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Abstract: Problem statement: In this research, we addressed the problem ofnmiditig the earliness-
tardiness penalties and manufacturing costs afgiesmachine with a stochastic controllable praogss
and tooling costApproach: We developed a mathematical non-linear integegnaraming model and
its linearised version to find the optimal solutidfe introduced a new genome representation iresing
machine scheduling literature that evolved by aetieralgorithm to solve the problem. The genome
representation includes two genes per job, onesepts the job starting time and other corresptmds
the job processing time. The algorithms were coegbdrased on the solution quality, CPU time and
memory consumption in bytes on a set of randomheged test problemResults: The results showed
that developed algorithms could define the glolpineal solution of most scheduling problems witk n
20 jobs. For larger n, the developed genetic dlgorioutperforms the math models in terms of satutio
quality and less CPU seconds while consumes maderamory kilobytes of 3295 compared with 5058
and 1685 of linear and nonlinear models on theameConclusion: The GA’s average performance
achieves 6.013 related to the lower bound of magat program whereas nonlinear model achieves an
average of 1.034. The GA'’s performance increasandgasing n compared with other techniques. We
hope to expand the developed algorithms for diffecenfigurations as parallel and job shops.

Key words: Single machine scheduling, controllable processitimes, earliness-tardiness,
mathematical programming, mixed integer, Non-Linéateger Math Programming
(NLIP), Tightness Factor (TF), Genetic AlgorithmAJ¥;linearised model, CPU seconds

INTRODUCTION producing jobs according to the just-in-time prpiei
Moreover, these paradigms working on the optimal

In this article, we examine the single machineresource allocations in order to minimize the
scheduling problem with controllable processingeim manufacturing cost that can be reflected in an
In various real-life systems, the job processingeti increase in profit by cost reduction rather thae th
may be controlled by allocating extra resourcehsagc  conventional approach of increasing the profit by
money, manpower, energy, catalysts, spindle speegyice increase. Also, a significant value addedhi®
feed rate, overtime, subcontracting and so onnfiame  product price is the inventory holding cost reqgti
interesting applications of such scheduling prolslem from the excess production that could be eliminated
Trick (1994); Kaspi and Shabtay (2003); Wang andby considering the earliness and lateness penalties
Cheng (2005); Kayan and Akturk (2005) and Gurel and/arious research work has been done that combine
Akturk (2007a) for CNC turning operation in flexibl resource allocations and scheduling objectiveshas t
manufacturing systems. In relation to these systemsvork of Wassenhove and Baker (1982); Janiak
resource allocation and scheduling objectives shbal (1987); Daniels and Sarin (1989); Daniels (1990);
optimized simultaneously to achieve the most effici Panwalkar and Rajagoplan (1992); Chesyg al.
system performance. (19964a; 1996b) and Janiak and Kovalyov (1996).

The modern continuous improvement paradigms  Vickson (1980) initiated the research in the
such as lean manufacturing and 6-sigma focus on theontrollable processing for a single machine with a
creation of value through the relentless elimimatad  linear resource consumption function to minimize th
waste by the precise allocation of their resourmed total weighted flow time cost plus controllable job
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processing cost followed by the work done by Although there has been a significant body of
Wassenhove and Baker (1982); Janiak (1987) antesearch work on process planning decisions for a
Janiak and Kovalyov (1996). For a survey concerningurning operation with multi-objectives on parallel
this area before 1990 Nowicki and Zdrzalka (199@) a machine configuration with controllable processing
brief surveys given later by Chest al. (1998); time such as minimizing the sum of makespan aral tot
Hoogeveen (2005) and Shabtay and Steiner (2007processing cost as the work done by Alidaee and
Hoogeveen and Woeginger (2002) considered #&hmadian (1993); Cheng al. (1996a; 1996b ); Jansen
controllable processing single machine schedulinggnd Mastrolilli (2004) and Shabtay and Kaspi (2006)
problem to minimize the multi-criteria of the total there is a little research work done for the single
weighted job processing times plus the linearmachine scheduling case. Recently, Gurel and Akturk
compression cost function of the processing timess a (2007b) considered the minimization of the total
showed that the problem was NP-complete. manufacturing cost and total completion time
Kaspi and Shabtay (2004) considered the singl§imultaneously on identical parallel CNC turning
machine scheduling problem with controllable Machines. They developed an effective math

