 
order (Dubois and Prade, 1983; Dubois et al., 1993). 

3.2.1. Axiomatic Differences 

 A major difference between probability and possibility 
can be found in axioms about the union of events (disjoint 
or overlapping), that probability is additive whereas 
possibility is sub-additive (Nikolaidis and Haftka, 2001). 

Table 3. Comparison of possibility theory and probability theory 
Probability possibility 

Distribution ∏ measure π Distribution Ρ, Probability p 

u U
sup (u) 1
∈

π =  
u U

p(u) 1
∈

=∑  

( ) ( )  A, B U∀ ∈℘  ( ) ( )  A, B U∀ ∈℘  

( ) ( )oss
u A

P A A sup (u)
∈

= π = Π  ( ) ( ) ( )ro
u A

P A p A u
∈

= = Ρ∑  

( ) ( ) ( )( )A B ,max A , Bπ π πU  
( ) ( ) ( )p A B p A p B

when A, B is disjoint

= +U
  

( ) ( ) ( )( )ec ec ecN A B min N A , N B=I  ( ) ( ) ( )p A B p A p B≤I   

( ) ( )( )
( ) ( )
( ) ( )ec ec

max A , A 1

A A 1

N A N A 1

 π π =


π + π ≥


+ ≤

 ( ) ( )p A p A 1+ =  

( ) u U,   x 1∀ ∈ Π =  ( ) 1
 u U,   x

| U |
∀ ∈ Ρ =  

 
In other words, the possibility of the union of a finite 
number of events (disjoint or not) is equal to the 
maximum of the possibilities of the individual events, 
whereas the probability of a union of disjoint events is equal 
to the sum of their probabilities. As well, the 
probability of a union of an event and its negation must 
add up to 1 (Chen et al., 1999); Table 2. The additive rule 
is the basic feature of probability theory (including classical 
and Bayesian probability theory). 
 The difference between possibilities and probabilities 
can also be seen in the context of fuzzy measure. Sugeno 
introduced fuzzy measure as a generalization of real 
measures. Fuzzy measure is a continuous or semi-
continuous function from a class of crisp sets of a power set 
to the interval [0, 1]. When the universal set is finite, 
probability and possibility measures are special cases of the 
fuzzy measure (Chen et al., 1999). Table 4 compares these 
measures in terms of their axioms (Klir, 2000; Klir and 
Folger, 1988; Klir and Yuan, 1995). Let U be the universal 
set and A be a set of crisp subsets of U. 
 So the consistency of probability measure, 
possibility measure and necessity measure is expressed 
below ∀ A ∈℘(U) Equation 30: 
  

( ) ( ) ( )ec ossN A P A P A≤ ≤   (30) 
 
 Note that, of course, the above requirement of the 
same event is based on intuition and cannot be proven 
mathematically (Chen et al., 1999). 

3.2.2. Calculi Differences 

 Because of the axiomatic difference, probability and 
possibility calculi are fundamentally different and one 
cannot simulate possibility calculus using probabilistic 
models (Nikolaidis et al., 2004). 
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Table 4. Comparison of possibility measure and probability measure 

 Fuzzy measure g(*) Probability measure p(*) Possibility measure π(*) 

Boundary conditions g(∅) = 1, g(U) = 0 p(U) = 1 π(∅) = 1, π(U) = 0 
 For all, A,B ∈U,  For all, A,B ∈U if A ⊆ B,  
Monotonicity if A ⊆ B then g(A)≤ g(B) P(A) ≥ 0 when A ∈ U then π(A) ≤ (B)π  
 (continuity from below)    

 For all 1 2A A⊆ ⊆L if i
i 1

A U
∞

=
∈U  

( )

i

i

i i

I

i 1 i I

A ,  i I,  

where A  is disjoint,

p A p A
= ∈

∀ ∈

  = ∑ 
 
U

 

( )( )

i

i

i i

I

i Ii 1

A ,  i I,  

where A  is disjoint,

A max A
∈=

∀ ∈

 π = π 
 
U

 

 Then ( )i ii i 1
lim g A g A

∞

→∞ =

 =  
 
U  

Continuity (continuity from above) 

 For all 1 2A A⊇ ⊇L if i
i 1

A U
∞

=
∈I  

 Then ( )i ii i 1
lim g A g A

∞

→∞ =

 =  
 
I  

 

Nikolaidis et al. (2004) and Nikolaidis and Haftka 
(2001) compare probability and possibility by means of 
uncertainty modeling. They summarize the main 
differences as follows. 
 Methods of modeling an uncertain quantit: probability 
theory models an uncertain quantity by using its probability 
distribution function, F(x) and its probability density 
function, f(x), the latter being a derivative of the former. 
Correspondingly, possibility theory uses the possibility 
distribution function, π(u), which is the function form and 
numerical expression of the possibility distribution, Π(u); in 
respect that possibility is both a measure and a function. 
Some differences between the probability density and 
possibility distribution of a continuous variable are 
summarized below: 
 
• The area below the probability density function is 

one whereas the area below the possibility 
distribution function has no such meaning and can 
be any value 

• The probability of a continuous variable which takes 
value in an infinitesimal interval is usually zero, 
whereas the possibility of the same case is usually 
greater than zero  

• The maximum value of the probability density 
function can be greater than one and the value of the 
possibility distribution is not greater than one 

 
 The notion of independence of events; in 
probability, we say two events are independent if and 
only if Equation 31 is hold: 
 
( ) ( ) ( )p A B p A p B= ⋅I   (31) 

 
 In the case of possibility theory, there does not exist 
an exact definition of independence. In order to express 

the fact that two events are not interdependent, we say 
they are non-interactive when Equation 7 holds with the 
equality sign, i.e., Equation 32: 
 

( ) ( ) ( )A B A Bπ = π ∧ πI   (32) 
 
 This indicates that independence is a stronger 
condition than non-interaction. In other words, if we 
decrease the possibility of the least possible event, we 
cannot compensate for the entailed reduction in the 
possibility by increasing the possibility of the other 
events (Nikolaidis et al., 2004).  

3.2.3. Realization Differences 

 The above comparisons affirm two statements. In 
the epistemological position, probability theory, which is 
based on classical set theory, abandons the law of 
causation; whereas possibility theory, which is based on 
fuzzy set theory, abandons the law of balance. In the 
degree of information required, probability theory is best 
suited to aleatory uncertainty when there is sufficient 
input data, whereas possibility theory is usually used to 
quantify only epistemic uncertainty even if insufficient 
information is available.  
 As a result, probability theory is popular in statistic 
technologies, data analysis and communication systems. 
On the other hands, applications of possibility theory can 
be found in industrial process control, pattern recognition 
and group decision-making. 

3.3. Possibility-Probability Consistency 

Principles 

 If a probability and a possibility are assigned to the 
same event, then one expects that the possibility of that 
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event should be consistent with its probability, i.e., the 
possibility should be equal to or greater than the 
probability of the event, seen in inequality Equation 30. 
This is a logical interpretation of possibility-probability 
consistency principles. 
 Zadeh (1978) has used a famous example of eating 
eggs to illustrate the difference between probability and 
possibility. His observation is that Equation 33 and 34:  
 

Yes
high probability  hign possibility

No
→←  (33) 

 
No

low probability low possibility
Yes

→←   (34)  

 
 Such connection is named as the 
possibility/probability consistency principle. If a variable 
X can take the values u1, u2,…,un with respective 
possibilities ∏ = (π1,…, πn) and probabilities P = (p1,…, 
pn), then the degree of consistency of the probability 
distribution P with the possibility distribution Π is 
expressed by by Equation 35: 
 

1 1 n np pγ = π + + πL   (35) 
 
 Note that, of course, the principle is not a precise 
law or an intrinsic relationship rather it is an approximate 
formalization of a heuristic observation; this means that 
decreasing the possibility of an event leads to decreasing 
its probability-but the obverse is not true. 
 Zadeh’s original motivation for the 
possibility/probability consistency principle is to provide 
a basis for computing of possibility distribution from the 
probability distribution of X (Zadeh, 1978). Such 
computation is important in decision-making under 
uncertainty and in the evidence and belief theories. 

4. COMPATIBILITY OF EVIDENCE 

THEORY WITH POSSIBILITY THEORY 

AND PROBABILITY THEORY 

 As expatiated above attempts at quantifying 
uncertainty using possibilities, probabilities and fuzzy sets 
share some common properties but also display important 
differences (Borotschnig et al., 1999). We may induce a 
compatibility capacity of evidence theory, with possibility 
theory and probability theory. Briefly we can say that the 
classical probability theory and the possibility theory are 
subsets of the evidence theory (Mourelatos and Zhou, 
2004). In other words, both of them are complementary or 
alternative theories, neither of which is a generalization of 
the other (Klir and Folger, 1988); Fig. 5. 

 
 
Fig. 5. A pictorial description of uncertainty classification 

based on fuzzy measures 
 
4.1. Connection of Possibility Theory with 

Evidence Theory 

 Possibility theory may be viewed as a special branch 
of fuzzy measure theory (Klir and Folger, 1988). Fuzzy 
measure theory is based on two dual fuzzy measures, Poss 
and Nec, which are connected with the corresponding two 
measures, Bel and Pl from evidence theory. This is 
expatiated below. 
 Function m, defined in Equation 17, i.e., basic 
probability assignment in evidence theory, is an 
alternative representation of the possibility measure. As 
determined by (Klir, 1995), when all focal elements in 
evidence theory are nested or consonant, provided that m 
(A) >0, we obtain a special plausibility measure which is 
expressed in Equation 36: 

 

[ ]: U 0,1π →   (36) 

 
 Via the Equation 37 (Klir, 2000): 

 

( )oss
u A

P A sup (u)
∈

= π  (37) 

 

which derives from Equation 17 and 20 and resembles 
Equation 4. This special plausibility measure is actually 
called a possibility measure in possibility theory. 
Moreover, the corresponding special belief measure, the 
alternative to the two dual measures in evidence theory, 
is called a necessity measure. It is defined in Equation 18 
as ( ) ( )ec ossN A 1 P A= − . In short, when all the focal 

elements are nested or consonant, the Pl and Bel in 
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evidence theory are equal to the Poss and Nec in 
possibility theory. Here, the nested structure implies that 
π1

3 πi+1, for all i = 1, 2, L, n-1, where π = (π1, π2, L, πn). 
When m(A) ≠ 0, it is induced (Klir, 1995) that Equation 
38 and 39:  
 

i l

n

l i
m

=
π = ∑  (38)  

 

i i i 1m += π − π   (39) 
 
 The pair, , m〈 〉F  , where F  denotes the set of all 
focal elements induced by m, is called a body of 
evidence. Thus possibility theory deals with special 
bodies of evidence, where F  is a nested family of 
subsets of U in each body of evidence. In addition to the 
well-known fuzzy-set interpretation, possibility can also 
be interpreted in the framework of evidence theory, as a 
subset of evidence theory (Mourelatos and Zhou, 2004). 

