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ABSTRACT 

Mammogram is the best available radiographic method to detect breast cancer in the early stage. However 

detecting a microcalcification clusters in the early stage is a tough task for the radiologist. Herein we 

present a novel approach for classifying microcalcification in digital mammograms using Nonsubsampled 

Contourlet Transform (NSCT) and Support Vector Machine (SVM). The classification of microcalcification 

is achieved by extracting the microcalcification features from the Contourlet coefficients of the image and 

the outcomes are used as an input to the SVM for classification. The system classifies the mammogram 

images as normal or abnormal and the abnormal severity as benign or malignant. The evaluation of the 

system is carried on using Mammography Image Analysis Society (MIAS) database. The experimental 

result shows that the proposed method provides improved classification rate. 
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1. INTRODUCTION 

Breast cancer is presently one of the leading causes of 

death in the world. Mammography is the most common 

procedure to detect non-palpable cancers. A mammogram 

is an X-ray system to examine the breast (breast X-ray). 

Among the various radiographic indications related to the 

breast cancer microcalcification clusters play a vital role 

because they are present in 30-50% of all cancers 

identified mammographically. The diagnosis result of 

tissue is classified into three categories: Normal, benign 

and malignant. Normal represents mammogram without 

any cancerous cell, benign represents mammogram 

showing a tumor, but not produced by cancerous cells 

and malignant represents mammogram showing a tumor 

with cancerous cells. It is difficult to distinguish a benign 

microcalcification from malignant.  

Stylianos et al. (2010) proposed an algorithm for the 

classification of mammograms based on breast density 

estimation and detection of asymmetry. Support vector 

machines are employed for classification. Dheeba and 

Selvi (2011) proposed an algorithm for the classification 

of microcalcification in digital mammograms using 

Support Vector machine. To improve the classification 

rate Law’s texture energy measures are taken from the 

image Region of Interest (ROI). 

Tirtajaya and Santika (2010) presented the use of 

dual-tree complex wavelet transform as feature 

extraction technique and SVM as classifier. Wang et al. 

(2010) applied three approaches for classifying the 

microcalcification in the mammograms which includes 

feature selection using a neural classifier, a clustering 

criterion and a combined scheme. To evaluate the 

performance of these feature selection approaches, same 
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neural classifier is applied on the selected features and 

the classification results are then compared. De Melo et al. 

(2010), proposed to identify a set of features that allows 

for making the best automatic classification. Groups with 

different numbers of features are generated using the 

scalar feature selection. Fisher's discriminant ratio and 

the area under receiver operating curve are used as 

auxiliary distance measurements. For classification 

purposes, different architectures of feed forward neural 

networks are employed.  

Huddin et al. (2011), presented a new method to 

extract features to classify the microcalcification clusters 

using steerable pyramid decomposition. The method is 

motivated by the fact that microcalcification clusters can 

be of arbitrary sizes and orientations. Thus, it is important 

to extract the features in all possible orientations to 

capture most of the distinguishing information for 

classification. Ma et al. (2010), proposed a shape analysis 

method to aid radiologists in classifying regions of interest 

that are difficult to diagnosis. A region growing and a 

gradient vector flow methods are used to obtain an ordered 

set of contour points of each microcalcification. A three 

level wavelet transform frequency analysis provides a 

band pass approximation of the normalized distance 

signature. A novel metric derived from the normalized 

distance signature is proposed to quantify the roughness of 

a microcalcification.  

Eltoukhy et al. (2010) presented an approach for breast 

cancer diagnosis in digital mammogram using curvelet 

transform. After decomposing the mammogram images in 

curvelet basis, a special set of the biggest coefficients is 

extracted as feature vector. The Euclidean distance is then 

used to construct a supervised classifier. Ramos et al. 

(2012), evaluated the texture classification using features 

derived from co-occurrence matrices, wavelet and ridgelet 

transforms of mammographic images. A false positive 

reduction in computer-aided detection of masses is also 

proposed. The data set consisted of 120 cranio-caudal 

mammograms, half containing a mass, rated as abnormal 

images and half with no lesions. The following texture 

descriptors are then calculated to analyze the regions of 

interest texture patterns: Entropy, energy, sum average, sum 

variance and cluster tendency.  