processing time for identical and non-identical jobformulation for the problem by minimizing the total
: manufacturing cost subject to a given makespanevalu
ilso, they proved some optimality attributes which

decreasing resource consumption function forfacilitate efficient heuristic algorithms to genera

minimizing makespan. Moreover, Shabtay _arld_ KaSpbpproximate non-dominated solutions.
(2004) considered the same problem to minimize the” " \ost of the scheduling literature focused on the
total weighted flow time. Janiaket al. (2005a) gptimization of scheduling objectives as makespan,
minimized the multi-criteria of the total weighted total weighted completion times, or solving the tiaul
completion and compression times for a controllablecriteria objective composed of these two scheduling
processing single machine. They showed that thebjectives plus the optimization of the linear ase
problem was equivalent to the half-productconsumption function. Also, they assumed a discrete
minimization problem. Chengt al. (2001) and Nggt compression cost function or linear processing.aln
al. (2005) considered single machine partitioned-jobglifferent manner this article focuses on the
group scheduling problems with controllable minimization 01_‘ er_;\rlmess and tardiness peljaltles a
processing times and the machine processed jobs §Fhe_dullng objective  plus _the manufacturlng_ cost
the same group simultaneously. Janétlal. (2005b) uncnon_expr_essed as a nonlinear convex functfatso
presented the polynomial time algorithms based o rocessing time as showed by Kayan and Akturk
. . . ) 2005). In this article the manufacturing cost éfiided
solving two variables linear programming problems

. i o in terms of tooling and operating costs.
by geometric techniques to minimize the total The purpose of this article is to study the

weighted resource consumption of sequencing afset @¢factiveness of Applying Genetic Algorithms (GAs)
jobs’ groups with independent setup times betweemninimize the total manufacturing cost and the eass-
groups of a single machine. The setups and praegssi tardiness penalties for manufacturing a set ofhs jof
times are compressible depending on the availgbilit controllable processing times on a single machTine
of two resources. main reason of selecting GAs is the non-linear neatd
The single machine scheduling problems withthe problem that makes it is difficult to find aptl
resource dependent release times have been exignsivsolutions by math programming algorithms when they
studied by Janiak (1985); Cheng and Janiak (1994)@re always trapped in local optimal solutions.
Janiak (1998); Janiak (1991) and Li (1994) toMoreover, GAs are capable of obtaining near tonogti

minimize a single objective as makespan subjedtve solutions of optimization problems consuming less

the total resource consumption or to minimize theCF>U time and memory bytes (Mansour and Dessouky,

S . 2010). Also, they have the advantage of their By
multi-criteria of the total resource consumptionstco of modeling complex constraints and objective

plus the makespan. The single machine scheduling,,qtions. The manufacturing costs include the cést
problem in which both release times and processingperating the machine plus the tooling costs. We

times could be controlled by the amount of thegeyelop a genome representation that can be coadide
resource consumed was recently addressed by Warg a new addition to the single machine scheduling
and Cheng (2005) to minimize the makespan plu$ totgoroblem with controllable processing and invesggst
resource consumption cost. reliability and applicability for solving large potems.

342



Am. J. Engg. & Applied i, 4 (3): 341-349, 2011

The remainder of this article is organized asformulation via developing a new genome
follows. In section 2, we give the problem defioiti  representation that evolved by a genetic algorithm.
and provide non-linear and linearised math formoihat
for the problem. The developed genetic algorithm isThe mixed integer non-linear math programming
developed in Section 3. Section 4 provides numkricamodel: The problem can be formulated as a mixed
results on a set of generated test problems comhparénteger Non-Linear Math Programming (NLIP) model,
with the commercial math programming solver. Fipall which considered an extension of the standard eing|
Section 5 provides the conclusions and future resea machine scheduling problem that use completion time

variables € and the binary variablesiyto model the

Problem definition: The single machine scheduling problem as the work done by Balas (1984); Queyranne
problem with controllable processing time can beand Wang (1991); Queyranne (1993); Queyranne and
formulated as follows. Lett = {1,2,3,..,n} be a set of Schulz (1994); Pinedo (2002) and Khowatt al.
independent and non-preemptitive jobs which have t¢2005), as follows:
be executed on a single machine and ready to be
propessed at th'e start of production period. Eabfhps MinimizeZBjTj +aE+gp+ mp @)
a single operation to be performed on the machimke a =)
has a uniform random processing time with an upper
(p”) and lower boundsg ). Also, each job has its due Subject to:

date (¢) and earliness-tardiness penaltie &d ). ¢ -p>onjoN A3)
The cost parameters of performing job j on the rmech '
were given in terms of machining cost per unit tifge
of job j and the tooling cost multiplier {nand
exponent (8. The problem consists on allocation of