4.2. Evidence Theory as an Extension of 

Probability Theory 

 Evidence theory uses two large classes of measures of 
uncertainty, Bel and Pl. In comparison, probability theory 
uses just one measure, the probability of an event, i.e., Pro. 
 Assuming all focal elements in evidence theory are 
singletons, consider an imprecise set of probabilities 
expressed by the interval ( ) ( )el lB A ,P A   . For all 

( )A U∈℘ , there is then ( ) ( )el lB A P A= . This gives us a 

classical probability measure, Pro, which is determined 
by Equation 40: 
 

[ ] p :  U 0,1→   (40)  
 
 Via the Equation 41: 
 

( ) ( )ro
u A

P A p u
∈

=∑  (41)  

 
where, p(u) is the classical probability distribution 
function (PDF). Compared with Equation 19 and 20 p(u) 
= m({u}) for all u ∈ U. 
 Since evidence theory deals with imprecise 
probabilities (Walley, 1991), when handling a mixture of 
input parameters from incomplete data, the range of each 
input can be described as falling within a specific 
interval, [Bel(A), Pl(A)]. If the plausibility measure and 
the belief measure are equal, it follows logically from 
Equation 40 and 41 that classical probability theory is a 
special case of evidence theory. In other words, when the 
ignorance of uncertainty reaches the value zero, evidence 

theory can be considered as a generalization of 
probability theory; this is because its measure falls below 
those associated with probability theory. 
 Strictly speaking, classical probability theory is a 
subset of possibility theory, which in turn (Fig. 5) is a 
subset of evidence theory. The transformation between 
probability measure and possibility measure is discussed 
in the next sub-section. 

4.3. Probability-Possibility Transformation 

 In order to comprehend the relationship between 
probability theory and possibility theory and to realize 
how compatible of evidence theory is with these two 
theories, many researchers have studied transformations 
between probability and possibility; this provides a 
theoretical background for practical problems of system 
modeling, decision making and analysis of data and 
expert systems. Most researchers examined the 
principles to be satisfied for transformation in a heuristic 
way (Liu et al., 2009; Dubois and Prade, 1983;      
Dubois et al., 1993; Oberkampf et al., 2000; Yamada, 
2001; Zadeh, 1978) asserting that their propositions are 
the only specific ones to satisfy until Yamada (2001) 
devised three new transformation methods based on 
evidence theory and declared these three transformations 
to be the only ones that satisfy the principles.  
 Let’s review the already-existing transformations 
(Yamada, 2001; Zadeh, 1978) now. 

4.3.1. Zadeh’s Consistency Principle 

 Zadeh illustrated the relationship between probability 
and possibility (See inequality (30)), proposed the 
consistency principle expressed by Equation 33 and 34 and 
defined the degree of consistency signified as Equation 35, 
i.e. 1 1 n np pγ = π + + πL . From the basic properties of the 

possibility and necessity measures (Klir, 2000) we know 
that maximizing the degree of consistency brings a strong 
restrictive condition as below Equation 42 and 43: 
 

( ) ( )oss ecP A 1 N A 0< ⇒ =  (42)  

 
( ) ( )ec ossN A 0 P A 1> ⇒ =   (43)  

 
which demand that Equation 30, i.e., Nec(A) ≤ P(A) ≤ 
Poss(A), should be satisfied in general. 

4.3.2. Dubois and Prade’s Transformation from 

a Histogram 

 Dubois and Prade asserted that two principles must 
be satisfied first, one is Equation 13, i.e., 
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( ) ( )oss ecP A N A≥  and the other is a revision of Equation 

33 which is expressed as Equation 44: 
 
( ) ( ) ( ) ( )i j i jp u p u  u u> ⇔ π > π  (44)  

 
 These two principles are also called 
probability/possibility consistency and preference 
preservation Dubois et al. (1993) and Dubois and Prade 
(1983) proposed the transformation between probability 
and possibility from a histogram as the following 
equation, when the probability of µi is an degressive 
sequence, p(u1) ≥ p(u) ≥…≥ p(un), then: 
 

( ) { }( )

( ) ( )( )

( ) ( )

X i i

i j

i j

n

j i

n

j i 1

u u

min p u ,p u

i p u p u

=

= +

π = Π

= ∑

= ⋅ + ∑

 (45) 

 

where, ( )
n

j
j i 1

p u 0
= +

=∑  and ui is an element of variable X 

taking value in a universe discourse, U. Of course, 
Equation 45 can be transformed in the converse direction. 
Generally, a possibility distribution can be obtained by 
normalizing a histogram as Equation 46: 
  

( ) ( )

( )
i

X i

i

n

i 1

p u
u

max p u
=

π =  (46) 

 
 Although both consistency and preference principles 
are satisfied, this transformation shows no guarantee to be 
just the only available one (Yamada, 2001).  

4.3.3. Transformation Based on Maximal 

Specificity 

 From the comparison of possibility and probability 
as certain uncertainty quantifications as stated above, 
aware of Zadeh’s investigation of the relationship 
between possibility and information and having seen 
the unique connection between uncertainty and 
information pointed out by Klir (1995), we now know 
there is less information covered by a possibility 
distribution than by a probability distribution. This 
suggests a principle that possibility distributions 
generated from probability distributions should include 
the fewest possible number of fuzzy sets in order to 
remain maximally specific (Cai et al., 1993). 
 Given a possibility and probability distribution, the 
transformation under the maximally specific principle, 

satisfying the consistency principle (Equation 13 and 44) 
can be expressed as Equation 47 and 48: 
 

( ) ( ) ( ) ( ) ( )X i j 1 2 n

n

j i
u p u ,   when u u u

=
π ≥ π ≥ π ≥ ≥ π∑ L  (47) 

 

( ) ( ) ( ) ( ) ( )X i j 1 2 n

n

j i
u p u ,  when p u p u p u

=
π = ≥ ≥ ≥∑ L  (48) 

 
 Yamada proved that the above condition as Equation 
48 is not adequate for the consistency principle. 

4.3.4. Klir’s Transformation Based on Uncertainty 

Invariance 

 In accordance with the principle of uncertainty and 
information invariance (Klir, 1995; Klir and Folger, 1988) 
which claims that the amount of uncertainty should be 
preserved and the degree of belief should be converted 
by an appropriate scale when information flows through 
different uncertainty models in different theories, Geer and 
Klir (1988) and Klir and Parviz (1992) proposed that 
transformation be based on the principle of uncertainty 
invariance, also called the principle of information 
preservation or information invariance. These principles 
defining the relationship between probability and possibility, 
were also derived by Jumarie (1994) and developed by 
Wonneberger (1994).  
 Geer and Klir first defined two kinds of possibilistic 
uncertainties on the body of evidence called 
nonspecificity N and strife (or discord), S, for each 
ordered degressive possibility distribution on a set with n 

elements. These were expressed as Equation 49 and 50: 
 

( ) ( )i 2

n

i 1
i 2

N log i+
=

π = π − π∑   (49) 

 

( ) ( )i

j

n

i 1 i
i 2

j 1

i
S +

=

=

π = π − π∑
π∑

  (50) 

 
 This transformation has been investigated under such 
assumption that the total possibilistic uncertainty is 
measured by the sum of N and S and the total uncertainty 
must be preserved in the transformation process. 
 Then Geer and Klir give the log-interval scale 
transformation satisfying the principle in both directions, 
if p(u1) ≥ …≥ p(un), π(u1) ≥ π(u2) ≥ …≥ π(un), then 

( )X iπ u  can be expressed as Equation 51: 

 

( ) ( )
( )

( )
i

i
X

1

p u
u , ,    0,1

p u

α
 

π α∈  
 

  (51)  
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Table 5. Probability-possibility transformation based on evidence theory (Yamada, 2001) 
Possibility types Given principles Transformation expressions 

T1: Ordinal scale Probabilistic order preservation principle 
k

k h
h 1

U ,  k 1, ,Kπ

=
= =U LF  

T2: Ratio scale (1) Consistency principle and probabilistic order preservation principle ( )
( ) ( )

( )

j j

i

k

n

k q
j

n

k i

p u ,  q i r j 1, , m  k
u

p u ,  otherwise

=

=

 ≤ ≤ =∑
π = 

∑

L

 

T3: Ratio scale (2) Equidistribution principle 
( ) { }( ) ( )p

K

i i h h

i k k

h k

k 1

p u m u m / | |,

u G

π

π π

π

=
π
−

= = ∑ π

∀ ∈ = −

F F

F F

 

 

where, coefficient α is a constant satisfying a unique 
equation g(α) = 0 (Klir, 1995) and α∈(0,1) implies that 
the consistency condition, Nec(A) ≤ P(A) ≤ Poss, is also 
satisfied in general. 

Actually, the flexibility of such transformations has 
not been fully investigated since first explored (Klir and 
Parviz, 1992). The uncertainty-invariant transformations 
are also questioned with regard to several aspects. Even 
Klir himself has realized that the uncertainty-invariant 
transformations are not unique to ordinal scales, although 
that is a disadvantage. From another point of view, it is an 
advantage that additional requirements can be imposed on 
the transformation because of the lack of uniqueness. 
Moreover, the principle of information preservation, as 
proposed by Klir, is incompatible with the basis of maximal 
specificity. In addition, we are not sure whether or not a 
function relationship such as Equation 51 is universal 
between such a possibility-probability transformation. 

4.3.5. Yamada’s Transformation Based on 

Evidence Theory 

 Now that evidence theory, which proved to be an 
amalgamation of probability theory and possibility 
theory, is particularly useful for representing and 
combining uncertain information when a single, precise, 
uncertainty model is unavailable, transformations 
between probability and possibility will also point to 
base of evidence theory. Yamada (2001) devises three 
new transformation methods based on evidence theory 
when possibility is considered as three cases respectively 
and finds these transformations generate the same 
ordinal structure of possibility, moreover can be the only 
ones satisfying the transformation principles.  
 In Yamada’s transformations, let (F, m) be the body 
of evidence, then Ep = (Fp, mp) and Eπ = (Fπ, mπ) are 
bodies of evidence to define probability and possibility 
distribution, respectively. So the transformation between 
p(ui) and π (ui) can be substituted for the transformation 
Ep and Eπ , where mp = ({ui}) = p(ui) and the focal 

elements are described as 

{ }{ }P
i i 1 2 Kpu | u U U U= ∈ U LUF  and { }1 K, ,

ππ π
π= LF F F  . 