Barjoei and Bahadorzadeh (2012), proposed the 

method of wavelet thresholding for denoising medical 

images. The idea is to transform the data into the wavelet 

basis, in which the large coefficients are mainly the signal 

and the smaller ones represent the noise. Fuzzy rough 

feature selection with Π Membership Function is proposed 

by Thangavel and Roselin (2012), for classifying the 

mammogram. The Selected features are used to classify 

the abnormalities with help of Ant Miner and Weka tools. 

The main goal of this study is to develop a better 

CAD technique for classification of microcalcification in 

digital mammograms using Contourlet transform and 

Support vector Machine. First, the features are extracted 

from the Contourlet coefficients which represent the unit of 

classification. Second, the mammogram images are 

classified by using Support Vector Machine (SVM). The 

purpose of the system is to determine the abnormal severity 

in the micro calcification as benign or malignant.  

2. MATERIALS AND METHODS 

The proposed system is built based on Contourlet 

transform of the image and by applying SVM for 

building the classifiers. The theoretical background of 

both the approaches are introduced. 

2.1. Non Sub Sampled Contourlet Transform 

The Contourlet transform is an extension of the 

wavelet transform which uses multi scale and directional 

filter banks. Here images are oriented at various 

directions in multiple scales, with flexible aspect ratios. 

The Contourlet transform effectively captures smooth 

contours images which are the dominant feature in 

natural images. The main difference between Contourlet 

and other multi scale directional systems is that the 

Contourlet transform allows for different and flexible 

number of directions at each scale, while achieving 

nearly critical sampling. In addition, the Contourlet 

transform uses iterated filter banks, which makes it 

computationally efficient. The Contourlet transform (Do 

and Vetterli, 2004) is a multidirectional and multi scale 

transform that is constructed by combining the Laplacian 

pyramid (Burt and Adelson, 1983; Do and Petteril, 2003) 

with the Directional Filter Bank (DFB) proposed in (Do 

and Petteril, 2003). Due to down samplers and up 

samplers present in both the Laplacian pyramid and the 

DFB, the Contourlet transform is not shift-invariant. 

Figure 1a displays an overview of the NSCT (Do 

and Vetterli, 2004). The structure consists in a bank of 

filters that splits the 2-D frequency plane in the sub 

bands illustrated in Fig. 1b. This transform can thus be 

divided into two shift-invariant parts: (1) a 

Nonsubsampled pyramid structure that ensures the multi 

scale property and (2) a Nonsubsampled DFB structure 

that gives directionality.  
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The multi scale property of the NSCT is obtained 
from a shift-invariant filtering structure that achieves sub 

band decomposition similar to that of the Laplacian 
pyramid. This is achieved by using two-channel non sub 
sampled 2-D filter banks. Figure 2a and b illustrates the 
Nonsubsampled pyramid (NSP) decomposition with J = 
3 stages. The ideal pass band support of the low-pass filter 
at the j

th
 stage is the region [-(∏ /2

j
), (∏ /2

j
)]

2
. Accordingly, 

the ideal support of the equivalent high-pass filter is the 
complement of the low-pass, i.e., the region [(-∏ /2

j-1
), (∏ 

/2
j-1

)]
2
 \ [(-∏ /2

j
), (∏ /2

j
)]

2
. The filters for subsequent stages 

are obtained by up sampling the filters of the first stage. 
This gives the multi scale property without the need for 
additional filter design. This structure is thus different from 

the separable Nonsubsampled Wavelet Transform (NSWT). 
In particular, one band pass image is produced at each stage 
resulting in J+1 redundancy. By contrast, the NSWT 
produces three directional images at each stage, resulting in 
3J+1 redundancy. 

Non sub sampled Directional Filter Bank (NSDFB): 
The directional filter bank of Bamberger and Smith 
(1992) and Arthur et al. (2006) is constructed by 
combining critically-sampled two-channel fan filter 
banks and re sampling operations. The result is a tree-
structured filter bank that splits the 2-D frequency plane 
into directional wedges. A shift-invariant directional 
expansion is obtained with a non sub sampled DFB 
(NSDFB). The NSDFB is constructed by eliminating the 
down samplers and up samplers in the DFB. 