Ci+p <G +M(1-y,) forjkONandk k (4)

jobs to time slots on the machine and rdleg O« TPiS G+ My forjkONandj k ®)
the processing time for each one to minintime A
sum of earliness-tardiness penalties plus thePi =P HiHN (6)
manufacturing costs.
We use Kayan and Akturk (2005) formula for the p, = p’ DOjON (7
manufacturing cost function of producing job j as a
function of p as shown in Eq. 1 bellow: C-T<d OjON (8)
] I |
fip) =c,p + My @) c+e=d DjON 9)
The first term is a linear increasing function@f  ~ 5 djoN (10)
representing the cost of operating the machinepfor '
unit times and the second term is a nonlinear dsang y, 0{0.3 for kO N andj k (11)

function of p representing the tooling cost. The
parameters mand ¢ representing the job tooling cost
multiplier and exponent of job j whereas the cdodi
m;>0 and <0 always hold and guarantee thg¥ is a
non-linear convex function. Moreover, the procegsin
time for job j is constrained by a lowep;() and upper

The nonlinear objective of the mathematical model
is to minimize the sum of earliness and tardiness
penalties, the manufacturing and tooling costs s
as indicated by Eq. 2. Equation set (3) ensurestiiea
completion time for each job is greater than oratdqo
(p;’) bounds. Kayan and Akturk (2005) for a detailedits processing time. The disjunctive constrainte ar
defined in constraints set (4) and (5) that deffrihe
) job j is preceded by job k or not. The big M isdako
pj are determined. equal to the sum of upper processing times fojoak
in this article. Equation 6 and 7 define the loyerand

description on how(p) is formed and howp; and

MATERIALSAND METHODS i )
upper boundsp! for each job. The calculations of the
We developed a mixed integer non-lineartardiness and earliness penalties are given bsfygat
programming model and its linearised version fax th Eq. 8 and 9 respectively. Variables domain is ietstl
scheduling problem. Also, we developed a genetidy Eq. 10 and 11.
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Gene 51 s: s 55 defines the start time and the amount of processing
required per job. The genes holds real alleles esgr
time values. For example, consider a 5 jobs problem
represented by 10 genes as shown in Fig. 1 where s
denotes the possible value for starting the
corresponding job. The first pair consists of 2
consecutive genes denoting the start and processing
solution of the nonlinear model always trapped in fimes for job 1. The first gene represents theirsgar

local optima point so it needs to be linearisedato a“me and includes a value ranges from O and max

equivalent math Linear Programming (LP) to find the(>,,p,max(d)) in steps of 0.01. The second

global optimal solution. The NLIP could be lineads represents the processing time required to finihJj

by redefining the term;go the summation shown in and so on. For example consider a 5 jobs problem as
Eq. 12 where is a binary variable define thg'p  shown in Fig. 1. Suppose that, the lowers for pssice
value, pis the precession of the data set that equals tgmes are {0.81,1.13,1.24,0.98,0.54} and the uppees
0.01 in this article and k equals to the difference(1.59 2.78,2.87,1.31,1.92} then the starting tirfmsall
between upper and lower processing time dividefkby jobs equals any digit ranges from 0 to 10.47 are th
Equation 12 represents all possible values of thejleles for each job processing time are any value
processing time of job j and Eq. 13 restricts tafue  anges fromp: for the job plus a value ranges from 0

to be a unique in terms of the binary variableTine . . . .
. . . . to the job corresponding processing difference of
term pcould be linearised by Eq. 14. Equation 15{0.78 1.65,1.63,0.33,1.38}.

defines the variable as a binary:

p1 P2 ps s8¢ ps ps

0.00 081 000 1.13 000 124 000 098 0.00 0.54

Possiblegene | Min

values Max | 1047 0.78 1047 1.65 1047 1.63 1047 033 1047 1.38

Fig. 1: The proposed genome representation

The mixed integer linear programming mode: The

The initialization scheme and genetic operators. The
initial population was randomly generated for start
times genes by generating a discrete uniformly
distributed random number between
[O,max(zj”zlpj,maxq)] for job j. For initializing
processing time genes, we construct a discreterieaipi
probability distribution for each job’s processitige by

o u LGN (14) dividing the range of processing time to 10 equiarivals.