The other symbols (e.g., Uk and K) can be seen in 
(Yamada, 2001). 
 The transformations based on evidence theory, more 
exactly bodies of evidence are as follows in Table 5. 

Here the three cases T1, T2 and T3 are all 
transformations from a given probability distribution into 
a possibility one. But the case T2 is not the inverse 
transformation whereas the third case T3 is one 
applicable in both directions. So, when possibility is 
regarded as a ratio scale, considering the given principles 
(consistency principle, probabilistic order preservation 
principle and equidistribution principle) simultaneously, 
the transformation T3 is more valid than T2. 

5. POSSIBILITY AND EVIDENCE-BASED 

RELIABILITY ANALYSIS AND DESIGN 

OPTIMIZATION 

Before the acceptance and adoption of possibility 
theory and evidence theory in engineering areas, probability 
theory had shown its effectiveness and had gained 
popularity in many applications such as modeling and 
quantifying uncertainty in engineering systems or structural 
designs instead of simply assigning safety factors.  

Possibility theory and evidence theory offer 
alternatives to traditional probabilistic theory, ones that 
provide for the mathematical representations of 
uncertainty for complex and sophisticated systems. They 
can also be used when there is insufficient information 
about random variations because they make possible a 
combinatorial interval analysis. Both possibility theory 
and evidence theory have been used recently in 
reliability analysis and optimization. Since Zadeh (1978) 
published his famous paper on possibility theory, 
possibility theory has received more and more attention 
from researchers in an increasing range of scientific 
areas, including reliability analysis and uncertainty 
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management, so too has evidence theory. 
Here we mainly discuss applying possibility theory 

and evidence theory to engineering design and analysis 
situations. As well, it is epistemic uncertainty that this 
study focuses on primarily. 

5.1. General Topics of Applications 

 Possibility theory has been applied in many areas. 
It is usually used to quantify epistemic uncertainty if 
there is no conflicting evidence among experts, unlike 
classical probability theory, which is best suited to 
aleatory uncertainty (Bae et al., 2004a). In the area of 
reliability engineering, reliability estimation and design 
are investigated by (Mourelatos and Zhou, 2004), 
Kozine and Filimonov (2000); Moller et al. (1999; 
2004); Huang (1995; 1996); Huang et al. (2006a; 2006b; 
2010); Huang (2012); Li et al. (2012); Pang et al. 
(2012); Wang et al. (2011; 2012) and Xiao et al. (2012). 
Modeling of reliability using a new data fusion rule is 
proposed by Delmotte and Borne (1998); Sun et al. 
(2008) and Yang et al. (2011a); Possibility-based design 
optimization is studied and developed by (Mourelatos 
and Zhou, 2004; Youn, 2005; Youn and Choi, 2004a; 
2004b; 2005; Youn et al., 2004; 2005; Choi et al., 2004; 
Huang et al., 2009; 2012b; Zhang et al., 2010b). Fuzzy 
reliability theory in the context of possibility theory is 
proposed and developed by (Cai et al., 1991a; 1991b; 
1993; Utkin and Gurov, 1996; Onisawa, 1988;    
Huang et al., 2004; 2010). In addition to reliability 
engineering, the application areas also include civil 
engineering and structural engineering (Moller et al., 
1999; Huang et al., 2011a; Huang, 2012), 
computational mechanics, military, energy, forestry 
(Kangas and Kangas, 2004), aerospace and 
automobile engineering (Cayrac et al., 1996) and 
many other fields. 

As a more general tool for uncertainty analysis, 
evidence theory has also been applied to many areas, 
including artificial intelligence (particularly in the 
development of expert systems) (Bae et al., 2004b; 
Nikolaidis and Haftka, 2001), object detection and 
approximate reasoning (Lowrance et al., 1986; Perrin et al., 
2004; Xu and Smets, 1996; Borotschnig et al., 1999), 
design optimization (Mourelatos and Zhou, 2005), 
multidisciplinary design optimization (Agarwal et al., 
2004), uncertainty quantification (Bae et al., 2004a; 
2004b), risk and reliability evaluation (Yang et al., 
2011b), remote sensing classification (Lee et al., 
1987), pattern recognition and image analysis, 

decision making (Buckley, 1988; Limbourg, 2005), 
data fusion (Delmotte and Borne, 1998; Hall and 
Llinas, 1997; Sun et al., 2008; Yang et al., 2011a) and 
fault diagnosis (Fan and Zuo, 2006a; 2006b; Wu et al., 
1990). The popularity of evidence theory has risen, 
however, because evidence theory requires 
epistemological assumptions that are at odds with 
those underlying classical and Bayesian probability 
theories (Fioretti, 2004). 

There is a tendency to use more than one 
framework to deal with complicated and variable 
environments. Work of this kind include the integration 
of probabilistic and possibilistic approaches (Youn and 
Choi, 2004a; Youn et al., 2004), probabilistic integration 
of the probabilistic and evidential approaches (Lee et al., 
1987); integration of possibility-based design 
optimization and robust design (Youn et al., 2005; 
Huang et al., 2009), integration of probabilistic 
optimization and robust design (Du et al., 2003), 
integration of aleatory and epistemic uncertainty for 
various design optimizations (Mourelatos and Zhou, 
2005; Huang and Zhang, 2009; Zhang and Huang, 2010; 
Huang et al., 2012a) and so forth.  

From our point of view, the existing applications 
of and developments in possibility and evidence 
theories deal with uncertainty and reliability analysis, 
mainly focusing on two aspects. One is theoretic 
development related to the fundamentals of reliability 
theory, e.g. imprecise reliability (Walley, 1991; Utkin 
and Coolen, 2007; Kozine and Filimonov, 2000) and 
fuzzy reliability (Cai et al., 1991a; 1991b; 1993; 
Huang et al., 2004; 2010); the other is computational 
(or algorithmic) development in analysis and the 
design method, e.g., data fusion technology applied to 
reliability assessment (Hall and Llinas, 1997; Zhang et al., 
2010a; Sun et al., 2008; Yang, 2011a; 2011b) and 
optimum design methods (Youn and Choi, 2004b; 
Youn et al., 2004; Aughenbaugh and Paredis, 2005; 
Huang et al., 2005a; Limbourg, 2005; Mourelatos and 
Zhou, 2005; Huang et al., 2006a; 2006b; 2012a). 
These are illustrated in the sections that follow. 
 The two aspects of applications and developments 
arise from the variety and complexity in engineering 
environments, i.e.: 
 
• Various types of uncertainty are taken into account 

(Youn, 2005; Wu, 2008; Wu et al., 2002; Huang et al., 
2012b; Zhang et al., 2010b) 
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• Lack of information in input data, small sample size, 
insufficient information or scarce data (Chen et al., 
1999; Mourelatos and Zhou, 2004; Nikolaidis and 
Haftka, 2001; Huang et al., 2004; 2010) 

• Imprecise data or lack of knowledge (Choi et al., 
2004; Youn and Choi, 2004a; 2004b; Youn et al., 
2004; Aughenbaugh and Paredis, 2005; Huang et 

al., 2005b; 2006d; Limbourg, 2005; Mourelatos and 
Zhou, 2005) 

• Large-scale, complex or costly systems (Zhuang et al., 
2000) 

5.2. Fundamental Developments Related to 

Reliability Theory 

 Reliability research was initiated by the problem of 
machine maintenance in the late 1930s and of replacing 
street-lighting lamps in the early 1940s; it was given an 
especially impetus by the demands of complex systems 
in World War II (Cai et al., 1991a; 1991b). The word 
reliability is concerned with whether a system can 
operate properly without failure. It is defined as the 
ability of an item to perform a required function under 
stated conditions for a stated period of time. The term 
can also be denoted as a probability or as a success 
ratio or feasibility. Thus, in most cases, reliability is 
connected with such related concepts as failure and loss 
of quality. 
 Classifying aspects of reliability is subject to various 
considerations, such as general topics of reliability 
(reliability engineering, reliability management, warranty 
and maintenance), contents of reliability research 
(reliability assessment, reliability prediction and 
modeling, reliability analysis, reliability allocation and 
reliability testing), stages of reliability (reliability in 
design, reliability in manufacture, reliability in use), 
objects of reliability (hardware reliability, software 
reliability, human reliability, structural reliability) among 
other criteria. 
 At present, the chief reliability design activities 
involve Fault Tree Analysis (FTA), FMEA and reliability 
optimization.  

Conventional reliability analysis of engineering 
systems relies on a probabilistic method, which 
represents the system state variable as precise probability 
distributions and generates precise estimations of system 
failure given sufficient input data. In complicated 
situations of engineering decision making, we encounter 
many indeterminable factors, both during the early stages 
of design and in the process of a product’s manufacturing 
and use; these are due to lack of knowledge. A 
determinate decision from a precise probabilistic method 

of analysis can not be considered a faithful reflection of 
reality itself. In reliability practice, there have recently 
been some fundamental theoretic developments 
involving safety and reliability analysis when data is 
scarce or incomplete.  

5.2.1. Imprecise Reliability 

5.2.1.1. Origin and Basics of Imprecise Probability 

Theories: Origin and Motivation 

 It is popularly accepted that engineering design is a 
process of decision making during which engineers, 
because they inherently don’t have enough information, 
must deal with uncertainty. Only if the imprecise 
characterizations of uncertainty are accommodated, can 
it be said that the uncertainty is reflected or represented 
clearly and quantitatively. Imprecision can result from 
fundamental indeterminacy in the available evidence or 
from incomplete characterizations of the available 
evidence or beliefs (Youn et al., 2004).  

Imprecise probabilities have been used to represent 
uncertainty in practical reliability and risk analysis, by 
characterizing state-of knowledge uncertainty with 
intervals of probabilities. The general motivation for 
imprecise probabilities is that the confidence felt by a 
decision-maker depends mainly on the evidence on 
which his/her probability estimate is based. Thus, any 
imprecision in the probabilities should be expressed 
explicitly in order to signal the level of confidence 
appropriate to them (Youn et al., 2004). 

There are several theories of imprecise probabilities, 
including evidence theory and possibility theory. 
Probability theory, possibility theory and evidence 
theory are all special cases of fuzzy measure theory 
and recently, a theory of coherent imprecise 
probabilities has been developed by Walley (1991) 
and Wu et al. (1990). 
 The term imprecise probabilities is used as a generic 
one to cover mathematical models such as upper and 
lower probabilities, upper and lower previsions (or 
expectations), possibilities and necessities, belief and 
plausibility functions and other qualitative models 
(Kozine and Filimonov, 2000). 