This is done by switching off the down samplers/up 
samplers in each two-channel filter bank in the DFB tree 
structure and up sampling the filters accordingly. This 
results in a tree composed of two-channel NSFBs as 
shown in Fig. 3a and b illustrates the four channel 
decomposition. The synthesis filter bank is obtained 
similarly. The NSCT is flexible in that it allows any 
number of directions in each scale. In particular, it can 
satisfy the anisotropic scaling law. This property is 
ensured by doubling the number of directions in the 
NSDFB expansion at every other scale. The NSCT is 
constructed by combining the NSP and the NSDFB as 
shown in Fig. 1a. Eight sub bands have been produced 
and some of the Nonsubsampled Contourlet coefficients. 

2.2. Support Vector Machine 

Support Vector Machines (SVMs) are a set of related 

supervised learning methods that analyze data and 

recognize patterns, used for classification and regression 

analysis. The standard SVM is a non-probabilistic binary 

linear classifier, i.e., it predicts, for each given input, which 

of two possible classes the input is a member of. A 

classification task usually involves with training and testing 

data which consists of some data instances. Each instance in 

the training set contains one “target value” (class labels) and 

several “attributes” (features)  (Ireaneus et al., 2009). SVM 

has an extra advantage of automatic model selection in the 

sense that both the optimal number and locations of the 

basic functions is automatically obtained during training. 

The performance of SVM largely depends on the kernel 

(Dheeba and Selvi, 2011).  

SVM is essentially a linear learning machine. For the 

input training sample set defined in Equation 1: 
 

{ }n

i i(x ,y ),i 1....n, x R , y 1, 1= ∈ ∈ − +  (1) 

 
The classification hyperplane equation is let to be in 

Equation 2: 
 

( ).x b 0ω + =  (2) 

 

Thus the classification margin is 2/| ω|. To maximize 

the margin, that is to minimize |ω|, the optimal 

hyperplane problem is transformed to quadratic 

programming problem as follows in Equation  3: 
 

i
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After introduction of Lagrange multiplier, the dual 

problem is given in  Equation 4: 
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According to Kuhn-Tucker rules, the optimal solution 

must satisfy in Equation 5: 
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That is to say if the option solution is in Equation 6 

and 7: 
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Fig. 1. Nonsubsampled contourlet transform (a) Nonsubsampled filter bank structure that implements the NSCT (b) Idealized 

frequency partitioning 
 

    
(a)                                                                                                                     (b) 

 

Fig. 2. Nonsubsampled pyramid (a) Three-stage pyramid decomposition. (b) Sub bands on the 2-D frequency plane 
 

   
(a)                                                                                                            (b) 

 

Fig. 3. Four-channel Nonsubsampled directional filter bank constructed with two-channel fan filter banks. (a) Filtering structure (b) 

Corresponding frequency decomposition 
 

For every training sample point xi, there is a 

corresponding Lagrange multiplier and the sample points 

that are corresponding to ai = 0 do, so it is called support 

vectors. Hence the optimal hyperplane equation is given 

in Equation 8: 

 

i i i j

x, SV

y (x .x ) b 0
∈

α + =∑   (8) 

 

The hard classifier is in Equation 9 then: 

 

i i i j

x, SV

y sgn y (x .x ) b
∈

 
= α + 

 
∑  (9) 

For nonlinear situation, SVM constructs an optimal 
separating hyperplane in the high dimensional space by 
introducing kernel function K (x,y) = φ(x). φ(y), hence 
the nonlinear SVM is given in Equation 10:  

 

i i

1
min ( ) ( , )

2
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Φ ω = ω ω
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And its dual problem is given in Equation 11: 
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Thus the optimal hyperplane equation is determined 

by the solution to the optimal problem. 

2.3. Proposed System 

The proposed system mainly consists of three 

different stages which include the preprocessing stage, 

feature extraction stage and classification stage. All the 

stages are explained in detail in the following sub 

sections. 

2.4. Preprocessing System 

In the pre-processing stage, the undesired distortion is 

suppressed and enhancements of image features are 

carried out to improve the image data. The Preprocessing 

stage comprises of three sublevels as described in Fig. 4. 

2.5. ROI Selection 

The MIAS dataset, had very large images of size 

1024×1024. Almost 50% of the whole image comprised 

of the background with a lot of noise. To eliminate the 

background information and the noise, ROI image of 

size 800×800 is cropped from the input image. The 

original image is shown in Fig. 5a and the cropped 

image is shown in Fig. 5b. 