u -l Let the probability of appearance of the first
interval numbers equals 1, the probability equadsfor
the second interval numbers and so on. The roulette
wheel selection method, two point crossover andpswa
The developed GA: GAs have been widely used in mutation operators were used to generate new
optimization literature to solve the non-polynontiate  offspring’s. The experimental section provides the
and complex problems as the satellite daily imagesettings that were used for these operators irattiise.
selection problem, jobshop scheduling, flexible
manufacturing systems operational problems and thepe genome score; Our genome representation does
optimization of single batch processors of chemicahot guarantee feasible genomes at the initialinagiod
plants. The GA begins by generating a number ofuring the evolution process at each GA's step. To
genomes equal to a predefined population size angenalize the infeasible genomes, we added a cowst te
performs a number of evolution processes as cressov to the objective score f. It consists of a genome
selection, replacement, mutation until satisfying afeasibility, fes and performance,,d measures. The

p=>ux(if +ixp) DON (12)

u=1

(13)

k

i=1
o7 =2 (p +ixp)
i=1

u {0} Disk (15)

predefined stopping criteria to define a near ttinopl
solution. We describe the genetic formulation foe t

genome feasibility part measures the conflict betwe
all jobs and the genome performance part meashees t

single machine scheduling problem with controllablegenome total cost. The genome score is calculaged a

processing times as follows.

The genome representation: The  genome
representation consists of n pairs of genes. Eath p
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Step 2: Calculate the genome total overBythat can C, and m factors take the values are generated from a
be defined as the sum of all possible overlapgliscrete uniform distribution from (0.1,4.5]. Theg e
between any two job pair's combinations factor is generated from a discrete uniform disitiiin
between 1 and n. The overlay, between jobs from (0.1,2.0]. The Tightness Factor (TF) has two
@i, j) can be defined as the difference betweerlevels of 0.2 and 0.6. The earliness and tardiness
the sum of pand p minus the actual difference penalties ¢ and ;) are generated from a continuous
d; asin Eq. 16: uniform distribution from (0, 100]. The values for

p;and p/are generated from discrete uniform
6ij=p|+q_q (16)

distribution from (0.4, 3.5] and (0.1, 1.7] respeety.

L U H L U H H
The actual difference,etween two jobs (i, j) We swapp; and p;’ values ifpj - p to maintain the

could be determined by Eq. 17. The symbgls Fsolution feasibility. The dvalues are generated form a
and S indicate the finish and start times for discrete uniform distribution  from  (Yx(1-TF-
jobs i and j respectively: 0.5xRDD), Yx(1-TF+0.5xRDD)],
whereY:O.Sx(zj”zlp}J+zj":1q) and RDD (range of

due dates) equals 0.2 and 0.6. There are 50 irestdorc
The value off, is the sum of alb; calculated each combinations resulting in 3000 problem instanc

d; = max(F,F) min(S,S a7)

using Eq. 16
Step 3: Calculate the genome feasibility measyegd ~ Computations  results:  Table 1 shows the
in Eq. 18: performance of the developed math programming
models and the developed GA in terms of the
fles=(M=3)/M (18)  solution quality, CPU seconds and memory

If £ | | 1 4 otherwi kilobytes consumed by each algorithm.
fes Value equals to 1, go to step 4 otherwise  cq) mng 1.4 depict problem number, n, TF and

go to step 5. |
Step 4: Calculate the genome’s score f;g2f0 and RDD values for each. prob_Iem. COIl.JmnS 58 ShOWS the
end performance of the linearised version of the madel

terms of values of best objective,§ objective bound,
. . Obouns CT and Mem where an ' sign indicates that the
equals to the sum of tardiness, earliness, . . : .
. . . _bptimal solution was identified. Also, columns 91

operation and tooling costs of the feasible,.