The coherent imprecise probability theories 
(Walley, 1991) are based on a behavioral interpretation 
and three fundamental principles: avoiding sure loss, 
coherence and natural extension. The basic concept 
associated with behavioral interpretation is that of a 
gamble. This is a bounded real-valued function defined 
on domain Ω and it should be interpreted as a reward 
whose value depends on an uncertain state. Each one 
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belongs to the domainΩ, in the context of decision 
theory and utility theory. 
 The coherent imprecise probability theories are also 
based on two probabilistic models: Lower previsions (or 
expectations) and upper previsions. In reliability and risk 
analysis problems, we consider a particular gamble for 
which the reward can be either 0 or 1. In this case, the 
lower and upper previsions are called lower and upper 
probabilities, respectively, just as the name implies. 
 The combinative rules of multi-source information 
discriminate between consistent and inconsistent 
judgments (or models). The former contain the 
conjunction rule, which combines lower and upper 
previsions for consistent judgments. The latter include an 
alternative rule called the unanimity rule. Walley (1991) 
obtained these on the basis of concept desirability and 
preference. 

5.2.1.2. Application and Advances of Imprecise 

Probability Theories 

 Imprecise probability theories, including evidence 
theory and possibility theory, have proved to be useful 
and applicable to the implementation of reliability and 
risk analysis, even though some unsatisfactory points 
have been criticized (e.g., difficulties with evidence’s 
combinations, diversity of judgments admitted in 
elicitation) Kozine and Filimomov (2000) developed 
imprecise probabilities as a particularly advantageous 
way of handling indeterminacy and summarized their 
experiences in dealing with evidence theory as it relates 
to reliability assessments. Using practical system 
reliability assessments for serial, parallel and general 
reliability structures, they demonstrated recent advances 
in applying the theory of coherent imprecise probabilities 
to system reliability assessments. 
 Walley (1991) and Wu et al. (1990) proposed a 
theory of coherent imprecise probabilities with a 
behavioral interpretation in terms of decision theory and 
utility theory. 
 Hall and Lawry (2001) introduced a new method of 
constructing an imprecise limit state function from 
scarce data based on minimal assumptions about the 
underlying systems behavior. Application to a case study 
on reliability analysis has demonstrated how this 
conventional approach can be extended to handle 
imprecise knowledge about system state variables. It is 
represented in general as random sets, in order to 
generate bounds on the probability of failure. This 
approach has provided new insights into the sources of 
uncertainty and the assumptions implicit in the 
conventional probabilistic approach. 
 Coolen (2004) discussed a variety of issues 
involving advantages and disadvantages and reviewed 

suggested applications of imprecise probability in 
reliability. A recently developed statistical approach, 
called nonparametric predictive inference to reliability, 
has been introduced by Coolen et al. (2002) as a 
coherent framework offering exciting opportunities for 
when data is scarce. They also presented applications of 
this approach with regard to replacement and 
maintenance decisions.  
 Aughenbaugh and Paredis (2005) consider imprecise 
probabilities in order to express clearly the precision 
with which something is known, on the hypothesis that it 
is valuable to explicitly represent this imprecision by 
using imprecise probabilities in engineering design. Then 
an example and computational experiments involving 
pressure vessel design problems are carried out using 
two approaches, both variations of utility-based decision 
making. The experiments demonstrate that when 
designers have access to only a small set of sample data, 
a Probability Bounds Analysis (PBA) approach that uses 
imprecise probabilities to model uncertainty can lead on 
average to better designs than can a purely probabilistic 
approach that requires precise probabilities. 
 Augustin and Hable (2010) claim that building a 
relationship between the theory of imprecise 
probabilities and robust statistics is promising. 
Oberguggenberger et al. (2009) have applied imprecise 
probability to deal with sensitivity analysis. An 
aerospace engineering example is used to compare the 
results obtained using random sets, fuzzy sets and 
interval spreads simulated with the aid of the Cauchy 
distribution. 
 We can conclude from these results that, at least in 
some design problems, it is valuable to explicitly express 
any imprecision in the available characterization of 
uncertainties in terms of imprecise probabilities. Further 
introductory information and examples of imprecise 
reliability analysis can be found in (Nikolaidis and 
Haftka, 2001). 
 Although applying imprecise probability methods to 
reliability has shed light on many interesting research 
problems, there is still a need for a wide variety of 
research tools for addressing problems. By far, the main 
difficulties for modeling imprecise probabilities involve 
computation. Recent work by (Utkin and Coolen, 2007) 
has made great progress in this regard, yet much remains 
to be done. Another topic that has not yet been studied is 
the design of experiments with uncertainty quantified 
through imprecise probabilities (Youn et al., 2004; 
Nikolaidis and Haftka, 2001). From this perspective, the 
wide backgrounds of development for researchers 
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devoted to this field may be of great benefit in future. 

5.2.2. Fuzzy Reliability 

 Similar to the origin of imprecise probability 
theories, possibility theory and evidence theory also find 
their positions in reliability analysis. The systematic and 
typical one which has been well-developed is fuzzy 
reliability. Mainly referred to as employing possibility 
theory, one uses fuzzy theory as the uncertainty analysis 
tools in the framework of reliability theory.  

5.2.2.1. Motivation and Consideration of Fuzzy 

Theory in Reliability Analysis 

 The origin of fuzzy reliability theory comes from the 
consideration of reliability aspects in gracefully 
degradable computing systems, where system states 
cannot be simply classified as failed or functioning. In 
addition to the nature of performance degradation, a 
failure does not necessarily occur at random because of 
complex and uncertain factors. Hence, a concept of fuzzy 
reliability was proposed by to meet these demands. 
 In detail, the two basic assumptions of traditional 
probability-based reliability analysis, is not 
appropriate if the data to estimate the failure 
probability is not enough; or the determination of a 
safety criterion is also dependent on engineering 
judgment, which lead to diverse uncertain factors. 
Utilizing emergence and development of uncertain 

quantification analysis tools, such as possibility theory 
and evidence theory, the concept of fuzzy reliability 
was introduced based on possibility theory (Cai et al., 
1991a; 1991b; 1993). 

5.2.2.2. Classifications and Structures of Fuzzy 

Reliability Theory 

 It is no surprise to note that possibility theory-
based reliability theory can be classified as not only a 
member of fuzzy reliability theory, but also a member 
of non-probabilistic or imprecise probability theory. 
The former classification is due to the theoretic 
background of fuzzy set theory while the latter 
classification is due to the non-statistical characteristics 
of the information involved. Compared with the 
conventional reliability theory, the structure of fuzzy 
reliability theory is illustrated as Fig. 6. 

5.2.2.3. Present Works on the Subject of Fuzzy 

Reliability 

 According to different reliability assumptions, 
various forms of fuzzy reliability theories, including 
profust reliability theory, posbist reliability theory and 
posfust reliability theory, have been considered to put 
new assumptions in place of the binary-state and 
probability assumptions. 

 

 
 

Fig. 6. Reliability theories based on various fundamental assumptions 
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 With the concept of possibilistic logic proposed by 
(Dubois and Prade, 1983; 1987), a new knowledge-based 
solution now enables possibility theory to achieve wider 
applications in the artificial intelligence or data fusion 
domains than was possible with probability theory and 
evidence theory. 
 To date, most existing works are in theoretic 
construction and modification (Cai et al., 1991a; 1991b; 
1993; 1995a; 1995b; Cappelle and Kerre, 1993; 1994; 
1995b; Moller et al., 2004; Nikolaidis et al., 2004; 
Huang et al., 2010), or practical connections in 
engineering (Cappelle and Kerre, 1995a; 1995b; Bae et al., 
2004a; 2004b; Bai and Asgarpoor, 2004; Moller et al., 
1999; 2004; Li et al., 2012). Cai et al. (1991a; 1991b) 
has considered Posbist reliability theory for typical 
systems, such as series, parallel and k-out-of-n systems 
as well as for cold and warm redundant systems     
(Cai et al., 1995a; 1995b). Utkin (1994) and Utkin et al. 
(1995) has provided an analysis of typical repairable 
systems in the possibility context. Aiming at more 
change-friendly systems, Utkin and Gurov (1996) 
proposed a general formal approach to analyzing 
posbist reliability behavior in arbitrary systems using 
a state transition diagram. Systematic work on 
maintenance policy and FTA in the presence of fuzzy-
state assumptions has been only been partially done. 
Huang et al. (2004) have developed a new model of 
fault tree analysis corresponding to posbist reliability 
theory in order to evaluate system reliability and 
safety when statistical data is scarce or the probability 
of failure is extremely small.  
 Most recently, fuzzy reliability has been extended to 
a multi-state systems context where both components 
and systems possess multiple discrete performance rates 
in lifecycle (Liu et al., 2008; Liu and Huang, 2010; 
2011) and dynamic fault tree analysis (Li et al., 2012). 
 Although much research has been done on fuzzy 
reliability theory itself and its extensions, the exploration 
is not complete yet. Existing models of fuzzy reliability 
theory have caused some difficulties for practitioners who 
feel this theory does not cover a large enough variety of 
possible judgments in reliability (Utkin and Coolen, 2007). 
Actually, even the evidence-theory-based approach to 
reliability analysis encounters this criticism when 
information is incomplete. In some real cases, there does 
not exist a type of possibility distribution that is reasonably 
consistent with statistical data. Clear interpretation of 
possibility distributions is a goal for the future.  
 To a certain extent, reliability analysis using the 
proposed possibility-based method can not be completely 
separated from possibility-based design optimization. 
Nikolaidis et al. (2004) and Nikolaidis and Haftka (2001) 

compared the theoretical foundations of probability- and 
possibility-based methods in design for maximum safety 
and concluded that possibility theory tends to be less 
conservative than probability theory in risk assessment 
when data is sufficient and to be more conservative 
under more unfavorable circumstances that is under 
epistemic uncertainty. 

5.3. Computational Developments Related to 

Design Optimization Under Uncertainty 

5.3.1. Design Optimization 

5.3.1.1. An overall Understanding of Design 

Optimization 

 Design optimization is now a mainstream 
discipline in high-technology product development and 
a natural extension of the ever-increasing analytical 
abilities of computer-aided engineering (Papalambros 
and Michelena, 2000). Such factors as designing large-
scale complex systems, business demands and 
technological intersections, all require methods of 
design optimization with a system view, in contrast to a 
view of component design. 
 Design optimization under uncertainty should take 
into account the main types of uncertainty arising during 
the design or operation of the product, i.e. physical of 
uncertainties (manufacturing tolerances, uncontrollable 
variations in external operating conditions) and 
uncertainties in decision making (vagueness in conflicting 
objectives), uncertainties in modeling and simulation. 