2.6. Global Gray Level Thresholding 

In this stage upper threshold (240) and lower 

threshold (120) were selected. The pixels between the 

pre-selected upper-threshold and lower-thresholding of 

the gray level histogram is retained and all others are set 

to zero. To apply this technique upper and lower 

thresholds are pre determined to make sure that the 

region of interest pixels values are between these 

thresholds. It returns the intensity values of specified 

image pixels. The threshold image is shown in Fig. 6a. 

2.7. Adaptive Histogram Equalization 

Adaptive histogram equalization is a technique used 

to improve contrast in images. It differs from ordinary 

histogram equalization in the respect that the adaptive 

method computes several histograms, each 

corresponding to a distinct section of the image and uses 

them to redistribute the lightness values of the image. 

Ordinary histogram equalization simply uses a single 

histogram for an entire image. Adaptive histogram 

equalization is applied to the threshold image and the 

resulting equalized image is shown in Fig. 6b. 

2.8. Feature Extraction 

Feature extraction is an essential pre-processing step 

for pattern recognition and machine learning problems. It 

is often decomposed into feature construction and feature 

selection. In our approach, Contourlet coefficients are 

used as features to classify the mammogram images over 

DWT due to the following notable properties of NSCT: 

• NSCT is talented of capturing the directional edges 
of the image at different scale better than DWT. 
Hence NSCT posses the property of directionality 
i.e., having basis functions at many directions but 
wavelet posses only three directions 

• NSCT is more efficient in representing smooth 
contours in different directions of an image than 
Wavelet transform 

• Improving the representation sparsity of images over 
the wavelet transform 

• The key feature of NSCT is possible to efficiently 
handle 2D singularities i.e., Edges, unlike wavelets 
which can deal with point singularities 

• Another important property is the anisotropy 
meaning that the basis function shows at various 
aspect ratios (depending on the scale) whereas 
wavelets are separable functions and thus their 
aspect ratio equals to 1 

The following section gives the overview of feature 

extraction of the digital mammogram. The Feature 

Extraction stage is shown in Fig. 7. 

 

2.9. Contourlet Coefficients Extraction 

The enhanced image is decomposed by using the 
NSCT at three different scales from 2, 3 and 4. For an R 
level NSCT, we have 2

R
 directional sub bands (W). The 

Contourlet coefficients of all the sub bands are used as 

feature vectors individually. These feature vectors are 
given to the SVM classifier as an input.  

2.10. Normalization 

Normalization is the process that changes the range 

of pixel intensities to a new range and is used to simplify 

the coefficient value. This is achieved by dividing each 

feature vector by its maximum value. The results of this 

operation is that all vectors values become less than or 

equal one. The normalization process is defined by the 

Equation 12: 

 
k

k

k

ijw
NORM

max(w )
=  (12) 
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where,  NORM
k
 is the normalized k

th
 directional   

sub band and k

ijw  is the  k
th

  directional sub         

band coefficient at location (i,j),1≤k≤2
R 

and        

2≤R≤4. 

 

 
 

Fig. 4. Preprocessing stage 

 

                 
           (a) (b) 

 

Fig. 5. (a) Input image (b) ROI image (800×800) 

 

                         
 (a) (b) 

 

Fig. 6. (a) Global thresholding image (b) Equalized image 
 

 
 

Fig. 7. Feature extraction stage 
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Fig. 8. Classification stage 

 

2.11. Energy Computation  

We compute the energy for each vector by squaring 

every element in the vector. The produced values are 

considered as features for the classification process. The 

energy computation is defined by the Equation 13: 

 
K k 2

ijENERGY (NORM )=  (13) 

 

where, KENERGY is the energy of the k
th

 directional sub 

band and k

ijNORM is the normalized k
th

 directional sub 

band coefficient at location (i,j), 1 ≤ k ≤ 2
R
 and 2 ≤ R ≤ 4. 

2.12. Feature Reduction   

The size of ROI image is 800×800 and it produces 
high number of coefficients. The Contourlet coefficients 
are stored in a two Dimensional (2D) array W

k
. To reduce 

the number of features by summing a predefined 
number of energy values together, the coefficients in 
2D array is converted into 1D Array X

k
.  In the 

proposed technique, summation of 100 and 1000 
energy values per feature is used. The Feature 
reduction process is defined by the Equation 14: 

 

K k

j

t i 1

j i

FEAT X
+ −

=

= ∑
 

(14) 

 

where, FEAT
k
 is the reduced feature set of the k

th
 

directional sub band,  k
th

 is the 1D array that contains the 

energy of the k
th

 directional sub band, k
th

 is the energy of 

k
th

 directional sub band at location (j), 1 ≤ k ≤ ≤ 2
R
, 2 ≤ 

R ≤ 4, T = 100 or 1000, i = i + T, 1 < I < MN, M and N 

are width and height of the , k
th

 directional sub band. 