listed the values of Qs Ghoung CT and Mem for the
genome then calculate the genome performancr(_elon_"ne{jlr model. The £, and Qo are expressed as
measure as shown in Eq. 19: ' ! ound P

rational measures with respect to thg, & of the

Step 5: Calculate the genome’s total cost, TC, ihat

foer =(M =TC)/M (19) linearised model.
Step 6: Calculate the genome score using Eq. 20 ar
end: 10000 ——
f=(festfo) /2 (200  Z s
£ 000800 sostee
The GA heuristic was coded using the MATLAB £ 50 O derer
software and tested on a Fujitsu Siemens Laptdp| In f 096000 sosase
(R) Pentium (R) M with 240 MB RAM, 40 GB HDD, 2 o oD ssmene -
1.6 GHz speed computer system running Windows XF 2 seseee VO i
The results section will investigate the appliciapibf 2 2000 DODO°°°°°° I o
using the developed algorithms for solving the ~ et “Norp
scheduling problem under considerations. 0 Lot *GA
0 5 10 15 20 25 30 35 40 45 50 35 60
RESULTSAND DISCUSSION Problem number

Data set: For generating the test problems, five levelsFig. 2: Scaterplot of problem number and memory
for n are considered ranges from 10-50 in step%0of consumption
345



Am. J. Engg. & Applied i, 4 (3): 341-349, 2011

Table 1: The experimental results

Problem characteristics LINGO LP solution NLIRwion GA solution
n TF RDD  Qes Obound CcT Mem Qest Obound CcT Mem Qest Oavg Ouorst CcT Mem (Ps,Ng)
10 0.2 0.2 1.000* 499.648* 52 665 1.054 1.054 4672 62 1.000* 1.105 1.402 24 1136 200,1000
10 0.2 0.6 1.000* 188.141* 45 609 1.001 1.001 170 2 6 1.000* 1.110 1.414 23 1129 200,1000
10 0.4 0.2 1.000* 194.434* 61 652 1.117 1.117 864 2 6 1.000* 1.121 1.341 25 1128 200,1000
10 0.4 0.6 1.000* 141.743* 57 654 1.038 1.038 253 2 6 1.000* 1.131 1.313 26 1138 200,1000
10 0.6 0.2 1.000* 327.038* 312 499 1.028 1.028 7895 62 1.000* 1.141 1.418 25 1201 200,1000
10 0.6 0.6 1.000* 275.250* 55 642 1.005 1.005 731 2 6 1.000* 1.143 1.423 26 1207 200,1000
20 0.2 0.2 - 283.063 - 1642 4.970 1.065 - 191 32§. 2.435 5.021 521 1272 250,10000
20 0.2 0.6 1.000* 367.293* 2298 1631 1.025 0.669 - 191 1.000* 2.671 5.532 536 1297 250,10000
20 04 0.2 2.429 710.984 - 1641 - 0.530 - 191 423. 3812 5.731 552 1294 250,10000
20 0.4 0.6 1.000* 276.516* 843 1696 1.112 1.112 4053 189 1.000* 2.641 5.372 512 1275 250,10000
20 0.6 0.2 - 372.834 - 1695 5.710 0.711 - 187 643. 3.210 5.281 532 1293 250,10000
20 0.6 0.6 1.756 293.529 - 1654 2.523 0.570 - 180 1.438 2.491 5.382 580 1282 250,10000
30 0.2 0.2 - 561.972 - 2585 3.195 0.719 - 408 433. 3.001 5.985 2219 1444 300,20000
30 0.2 0.6 5.005 415.231 2596 5.493 0.870 - 408 .6512 2.998 5.875 2341 1453 300,20000
30 04 0.2 22.023  370.823 - 2566 - 0.954 - 408 .672 2.987 5.829 2254 1483 300,20000
30 04 0.6 1.000*  393.328* 15645 2545 - 0.472 - 064  1.000* 3.012 5.972 2301 1449 300,20000
30 0.6 0.2 - 477.303 - 2539 - 0.695 - 401 2.715 3.042 5.871 2306 1473 300,20000
30 0.6 0.6 1.519 514.003 - 2589 - 0.629 - 400 072. 2.985 5.957 2287 1494 300,20000
40 0.2 0.2 - 546.873 - 3791 - 0.662 - 801 2.987 4.098 8.091 5167 1580 300,30000
40 0.2 0.6 - 266.715 - 3738 - 1.196 - 801 3.009 4.872 7.983 5209 1584 300,30000
40 04 0.2 - 312.746 - 3755 - 1.573 - 811 3.098 4.912 8.786 5198 1598 300,30000