(1) Formal Mathematical Model of Design 

Optimization 

 Design optimization assumes a decision-making 
paradigm for the design process. It takes the following 
form expressed as Equation 52: 
 

( )
( )( )
( )( )

n
i

minimize   f d, X  

subject to   h d X 0

                  g d X 0

                X U R

=

≤

∈ ⊆

  (52)  

 

where, f(*) is the scalar design objective function, d = 
[di]T is the vector of design variables in the n-dimensional 
real space Rn,X = [Xi]

T is the vector of random variables, 
the vector-valued functions h(*) and g(*) are the 
constraint functions that determine whether a design is 
feasible (reliable) or not. In a practical engineering 
optimization problem, the main criteria used to measure 
the effectiveness are cost and performance.  
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 Although providing a practical tool for analysis and 
design, the traditional design optimization has its 
drawbacks because it does not consider the inherent 
uncertainties (such as variations in design variables and 
parameters) and modeling uncertainties (such as 
modeling and numerical errors existing in the analysis 
tool) quantitatively (Dhanesh, 2003). Hence researchers 
have proposed various specialized optimization 
methodologies to reduce the computational costs of 
traditional design optimization problems. There have 
been some advances in exploring decomposition 
strategies or approximation concepts, especially in 
aerospace and automobile engineering applications. 

(2) Classifications of Design Optimization 

 The diversity of system structures, resource constraints 
and types of uncertainty considered has led to the 
construction and analysis of various design optimization 
models (or design methods under uncertainty) (Liang et al., 
2008; Huang et al., 2012a; 2012b; Huang et al., 2011b; 
Huang and Zhang, 2009; Huang et al., 2008): 
 
• Reliability-Based Design Optimization (RBDO): 

aleatory uncertainties 
• Possibility-Based Design Optimization (PBDO): 

epistemic uncertainties 
• Evidence-Based Design Optimization (EBDO): 

epistemic uncertainties, also for a mixture of 
aleatory and epistemic uncertainties 

• Interval-Based Design Optimization (IBDO): 
interval variables for describing design variables 
or/and parameters with two bounds 

• Robust design: mainly aimed at enhancing product 
quality as well as reliability 

• Design for six-sigma: satisfy the six-sigma 
requirements under uncertainty, mainly a 
combination of reliability-based design optimization 
and robust design 

 
 Traditional design optimization methods can be 
classified as a bi-level approach. When concrete 
uncertainty-based design optimization is applied, the 
methods can be categorized as: 
 
• Double-loop method: Two loops (Inner loop: 

reliability analysis and outer loop: design 
optimization) are nested, which is the simple method 
but with low computational efficiency (Zhang and 
Huang, 2010) 

• Single-loop single-variable method: It is mainly 
proposed for the RBDO process and attempts to 

improve numerical efficiency by eliminating 
numerical iterations in the only loop of reliability 
analysis (Du et al., 2003)  

• Safety-factor approach: The approximate equivalent 
deterministic constraints are used to decouple the 
optimization and reliability analysis  

• Sequential optimization and reliability assessment: 
A series of cycles are obtained by decoupling the 
deterministic optimization and reliability assessment 
in order to improve computational efficiency (Tu 
and Choi, 1999; Du and Chen, 2004; Zhang and 
Huang, 2010; Huang et al., 2012a) 

 
 Based on types of principles and theories of 
uncertainty, there is a classification of analysis methods 
for uncertain system in the present literature (Langley, 
2000; Choi et al., 2004) as follows. 
 Describing uncertain input variables via a 
probability density function. The well-known 
probabilistic approaches include. 

1) Asymptotic Reliability Analysis 

 It fully describes the statistics of the engineering 
structure system by the joint probability density function 
with the random variables in the form of the entries of a 
vector and dimension. The condition of the structure is 
described by a safety margin. Here the word asymptotic 
means that the errors involved in the approximation of 
failure probability approaches zero when the reliability 
index goes to infinite. 

2) First-Order Reliability Method (FORM) 

 It is a subset of the asymptotic approach by 
transforming the random variables to a set of uncorrelated 
Gaussian variables with zero mean and unit variance and 
the safety margin is approximated by a hyperplane. 

3) Second-Order Reliability Method (SORM) 

 It follows the identical steps of FORM analysis 
except that the final representation of the safety margin 
uses a quadratic approximation. 

4) Other Methods 

 Such as Monte Carlo Simulation (MCS) technology, 
Bayesian method, experimental design techniques (or 
Taguchi’s method). 

1) Interval Analysis 

 Expressing uncertain input variables via lower and 
upper bounds and defining the output interval by the 
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minimum and maximum of all input end point 
combinations (Youn and Choi, 2004a). 

2) Convex Modeling 

 Assuming that uncertain input variables lie within a 
convex region and reducing to interval analysis when taking 
a hypercube convex region. 

3) Fuzzy Modeling (or Possibility Theory Using 

a Fuzzy Set) 

 Nikolaidis et al. (2004) and Nikolaidis and Haftka 
(2001): Describing uncertain input variable by a fuzzy 
number (or possibility distribution function). 
 Encompassing or integrating the probabilistic and 
possibilistic analysis methods in a general framework, 
e.g., a common mathematical algorithm in reliability 
analysis (Langley, 2000). 

(3) General Introduction of RBDO and its 

Development 

 Reliability-Based Design Optimization (RBDO) has 
been used to consider aleatory uncertainties in an 
engineering design process. When the input data contain 
sufficient information to characterize statistical 
distributions, the design optimization that incorporates 
the probability method is called a reliability-based design 
optimization (Youn et al., 2004). The modern reliability 
methods themselves are actually formulated as a problem 
of optimization, which involves evaluating of 
probabilistic output performance measures. 
 The standard RBDO model can be defined as 
Equation 53 (Youn et al., 2004), by replacing the hard 
constraints of traditional design optimization with 
reliability constraints:  
 

( )
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where, d and X are the design vector and the random 
vector respectively while βt is a target failure probability 
(or reliability level) and n, nr, np are the number of design 
variables, the number of random variables and the number 
of probability constraints, respectively. The design variables 
can be distribution parameters like means or standard 
deviations of the random variables, or of course can be 
deterministic. The reliability constraints are on the 
reliabilities with respect to the various failure modes. 
 Some alternative methods (Dhanesh, 2003) have 
been suggested to reduce the high computational costs 

related to a traditional RBDO, including a unified-level 
RBDO, Performance Measure Approach (PMA), semi-
infinite optimization, a single level approach and a 
variable complexity algorithm. In a unified-level RBDO, 
the FORM-based reliability constraints take the place of 
the first order optimality conditions of the Most Probable 
Point (MPP) searches. In a PMA, the FORM-based 
reliability constraints are replaced with the worst case 
values of hard constraints under a specified reliability 
level. In a semi-infinite optimization techniques based on 
PMA, the constraints are replaced with a single 
deterministic one in form of a min-max formulation, 
satisfying the hard constraints within a sphere on radius 
of required reliability.  
 The approximation concepts in RBDO can improve 
the efficiency of such approaches, including Two-point 
Adaptive Nonlinear Approximation (TANA2), 
multivariate spline approximation. A more detailed 
survey of detailed approximation and optimum design 
can be found in (Dhanesh, 2003).  
 Recently, the extensive research or development of 
RBDO concentrates on how to make it computationally 
affordable, while maintaining numerical accuracy and 
stability. Tu and Choi (1999) have reformulated the 
FORM reliability constraints by an inverse reliability 
analysis formulation. They also point out that PMA can 
work for cases where conventional MPP searches fail. 
(Youn and Choi, 2005) present an enriched Performance 
Measure Approach (PMA+) for RBDO to substantially 
improve computational efficiency in large-scale 
applications, by carrying out the refined reliability 
analysis using the enhanced Hybrid Mean Value 
(HMV+) first-order method. We can find that such 
approach can also be applied and developed in a PBDO 
environment, with each method having its own strong 
and weak points (Mourelatos and Zhou, 2005). In 
addition to these methods, a new reliability analysis tool 
based on Trust Region methods is also developed. 
 On the other hand, a general optimization under 
uncertainty formulation can adopt both robustness and 
reliability constraints. One such formulation that 
minimizes both mean of merit function and its variance 
subject to constraints on worst value of hard constraints 
within intervals of required confidence level is expressed 
as Equation 54 (Su and Renaud, 1997): 
 

f f

ti i

L U

hard

min   +w  

s.t.   0     i 1,2, , Ng g

                  d d d

µ σ
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where, µf and σf are the mean and standard derivation of 
variables and w is a weighting function.  
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5.3.1.2. PBDO 

 We have mentioned earlier that in practical 
engineering design, there are two main types of 
uncertainty: Aleatory and epistemic uncertainties. The 
former is objective and irreducible with a large amount 
of information on input data and then can be modeled 
using probability theory. The latter is subjective and 
reducible coming from lack of knowledge on input data.  
 In areas where it is not possible to obtain accurate 
statistical data due to restriction of resources or 
conditions (i.e., budgets, facilities, time, human 
factors), probabilistic methods may not be appropriate 
for structural analysis and design optimization. Thus a 
demand for alternative design methods is created by 
epistemic uncertainty which requires the modeling of 
physical uncertainty when there is insufficient 
information (Klir, 2000; Youn et al., 2004). 
Possibility theory and evidence theory are used in 
such cases. Very recently, possibility-based (or fuzzy 
set) methods have been proposed (Klir, 2000; Choi et al., 
2004; Moller et al., 2004; Zhang et al., 2010b), in 
which a mean performance is optimized subject to 
possibilistic constraints.  

(1) Formation of PBDO 

 The general PBDO can be formulated as Equation 
55 (Zhou and Mourelatos, 2008): 
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where, d and Y are the design vector and the fuzzy 
random vector respectively while αt is a target failure 
possibility and n, nr, np are the number of design 
variables, the number of fuzzy random variables and the 
number of possibility constraints, respectively. 