2.13. Classification Stage 

The SVM classifier was built with two phases. In the 

first stage, the classifier is applied to classify 

mammograms into normal or abnormal categories. The 

mammogram is considered to be abnormal if it contains 

tumor (microcalcification). If abnormal the image enters 

the second stage where the abnormal mammogram is 

further classified into malignant or benign. The 

classification stage is shown in Fig. 8. 

3. RESULTS AND DISCUSSION 

To assess the performance of the proposed system, 

many computer simulations and experiments with 

mammogram images were performed. The system was 

implemented in MATLAB version 7.6. Figure 9 shows 

the screenshot of the proposed system. The recognition 

training and tests were run on a modern standard PC 

(1.66 GHz INTEL processor, 1 GB of RAM) running 

under Windows XP.   

MIAS database is used to evaluate the proposed 

system. In MIAS database, there are 322 mammograms 

of left and right breast from 161 patients are available. 

Among 322 mammogram images, 25 mammograms 

contain microcalcification clusters. Sample 

microcalcification clusters in MIAS database (mdb219) 

is shown in Figure 10a and its magnified view is shown 

in Figure 10b. All the microcalcification images and 100 

normal images are used in this study. The performance 

of the proposed approach for the classification of 

microcalcification is measured by classification accuracy. 

The classification accuracy is defined by Equation (15): 
 

number of correctly classified images
Classification Accuracy

total number of test images
=

 (15) 

 

 The numbers of training and testing sets are shown 

in Table 1. The simulations are performed by summing 

100 and 1000 Contourlet coefficients per feature and 

trained with the 2 stage SVM classifier. The results from 

the classifier are listed out in Table 2-5. 
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Fig. 9. MATLAB Screenshot of the proposed system 
 

 
 (a) (b) 

 

Fig. 10. (a) Microcalcification cluster (mdb219) (b) Magnified view of microcalcification (mdb219) 

 
Table 1. Number of training set and testing set 
Category No. of training set No. of testing set 

Normal 60 100 

Abnormal 12 13 

Micro calcification (Benign) 8 4 

Microcalcification(Malignant) 4 9 

 

Table 2. Classification rates of Normal and Abnormal image for 100 and 1000 features 
 Classification rate (100 features)  Classification rate (1000 features) 

 ------------------------------------------------------------- ------------------------------------------------------------------------ 

Scale Normal (%) Abnormal (%) Average (%) Normal (%) Abnormal (%) Average (%) 

2 90 92 91.0 99 96 98.5 

3 91 88 89.5 99 92 96.5 

4 91 92 91.5 96 80 88.0 



J.S. Leena Jasmine et al. / American Journal of Engineering and Applied Sciences 6 (1): 57-68, 2013 

 

65 Science Publications

 
AJEAS 

Table 3. Classification rates of Benign and Malignant for 100 and 1000 features 
 Microcalcification (100 features)  Microcalcification (1000 features) 

 ----------------------------------------------------------------- ------------------------------------------------------------------- 

Scale Benign (%) Malignant (%) Average (%) Benign (%) Malignant (%) Average (%) 

2 91.67 92.3 92.0 100.00 84.6 92.3 

3 91.67 100.0 95.8 100.00 84.6 92.3 

4 91.67 100.0 95.8 91.67 92.3 92.0 

 

Table 4. Different Scale Combination of Classification rate by 100 and 1000 features in Normal and Abnormal images 

 Classification rate  (100 features)  Classification  rate (1000 features) 

 --------------------------------------------------------------- ------------------------------------------------------------------- 

Scale Normal (%) Abnormal (%) Average (%) Normal (%) Abnormal (%) Average (%) 

2-3 94 88 92.0 99 92 95.5 

3-4 91 96 93.5 99 84 91.5 

2-4 94 96 95.0 98 84 91.0 

 