40 04 0.6 - 285.688 - 3750 13.188  0.960 - 801 .87@ 4.761 8.887 5108 1606 300,30000
40 0.6 0.2 - 469.948 - 3705 - 0.841 - 801 2.998 4.981 7.998 5210 1598 300,30000
40 0.6 0.6 - 456.322 - 3791 - 0.610 - 801 2.985 3.998 8.956 5187 1596 300,30000
50 0.2 0.2 - 387.342 - 4362 - 0.917 - 1230 3.98 5.874 8.112 10690 1604 300,40000
50 0.2 0.6 7.880 418.261 - 4302 - 1.003 - 1230 .07@ 5.762 8.098 10761 1687 300,40000
50 04 0.2 - 264.167 - 4307 - 1.130 - 1230 3.98 4.564 7.982 10782 1685 300,40000
50 04 0.6 102.192 267.856 - 4301 - 1.305 - 1233 4.908 6.276 8.002 10921 1669 300,40000
50 0.6 0.2 - 463.310 - 4300 - 0.789 - 1232 3.98 6.256 8.652 10342 1663 300,40000
50 0.6 0.6 - 358.095 - 4298 - 1.019 - 1230 8.00 5.983 8.654 10981 1695 300,40000
60 0.2 0.2 - 208.849 - 5258 - 0.770 - 1758 9.61 6.882 8.349 22903 3296 300,60000
60 0.2 0.6 - 373.296 - 5281 - 1.274 - 1759 0.81 7.038 8.373 22741 3273 300,60000
60 0.4 0.2 - 734.016 - 5224 - 0.868 - 1758 3.35 6.725 8.216 22961 3252 300,60000
60 0.4 0.6 - 224.102 - 5245 - 1.196 - 1758 8.33 5.910 8.286 22987 3271 300,60000
60 0.6 0.2 - 720.396 - 5239 - 0.454 - 1758 3.00 6.613 7.619 22978 3259 300,60000
60 0.6 0.6 - 250.182 - 5229 - 1.479 - 1758 4.71 6.135 8.326 22988 3268 300,60000
70 0.2 0.2 - 433.696 - 6583 - 1.319 - 2378 B3.38 7.690 9.724 40744 4282 300/80000
70 0.2 0.6 - 408.991 - 6580 - 1.082 - 2378 §.60 8.450 9.753 41833 4278 300/80000
70 0.4 0.2 - 380.833 - 6573 - 0.736 - 2378 8.07 7.861 9.570 40987 4239 300/80000
70 0.4 0.6 - 284.415 - 6579 - 1.408 - 2369 8.05 6.755 9.651 42810 4229 300/80000
70 0.6 0.2 - 535.399 - 6569 - 0.741 - 2360 8.83 7.625 8.876 40834 4264 300/80000
70 0.6 0.6 - 266.939 - 6559 - 1.367 - 2357 5.49 7.387 9.698 41083 4229 300/80000
80 0.2 0.2 - 552.957 - 7323 - 1.075 - 2749 8.19 8.121 10.296 58957 5192 350/90000
80 0.2 0.6 - 298.201 - 7336 - 1.276 - 2748 8.48 7.740  10.146 59173 5161 350/90000
80 0.4 0.2 - 449.499 - 7339 - 1.233 - 2748 9.87 8.352 10.086 59094 5181 350/90000
80 0.4 0.6 - 218.366 - 7384 - 1.381 - 2747 9.55 7.488 10.170 59018 5131 350/90000
80 0.6 0.2 - 712.547 - 7306 - 1.105 - 2748 8.32 8.103 9.471 58947 5133 350/90000
80 0.6 0.6 - 313.981 - 7342 - 1.388 - 2749 6.89 7.683 10.480 59820 5140 350/90000
90 0.2 0.2 - 363.982 - 8839 - 1.021 - 3439 3.02 9.701 11.809 87155 6039 400/90000
90 0.2 0.6 - 281.718 - 8859 - 1.077 - 3439 9.68 9.317 11.553 87349 6029 400/90000
90 04 0.2 - 645.658 - 8855 - 1.219 - 3439 9.37 8.584  10.110 87201 6020 400/90000
90 0.4 0.6 - 378.623 - 8851 - 1.355 - 3439 8.24 9.687 11.723 87903 6019 400/90000
90 0.6 0.2 - 445.356 - 8849 - 1.597 - 3439 8.29 9.015 11.780 88003 6017 400/90000
90 0.6 0.6 - 670.440 - 8819 - 1.131 - 3439 7.07 9.214 11.106 87635 6018 400/90000
100 0.2 0.2 - 530.933 - 9664 - 1.458 - 3846 09.4 11.442 13.646 99543 7064 500/90000
100 0.2 0.6 - 539.364 - 9659 - 1.148 - 3846 530. 11.863 13.088 100651 7076 500/90000
100 0.4 0.2 - 388.135 - 9660 - 0.984 - 3846 0368. 11.928 13.695 100876 7077 500/90000
100 0.4 0.6 - 184.792 - 9651 - 1.317 - 3846  58.8 10.706  13.221 100899 7080 500/90000
100 0.6 0.2 - 662.755 - 9650 - 1.289 - 3846 585 11.617 13.898 101935 7076 500/90000
100 0.6 0.6 - 787.968 - 9645 - 1.034 - 3846  29.4 10.774 12556 101893 7079 500/90000