(2) Fuzzy Analysis Method for PBDO 

 Compared to other methods, a fuzzy (or possibility) 
analysis method represents a very useful tool to perform 
operations in the framework of possibility theory, with the 
following main advantages: (1) preserving the intrinsic 
random nature of physical variables through their 
membership functions; (2) simpler extended fuzzy 
operations (Klir and Folger, 1988; Klir and Yuan, 1995) 
than those required to use probability; (3) yielding a more 
conservative design than the probabilistic design method 

in terms of a confidence level (Klir, 2000); (4) providing a 
system-level possibility unlike reliability analysis. 
 For numerical methods of fuzzy analysis, some 
reported methods are listed below: 
 
• Vertex method (Sentz and Ferson, 2002) 
• Discretization method 
• Level-cuts (α-cuts) method (Huang et al., 2008) 
• Multilevel-cut method 
• Possibility index approach 
• Performance Measure Approach (PMA) 
• Most Probable Point (MPP) search 
• Maximal Possibility Search (MPS) 
 
 In practical engineering analysis and design, the vertex 
method is popular but rather expensive for large-scale 
engineering applications and could yield inaccurate results 
of fuzzy analysis in the case that an output response has a 
maximum or minimum within the input range. A level-
cuts method has been used to overcome the difficulties of 
nonlinear problems using various design levels. 
Recently, a multilevel-cut method has been developed to 
improve the accuracy of the vertex method for nonlinear 
structural design, but it is also very expensive to carry 
out PBDO. The PMA has been successfully applied with 
its advantages of numerical efficiency and stability in 
PBDO (Youn et al., 2003; Youn et al., 2004).  
 Fuzzy analysis method is different from reliability 
analysis in such two cases: one is the MPP in reliability 
analysis based on FORM results in the first order 
approximation, whereas MPP in fuzzy analysis is exact 
along with the related possibility; the other is that the 
search domain is different, which is an nr-dimensional 
sphere in reliability analysis while nr-dimensional hyper-
cube in fuzzy analysis as shown in Table 6, thus lead to 
simpler computation in fuzzy analysis (Choi et al., 2004). 

(3) Comparison of PMA in PBDO and RBDO 

 Both RBDO and PBDO employ PMA to improve 
numerical efficiency, stability and accuracy. The 
difference of PMA method in reliability analysis by 
(Youn et al., 2004; 2003) and in fuzzy analysis (Cai et al., 
1991a; 1991b; 1993; 1995a; 1995b; Cappelle and Kerre, 
1993; 1994; 1995a) is illustrated in Table 6. 

(4) Present Works Related to PBDO 

 At present, one of the main concerns related to 
PBDO research has been how to improve numerical 
efficiency, accuracy and stability during the optimization 
process. The Performance Measure Approach (PMA) is 
such a method satisfying the requirement, replacing the 
probabilistic constraint in Equation 53 with the 
performance measure under a specified reliability level 
(Youn and Choi, 2005; Youn et al., 2003).  
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Table 6. Comparison of PMA method in RBDO and PBDO (Choi et al., 2004; Youn et al., 2004; Youn, 2005)   
 PMA in RBDO PMA in PBDO 

Formulation 
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Objective of constraints random quality loss and random Deterministic material cost, random quality loss 
 manufacturing cost. manufacturing cost. 
 piG : the ith probabilistic constraints iGπ : the ith possibilistic constraints 
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s.t.  U ≤ β
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t

min  G V

s.t.  U 1∞ ≤ −α
 

 X: random variable Y: non-interactive fuzzy variables; 
 U: standard normal random variable; V: fuzzy variable with isosceles 
Variables and parameters d: Design variable.d = µ(X) ∈ Rn. d: Design variable, 

 βt: target reliability index or target ( ){ } [ ]TY i ii
d max y d = Π =   

 reliability level αt: target failure possibility. 

 
Choi et al. (2004) provided a new formulation of PBDO 
using PMA to improve numerical efficiency, stability and 
accuracy. They also propose a new Maximal Possibility 
Search (MPS) method to resolve disadvantages of the 
vertex method and the multilevel-cut method, by 
evaluating possibility constraints efficiently and 
accurately for nonlinear structural applications. Youn et al. 
(2004) presented an integrated design platform of both 
RBDO and PBDO using PMA when modeling physical 
uncertainty with insufficient information. (Mourelatos 
and Zhou, 2004) used the possibility theory as a variant 
of fuzzy set theory to assess reliability with incomplete 
information in structural analysis and design. 
 In their study, a hybrid optimization approach for 
calculation of the confidence level of fuzzy response is 
presented first, combining the merits of conventional 
vertex and discretization methods. Then they provide a 
general PBDO method with numerical examples, which 
is from the angle of design and proves to be 
computationally efficient. Tu and Choi (1999) showed that 
the advantage of PMA is that when the reliability index is 
very high, PMA is less expensive and the disadvantage of 
this approach is that it might require more computations 
where the reliability index is lower than the required 
reliability level. So there is a need for some modification 
and extension of fuzzy analysis methods in PBDO. 
 In order to improve the computational efficiency and 
stability, the enriched Performance Measure Approach 
(PMA+) has been proposed. As an extension of PMA, it 
combines four key ideas (Youn and Choi, 2005): as a 
way to launch RBDO at a deterministic optimum design, 
as a probabilistic feasibility check, as an Enhanced 
Hybrid-Mean Value (HMV+) method and as a fast 

reliability analysis under the condition of design 
closeness. Youn and Choi (2004a) provided two 
examples to show computational features of PMA+ for 
RBDO with aleatory input uncertainties and MPS for 
PBDO with epistemic input uncertainties. In addition, 
RBDO and PBDO results are compared for implications 
of these methods in design optimization. 
 Another concern of the extension of PBDO is to 
provide a general framework integrating various 
proposed design optimization methodologies such as 
RBDO, PBDO, under aleatory uncertainty or epistemic 
uncertainty, or both of them. Youn (2005) proposed a 
method called the adaptive-loop method used for such 
integrated framework, enhancing numerical efficiency 
without losing computational stability by integration 
of parallel-loop and single-loop methods adaptively. 
 Nikolaidis et al. (2004); Nikolaidis and Haftka (2001) 
and Chen et al. (1999) also consider the PBDO problem 
for design under uncertainty. It is shown that more 
conservative results are obtained compared with the 
probability-based RBDO, especially when there is 
insufficient information available in reliability 
assessment. But it is also true that using possibility theory 
can yield less conservative designs in certain cases, when 
the main design criterion is to minimize the probability 
and possibilities of failure. 
 The existing works related to PBDO have revealed 
the characteristics and advantages of possibility theory 
for coherent systems; but there still need a general 
solution (not referred to only method or algorithms) of 
all uncertainty-based optimization under diverse 
uncertainties, which could be the future direction of 
research.  
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5.3.1.3. EBDO 

 As a more general tool for uncertainty quantification 
analysis than probability and possibility theory, evidence 
theory has shown its qualitative value and computational 
efficiency in many application areas. 
 The significant point of evidence theory is that it 
allows for allocation of a probability mass to sets or 
intervals and does not require a premier assumption 
regarding the probability of the individual constituents of 
the set or interval, compared with other methods. These 
special advantages are potentially valuable in engineering 
design if limited and even conflicting information is 
provided from expert elicitation or experiments, by 
means of combining aleatory and epistemic uncertainty 
in a straightforward way. 
 However, to the best of our knowledge, reported 
exploration of evidence theory in engineering design is 
fairly limited and even much less in a design optimization 
framework. It is only recently that evidence-based methods 
are used to propagate epistemic uncertainty (Bae et al., 

2002; Bae et al., 2004a), e.g., in large-scale engineering 
structure systems. One of the major difficulties of 
applications for evidence theory, investigated by Bae et al. 
(2004a; 2004b) may be its high computational cost. Adopts 
evidence theory as a general tool of uncertainty 
quantification analysis for large-scale structures, using a 
cost-effective and reliable algorithm, the Multi Point 
Approximation (MPA) to alleviate the computational 
difficulties (Bae et al., 2002; Bae et al., 2004a; 2004b). In 
their study, compared with the popular evidence-based 
methods of the sampling method and the vertex method, 
such a proposed optimization technique as MPA method 
enhances its accuracy mainly through local approximation, 
focusing the computational recourses on the failure region 
and then the Two-point Adaptive Non-linear Approximate 
(TANA2) is selected. Both the optimization and the 
approximation techniques may efficiently evaluate the 
belief and the plausibility functions without sacrificing the 
accuracy of resulting measurements. The detailed flow 
diagram is showed in Fig. 7. 

 

 
 

Fig. 7. An uncertainty qualification approximation algorithm using evidence theory (Bae et al., 2004a; 2004b) 
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 Although such a computationally efficient and 
accurate method is proposed and demonstrated by two 
structural examples (Bae et al., 2004a), it is not an issue 
which takes design problem into account. The study which 
propagates epistemic uncertainty using evidence theory 
and also performs a design optimization is first carried out 
by (Agarwal et al., 2004), in which optimum design is 
calculated for multidisciplinary systems under uncertainty. 
Since the belief functions are discontinuous to formulate 
non-deterministic constraints in this research,  
Agarwal et al. (2004) employ a trust region sequential 
approximate optimization method to drive the optimization 
process with surrogate models representing the uncertain 
measures as continuous functions. Their work is significant 
in throwing light on the use of evidence theory for 
optimization under uncertainty. 
 Mourelatos and Zhou (2005) continue the research 
of Evidence-Based Design Optimization (EBDO). The 
proposed design optimization method, which is 
computationally efficient and can handle a mixture of 
aleatory and epistemic uncertainties, can be formulated 
as Equation 56: 
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where, d, X and P are the vectors of deterministic design 
variables, uncertain design variables and uncertain 
design parameters, respectively. Here n, nr, q are the 
number of the above variables or parameters respectively 
and np is the number of constraints. ƒ(*) is the objective 
function, pƒi is a prescribed probability value. Here the 
superscript “N” in Equation 56 indicates the nominal 
value of each variables or parameters.  
 After a geometrical interpretation of the EBDO 
problems, a computationally efficient solution is 
presented and two design examples are provided to 
demonstrate the proposed EBDO method in Ref. 
(Mourelatos and Zhou, 2005). The algorithm quickly 
identifies the vicinity of the optimal point by a derivative-
free optimizer calculating the evidence-based optimum, 
starting from the close-by RBDO optimum and moving a 
hyper-ellipse in the original design space, as used in 
RBDO algorithm. Moreover, only the identified active 
constraints are considered for local surrogate models. All 
these concerns keep the computational cost desirably low 
(Mourelatos and Zhou, 2005). 
 It is also shown that the EBDO is conservative 
compared with all RBDO designs obtained with different 
probability distributions. It provides the possibility to 

investigate design optimization in a more broadened and 
general point of view, if the uncertainty representation 
tools can be further improved. 

5.3.1.4. Other design Optimizations 

 Robust design is developed to address the concern of 
robustness of certain performance parameters and reliability 
of the design (Du et al., 2003). In a robust design 
optimization, the variation in performance parameter can be 
either minimized, or constrained to be lower than some 
value. In a traditional robust optimization proposed by 
Taguchi, the main aim is to find designs with minimum 
variation of certain performance characteristics, i.e., to 
minimize the product quality loss. Using the property of 
orthogonal arrays, the robust design with minimum 
performance parameter variation can be identified. 
 A robust design method has been adopted in a 
variety of practical engineering problems. Recently there 
is a tendency of integrating it to uncertainty-based design 
optimizations with a result of enhancing product quality 
as well as confidence level (e.g., reliability) (Youn, 
2005), although the emphasis of each individual 
paradigm is different. 
 The fuzzy set approach is common, where 
membership functions characterize the input uncertainty. 
 This method expresses uncertain input variables via 
lower and upper bounds and defines the output interval 
by the minimum and the maximum of all input end point 
combinations (Xiao et al., 2011). 
 It assumes that uncertain input variables lie within a 
convex region and be reduced to interval analysis when 
taking a hypercube convex region. 