Table 5. Different Scale Combination of Classification rate by 100 and 1000 features in Benign and Malignant images 

 Microcalcification (100 features)  Microcalcification (1000 features) 

 ----------------------------------------------------------------- --------------------------------------------------------------------------- 

Scale Benign (%) Malignant (%) Average (%) Benign (%) Malignant (%) Average (%) 

2-3 91.67 100 95.83 100 84.6 82.30 

3-4 91.67 100 95.83 100 92.3 96.15 

2-4 91.67 100 95.83 100 92.3 96.15 

 

The proposed classification algorithm based on 
NSCT and SVM is tested on all microcalcification 
images of the MIAS database. Mousa et al. (2005) 
proposed system based on wavelet analysis and fuzzy-
neural, the maximum classification rate obtained was 
87.5%. Zyod and Abdel-Qader (2011) proposed a system 
using GLCM features with PSO-KNN feature selection 
method. The classification rate achieved was 88%.  
Lakshmi and Manoharan (2011) used a set of Jacobi 
moments with wavelet features, achieved 91.99% as the 
classification rate.  

Table 2 shows the successful rate of normal and 
abnormal classification at scale 2, 3 and 4 using 100 and 

1000 features. The maximum successful classification 
rate is 98.5% achieved using 1000 features at scale 2. At 
scale 2, the accuracy rate of normal and abnormal 
classification was 99 and 96% with one case 
misclassified. Table 3 shows the successful 
classification rate of benign and malignant cases at scale 

2, 3 and 4 using 100 and 1000 features. The maximum 
successful classification rate is 95.8% achieved using 
100 features at scale 3 and 4.  Among the combined scale 
features, the summation of 1000 features produces better 
results than 100 features for both cases. For normal and 
abnormal cases, the maximum classification rate obtained 

is 95.5% at scales 2-3 whereas for benign and malignant 
cases, it is 96.15% at scales 3-4 and 2-4.The graphical 
representation of our results is shown in Fig. 11-14.  

 It can be concluded that the maximum successful 
classification rate using wavelet (Mousa et al., 2005) was 
87.5% obtained by the features extracted at the 
decomposition level 2-3. For NSCT, the maximum 
successful classification accuracy rate obtained is 
96.15%. The experimental results prove that the efficacy 
of NSCT in mammogram analysis since the NSCT is 
able to capture the directional edges of the image at 
different scale better than DWT.  

 

 
 

Fig. 11. Overall performance evaluation for normal categories 

with 100 and 1000 features 
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Fig. 12. Overall performance evaluation for abnormal 

categories with 100 and 1000 features 

 

 
 
Fig. 13. Overall performance evaluation for benign categories 

with 100 and 1000 features 
 

 
 
Fig. 14. Overall performance evaluation for Malignant 

categories with 100 and 1000 features 

 The proposed method is focused on the 
classification of whole enhanced image as being either 
normal or abnormal (Benign or Malignant). 
Comparison of our methodology with other methods 
described in (Papadopoulos et al., 2005a; Yu and 
Huang, 2010a) is not straight forward because  their 
classification is focused on   each  cluster  as either   
normal or abnormal. In the proposed classification 
system, the maximum average classification rate of 96.15% 
is achieved for the combined scale features of 3-4 and 2-4 
with the summation of 1000 features. The proposed method 
has achieved very admirable results when compared with 
the results obtained from the other method presented in 
(Papadopoulos et al., 2005b) with a classification rate of 
83% for Artificial Neural Network classifier and 81% for 
SVM classifiers based on 33 statistical features. The method 
described in (Yu and Huang, 2010b) achieved a 
classification rate of 94% based on combined model-based 
and statistical textural features. 

4. CONCLUSION 

In this study we have presented an effective method 
for building a computer-aided diagnosing system for 
classification of abnormality in digital mammograms. 
We have developed and analyzed Contourlet transform 
for features extraction and support vector machine for 
classification process. The maximum accuracy rate of 
normal and abnormal classification is 98.5% at scale 2. 
The success rate of benign and malignant classification is 
96.15% at combined scale features at scales 3-4 and 2-4. 
From the experimental results, it is concluded that the 
summation of 1000 features produces better results than 
100 features. Our classification system produces very 
promising classification rate. The evaluation of the 
system is carried out on MIAS dataset. The future work 
is to extend the feature set for the detection of mass 
classification in digital mammograms. 
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