5.3.1.5. Integration of Various Optimization 

Methods 

 In recent years more and more attention of designers 
is paid to the integrated framework of uncertainty 
analysis and even more of design optimization methods, 
due to the modified design guideline or standard. 
Moreover, in order to deal with the situation when there 
is insufficient information, the possibilistic method itself 
or its integrated framework may be the better choice.  
 Such integration research includes integration of the 
probabilistic approach with the possibilistic approach 
(Youn et al., 2004; Langley, 2000), integration of the 
probabilistic approach with the evidential approach   
(Lee et al., 1987), integration of possibility-based design 
optimization with robust design (Youn et al., 2005; 
Huang et al., 2009), integration of probabilistic 
optimization with robust design (Du et al., 2003), 
integration of aleatory uncertainty with epistemic 
uncertainty for various design optimizations (Youn, 
2005; Huang and Zhang, 2009) and so on.
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Fig. 8. An integration of PBDO and RBDO by PMA method (Youn et al., 2004) 
 

 
 

Fig. 9. The adaptive-loop method proposed by (Youn, 2005) 
 
The survey of existing work is not all-inclusive, but 
rather representative work emphasizing those methods 
that can ultimately be expressed under a common 
analytical framework. 
 Youn and Choi (2004a) and Youn et al. (2004) 
present an integrated design platform of both RBDO and 
PBDO when modeling physical uncertainty with 
insufficient information, using PMA to improve 
numerical efficiency and stability in PBDO while MPS 

for highly nonlinear and monotonic performance 
response in RBDO. Such a structure is shown in Fig. 8. 
 In his study, the adaptive-loop method is composed 
of three phrases of optimization: The deterministic 
design optimization is employed at the beginning of the 
process with such additional improvement of numerical 
efficiency by reducing the design iterations and then the 
parallel-loop method is expedited addressing numerical 
convergence and statistical feasibility using PMA+, the 
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last step is for single-loop method, checking the design 
closeness and improving computational efficiency. Such 
integrated framework is typical as an organic structure 
for uncertainty-design optimization. The adaptive-loop 
method is illustrated in Fig. 9. 
 In response to such improved standards in 
engineering design as reliability and robustness and 
considering the fact that, for epistemic uncertainties, a 
possibility-based design optimization deals with the 
failure rate, while a robust design optimization minimizes 
the product quality loss, researchers are interested in the 
integration work for epistemic uncertainty. Since there is 
no metric for product quality loss defined under epistemic 
uncertainty, (Youn et al., 2005) propose a new design 
framework successfully integrating the PBDO and a 
robust design optimization with new formulation of 
product quality loss for epistemic uncertainty. Such 
Possibility-Based Robust Design Optimization (PBRDO) 
can be formulated as Equation 57: 
  

( )
( )( )( )

( )

i t

L U

T
ndv nrv

min   Cost d, V  

s.t.   G d V 0 ,      i 1,2, ,np

                  d d d
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Π > ≤ α =

≤ ≤

 = ∈ = ∈ 

L

  (57) 

 
where, the design vector d= m(V) is the maximum likely 
value of the fuzzy random vector and V is the fuzzy 
random vector and np, ndv and nrv are the number of 
possibilistic constraints, the number of design variables 
and the number of fuzzy random variables, respectively. 
 First, their paper proposes a new metric for product 
quality loss in three different types of robust objectives. 
Then the MPS method and PMA+ are employed for 
more effectively estimating possibilistic constraints and 
conducting the design optimization, respectively. Two 
examples are used to show the feasibility of possibility-
based robust design with epistemic uncertainty, 
comparing with those results of reliability-based robust 
design optimization. Such framework is ready for 
application in other areas. 
 Actually, robust design can be integrated to any of 
uncertainty-based design optimizations with the result of 
enhancing product quality as well as confidence level 
(e.g., reliability). 
 Considering that robust design emphasizes on 
improving the product quality by minimizing the effects 
of variations while RBDO focuses on maintaining design 
feasibility at expected probabilistic levels, (Du et al., 

2003) propose an integrated framework of two 
methodologies for the design objective robustness with 
probabilistic constraints. 
 They employ an inverse reliability strategy that uses 
percentile performance and give a new search algorithm for 
the Most Probable Point of Inverse Reliability (MPPIR), 
evaluating the performance robustness and percentile 
performance in the proposed formulation.  

Their engineering example of a vehicle combustion 
engine piston design illustrates the effectiveness of the 
method, solving the tradeoff problem encountered in the 
integration simultaneously which has ever been the 
difficulty in uncertainty handling. 

5.3.2. Data Fusion Technology in Risk and 

Reliability Analysis  

5.3.2.1. A General Introduction of Information 

Fusion 

 In the early 1980s, it was military scientists that 
were the pioneers in the use of techniques of what is 
now called information fusion (Hall and Llinas, 1997; 
Zhuang et al., 2000). Data fusion is now a formal 
framework and tools for the alliance of data originating 
from different sources of different nature. It aims at 
obtaining information of greater quality. 
 There are indeed a large amount of literatures relating 
to this method in different aspects of application areas, e.g., 
defense systems, geosciences, medicine and industrial 
engineering. The information involved in the fusion process 
may be data, image, sensor and classifier. So the concept of 
data fusion can be extended and the application area can 
also been extended. 
 A fusion system is usually multi-leveled, e.g., from 
fixed level, then to feature level and lastly to decision 
level. The mathematical tools used for fusion are various, 
including probability theory, evidence theory, fuzzy set 
and possibility theories and more recently neural 
networks (Hall and Llinas, 1997). 
 As two of the most important fusion methods, 
evidence method and possibility method have been 
widely used, including the area of reliability assessment 
and engineering design (Perrin et al., 2004). 

5.3.2.2. Information Fusion Using Possibility 

Based Method 

 In the framework of possibility theory, the 
information available, relative to the value of parameter, 
is represented by a possibility distribution, which 
corresponds to an interval (or a set) representing 
imprecise information. Such a set is generally fuzzy.  
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Fig. 10. Dempster-Shafer methods as a part of reliability information fusion model (Hall and Lawry, 2001) 
 

 
 

Fig. 11.  An information fusion structure for comprehensive reliability assessment 
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It is possible to find a large range of schemes suiting 
each case, where the fusion of uncertain information is 
equivalent to finding a compromise between a too 
accurate result which is certainly false and a sure result 
which is too imprecise. 
 Hence, the union and the intersection are both principal 
ways, among others, to fuse two sets, which provide a great 
opportunity for reliability analysis and evaluation. 

5.3.2.3. Information Fusion Using the DS Method 

 As a generalization of the probability theory, the 
evidence theory allows the handling of non-exclusive 
and non-singleton events. Each measure attaches a 
probability to any element of the power set of the set of 
discernment (Hall and Llinas, 1997; Zhuang et al., 2000; 
Sentz and Ferson, 2002). The Dempster-Shafer rule is 
used to aggregate these input mass functions. Different 
modes of decision associated allow us to handle the 
compromise information. Based on this knowledge, with 
information theory, the DS fusion method in reliability 
engineering can be illustrated as Fig. 10. 
 Aiming at the difficulty in reliability assessment of 
complex large scale system, using information fusion 
technology is worth trying. The essential strategy should be 
considered as combining fusion technology into a 
comprehensive approach (Oberkampf et al., 2000). In the 
reliability assessment process, fusion technologies are first 
applied to subsystems, then synthesis all combine proper 
results together, as showed in Fig. 11 (Zhuang et al., 2000). 

5.4. Performability Improvement on the use of 

Possibility theory and Evidence Theory 

 So far as we know, besides theoretical and 
computational developments by the means of 
possibilistic and evidential approaches, some physical 
problems have also been solved in the area of 
perfomability, which includes quality, reliability, 
maintenance and safety and risk. Such physical problems 
as failure mechanisms and detective methods are related 
to system failure engineering, which in some sense can 
be viewed as a part of operational research (Cai, 1996). 
From this point of view, fuzzy (possibilistic) 
methodology and evidence theory have made their own 
contributions to various aspects of dependability and 
performability. With fast advances in technology and the 
increasing complexity of technological systems, in a 
holistic point of view, product characteristics comprising 
functionality, reliability and maintainability have been 
becoming more and more important and alternative 
approaches are needed to address them. 
 Probability theory alone is not sufficient to solve the 
problem of human subjectivity as it does not follow the 

probability axioms. Possibility theory and Dempster-
Shafer theory of evidence thus offer such alternative 
approaches by adoptions of natural language expressions 
about reliability information (Misra, 1993). 

5.4.1. Quality 

 System quality, in a narrow sense as a body of 
performance indices whereas in a broad sense as all 
relevant variables and procedures, are often prone to 
human errors and management defects (Murthy and 
Djamaludin, 2002). Quality factors, even quality 
definitions are essentially fuzzy and unclear in reality. 
Applying fuzzy methodology, the inherent and intrinsic 
data and information can be represented in many 
examples including fuzzy control chart and fuzzy rules in 
quality control (Cai, 1996). The complex and fuzzy 
relationships among object system, operating situations 
and development process, supporting resources also call 
for fuzzy techniques. 

5.4.2. Reliability 

 In the context of measure and integral, reliability 
is a quantitative index and can be measured by the 
opposite side, i.e., unreliable or failure events. The 
first adoption of fuzzy methodology in reliability and 
failure analysis, i.e., the proposed notion of component 
possibility as a reliability index, may be dated back to 
Kaufman’s study (Kaufmann, 1983), although the 
motivation and exact meaning of component possibility 
were not explained at that time and now fuzzy-based 
approaches are appearing in various areas of reliability 
evaluation (Bai and Asgarpoor, 2004) and modeling 
(Delmotte and Borne, 1998). 
 Because of the simplicity of combination rules, it 
is shown recently that D-S theory has been used in 
various fields which were not common before, e.g., in 
system reliability settings, fault diagnosis (Fan and 
Zuo, 2006a; 2006b). 

5.4.2.1. Fault Tree Analysis 

 Fault Tree Analysis (FTA) has been widely used as a 
powerful and efficient tool for reliability analysis and safety 
prediction. The visual and quantificational characteristics of 
FTA make it feasible in accordance with the trend of 
combining quantitative approaches with qualitative 
approaches, addressing limitations of the conventional 
probabilistic approach. Among others, we mention fuzzy 
reliability theories and fuzzy logic based method for 
linguistic (imprecise) quantification of fuzzy characteristics 
and construction of approximate reasoning system. 
 The first implementation of fuzzy method in the 
context of fault tree analysis was pioneered by          
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(Tanaka et al., 1983), who treated imprecise probabilities of 
basic events as trapezoidal fuzzy numbers and employed the 
extension principle to describe the logical relationships 
leading to the top event. Furuta and Shiraishi (1984) also 
proposed a kind of importance measure but by means of 
max/min fuzzy operator and fuzzy integrals other than 
Tanaka’s approach. When it comes to fuzzy number, 
(Singer, 1990) also thinks it as the perfectly straightforward 
way to overcome the deficiencies of inexact and inaccuracy 
knowledge. Soma et al. (1993) proposed a more general 
fuzzy method, also known as resolution identity to handle 
repeated events. Moreover they extended this method to 
deal with multi-state FTA (Misra and Soman, 1995). 
Another approach used to model imprecise relationships 
between physical and reliability states is proposed by (Pan 
and Yun, 1997), using fuzzy gates to describe output by 
triangular fuzzy numbers instead of crisp values 0 or 1. 
In fact, by defining fuzzy possibility of fuzzy event 
analogous to fuzzy probability, FTA can take into 
consideration subjective and experts’ opinion    
(Huang et al., 2004). Furthermore, fuzzy fault tree 
method has been implemented in engineering practice 
widely (Mentes and Helvacioglu, 2011; Jafarian and 
Rezvani, 2012; Al-Humaidi and Hadipriono, 2010).  
 Cai (1996) has summarized three main manners of 
fuzzy methodology in reliability engineering, 
respectively as: 
 
• Treating the probability as a fuzzy number 
• Defining reliability in terms of possibility measure 
• Considering failure as a fuzzy event 

5.4.2.2. Failure Modes and Effects Analysis 

(FMEA) 

 Failure Modes and Effects Analysis (FMEA) 
examines the failure cause-effect relationships. Both 
causes and effects can be fuzzy in some sense. Along 
with treating both probability and consequences of 
failures as fuzzy sets, interdependencies among various 
causes and effects may be assessed by the rule-based 
reasoning. Keller and Kara-Zaitri (1989) have observed 
this and introduced fuzzy logic to handle the 
impreciseness in fault representation. Gargama and 
Chaturvedi (2011) introduce fuzzy logic to describe the 
linguistic variables. 

5.4.2.3. Fault Diagnosis and Detection 

 Fault diagnosis partially interprets the reasons why 
system fails. Fuzzy approach together with the idea of 
fuzzy logic and linguistic approach can be naturally used 
to deal with vagueness and ambiguity in system models 
and in human perceptions (Cai, 1996). Furthermore, 
failure detection and identification problems can be 

addressed by fuzzy logic and Dempster-Shafer theory 
(Misra, 1993), or along with probabilistic approaches in 
multi-source data analysis (Lee et al., 1987).  
 Since one of the central issues in the evidence theory is 
how to combine imperfect information given by 
independent knowledge sources, D-S theory of evidence 
has been gaining popularity in various fields when orienting 
to incomplete knowledge, e.g., multiple-fault diagnosis 
problem. Even though previous causal models for 
diagnostic expert systems are formulated in the framework 
of probability theory, the D-S theory of evidence has been 
suggested for solving some diagnostic problems.  
 Ishibuchi and his colleagues (Misra, 1993) 
developed such a diagnosis model to restrict their 
consideration to cases, where fuzzy symptoms are 
expressed by belief structures. Very recently (Fan and 
Zuo, 2006a; 2006b) have proposed new decision rules 
based on the improved D-S evidence theory and 
employed the improved method in gearbox fault 
diagnosis, which enhance diagnostic accuracy and 
autonomy by means of combining expert knowledge and 
multi-source information.  
 Even now, application of D-S evidence theory in 
diagnosis has just begun. Issues deserving study involve 
that how to transform expert diagnostic opinion into 
basic probability assignments and how to determine 
threshold precisely. 

5.4.3. Maintenance and Warranty 

 When it comes to product failures, it is naturally 
mentioned the notions of maintenance and warranty. 
Maintenance involves actions to control the deterioration 
process leading to failure and actions to restore failed 
equipment to its operational states by corrective 
measures after a failure. A warranty is a contract 
between buyer and manufacturer to replace or repair a 
faulty item, or to partially or fully compensate the 
consumer in the case of failure. 
  Product maintenance and warranty have received 
the attention of researchers from many different 
disciplines and are related to sub-areas including optimal 
system design, optimal reliability improvement, 
modeling imperfect repairs and replacement.  
 To the best of our knowledge, the three formal 
views of warranty are the exploitation theory, the signal 
theory and the investment theory, respectively. On 
general grounds, the more reliable the product is, the 
lower the cost of replacement under warranty for the 
user. So warranty policies are structured according to 
perspectives of manufacture and buyer. There is a 
negative correlation between product quality and 
warranty costs. Murthy and Djamaludin (2002) and 
Wang et al. (2009; 2010) for more details. 
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 The literature on warranties and preventive 
maintenance are vast. On the issue of improving the 
reliability of a product, one way is to eliminate infant 
mortality or initial failure rate with a burn-in program; 
another way is to upgrade the manufacturing process; 
and the third consideration may be outgoing inspection 
to eliminate nonconforming items (Misra, 1993). In these 
studies, new technologies and design methods may 
provide benefit to measurable improvement in quality 
and investment. 

5.4.4. Safety 

 Concerning with a special kind of failure with 
catastrophic consequences, safety may be a part of 
reliability. Fuzzy methodology can be applied, although 
limited at present, in areas of safety design and safety 
assessment. Fuzzy rules can be adopted in expert 
judgments and subjective assessments. 
 If we must decide whether to operate or switch off a 
system based on available information which may be 
incomplete and imprecise, evidence theory can be explored 
to meet such demand. This is a kind of safety control 
problem and Dempster’s rule of combination has been used 
for fusing a given set of information (Cai, 1996). 

5.4.5. Risk 

 Risk is concerned with both failure consequences and 
failure occurrence uncertainty. Risk is also linked to 
decision-making, a policy and so on. Subjects about risks 
are divided into two phases: Risk assessments and risk 
management (Cai, 1996). When risk management is 
performed in relation to a Probabilistic Risk Assessment 
(PRA), the two activities are named as a Probabilistic Risk 
Assessment And Management (PRAM). 
 Quite a few research efforts have been made to 
establish a unified PRAM methodology where subjective 
assessment, value judgment, expertise and heuristics are 
being dealt with more objectively. However, to express 
the uncertainty of the event occurrence in terms of 
possibility measure, it is still an open and challenging 
problem how to define and assess risk of an event. 

6. DEVELOPING TRENDS OF 

POSSIBILITY AND EVIDENCE-BASED 

METHODS 

6.1. The Possible Directions of Future Works 

 Although significant progress has been made during 
the last two decades, the investigating and developing of 
possibility and evidence theory is still an active research 
domain. The probable and noticeable perspectives include: 

• Integrating or perfecting already-existing integration 
methods 
o In attempt to integrate possibilistic and 

probabilistic methods which have been proven 
to be efficient and matured, e.g., DS method 
with other related methods 

o Reducing design iteration and shorten searching 
interval using combination algorithms or 
genetic algorithm 

o Enhancing computational accuracy and stability 
and numerical efficiency 

• Focusing on those methods that can ultimately be 
expressed under a common analytical framework 
o Improving and solving the conflict problem of 

various uncertainties 
o How to propagate uncertainty in a global angle  
o Constructing an error-compensation feedback 

loop as a software improvement or an adaptive 
loop as a correction mechanism 

• Uncertainty quantification analysis and risk 
assessment of precise systems or those which are 
difficult to measure. 

• Design for six sigma as a new robust optimization 
formulation, incorporating approaches from 
structural reliability and robust design. 

• Soft computing strategies as the cooperating 
framework with diverse methods 
o Basic cooperating with fuzzy logic, 

probabilistic reasoning and neural network 
o More advanced cooperating with genetic 

algorithm, evidential reasoning, learning 
machine and chaos theory 

• Combination of theoretical research and practical 
applications in real environment, from both the 
scientists and engineer’s angle 

• Design optimization methods under uncertainties for 
handling complex systems design with multiple 
failure modes and high nonlinear limit state 
functions 

• Accuracy and efficient reliability analysis method 
with small probability of failure of systems under 
uncertainties 

 
We strongly hope that reliability engineers will 

closely collaborate with statisticians in the development 
of models and methods, to ensure applications in a field 
where uncertainty often plays a significant role in 
decision making. 

6.2. Implication for Practice 

 Uncertainties exist widely in practical engineering; 
these uncertainties which can be classified as epistemic 
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or aleatory, come from limited data, incomplete 
information, ignorance and inherent variation. 
Parameters in systems usually can not be determined 
precisely due to these various uncertainties, especially 
for aerospace and some military industies, which often 
face the problem of insufficient data or imcomplete 
information. In these cases traditional probability-based 
reliability methods can not work well because they 
require that all probabilities or probability distributions 
be known and/or perfectly determined. Some recent 
research has pointed out that probability-based reliability 
methods are very sensitive to parameter values; a little 
variation in parameters will lead to large error 
calculations (Guo et al., 2001). This means that the 
results calculated by probability-based methods are 
unreliable in cases of limited data and incomplete 
information. Fortunately, possibility-and evidence- 
theories-based reliability methods have many advantages 
when compared with probability-based reliability 
methods. They are fit for situations in which data and 
information are limited or imcomplete, therefore, 
possibility- and evidence-theories-based reliability 
methods have become a focus for academic research and 
much has been achieved. Furthermore, these uncertainty 
methods are becoming increasingly popular for 
engineering practices such as those in the fields of 
aerospace, automobile engineering, nuclear energy and 
defense. This is because they help design safer and more 
reliable products under severe uncertainty than do 
traditional probability-based reliability methods. 

7. CONCLUSION 

 In this study, we have given a detailed and annotated 
overview of possibility and evidence, both the 
fundamental theories and the application for reliability, 
risk and uncertainty analysis in engineering design when 
there is not sufficient input data available, due to specific 
uncertainty. From the comparison and relationship of the 
two measures, we conclude that possibility theory and 
evidence theory play a significant role in reliability 
analysis as well as design optimization considering 
various uncertainties, especially epistemic uncertainty 
from incomplete input data, due to their given 
representations and theoretic constructions. But there also 
leaves a relative space needing further exploration, for 
more general framework and performance characteristics 
in demand of new modified design criteria. Our holistic 
angle of view can provide a comprehensive understanding 
of existing approaches and future work. 
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