Mean - - - 5058 - 1.034 - 1685 4474 6.013  8.1933 33076 3295 -

Min. -- -- - 499 -- 0.454 - 62 1.000 @5 1.313 23 1128 -

Max - - - 9664 -- 1.597 - 3846 10.53111.928 13.899 101935 7080 -

The minimum, mean and maximum GA'’s performancedound by the algorithm with regard to the lower bdu

as listed as Qs Oavg Oworst in columns 13, 14 and 15 found by the math linear programming model using

respectively. Columns 16 and 17 show the averageINGO software where a stopping criteria of 36,000

computational time and memory consumption for theseconds was adopted. Each design of Table 1 repsese

developed GA. Column 18 lists the Population sR€) ( a total of 50 problems, each one solved by the non-

and number of generation’s combinations (Ng) fahea linear, linear and the developed GA.

problem.The performance of various algorithms are  The genetic algorithm parameters such as

measured by the ratio of the solution/lower boundPopulation size, number of generations, crossover
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and mutation probabilities affect the algorithm any candidate best solution but they could define a
efficiency. Population sizes and number oflower bound for each problem while the developed GA
generations varied for each test problem as listed could define feasible and good solutions comparigd w
Table 1. The population size was set to 200, 250the lower bounds found by the linear model.
300, 300, 300, 300, 300, 350, 400 and 500 for Based on experimentations, we can observe that
problems with n of 10, 20, 30, 40, 50, 60, 70, 80, the GA formulation for the problem under
and 100 respectively. Also, the number of genemnatio consideration can be solved in less CPU seconHstrrat
was determined based on experimentations for eadfan the math formulations of the problem while it
problem set separately as shown in Table 1 colugan 1 consumes moderate memory kilobytes.

Extensive experimental work was done on a
hypothetical problem with 40 jobs to find the best CONCLUSION
values for the crossover and mutation operatorsmFr
this test case, a 0.95 crossover and 0.05 mutation In this research, we have proposed a math NLIP
probabilities were adopted for all test problemghis ~ model for solving the single machine scheduling
article. For each test problem, the GA was run 10@Problem with controllable processing time for
times, each time with a different initial randomede minimizing the total earli_ness and tardiness p&slt
resulting in 300,000 runs for all models. and the total manufa'ctunr_]g cost. The qleveloped- non

In general, the linearised version of the nonlineal'm."jlr model was linearised tp obtain the global
model could find the global optimal solution of ma® optimum solution for the_ scheduling p“’b'?m- Ales; .
and 20 jobs designs. Also, the developed GA coulc?leveIOped a GA for solving the prqblem via c_ieveﬂlgpl .
. . - a new genome scheme evolved in a genetic evolution
find the global optimal solution for these problems

. . . ... _process. The new genome representation could be
consuming lower computational time. Also, it is

considered as a new addition to single machine

observed that the NILP model consumes less rnemorgcheduling literature. The developed GA could defin

rather than LP model and GA as shown in Fig. 2. Thghe same solutions as the LP model for small size
memory consumed by the non-linear model is SQyroplems where the number of jobs reach to 10 & a
lower that of the linearised model due to the 'argeoutperforms the developed math programming
number of binary variables of the linearised mOde'aIgorithms for larger problems in addition to it
rather than the non-linear one. Also, the GA conssim consumes small CPU seconds and memory kilobytes.
larger memory than LP model for the first 6 probtem The natural development in the future of this work
of 10 jobs set and consumes moderate memoris to find a trade-off between the four criteriadaio
kilobytes for all problems. further improve the solution quality and speed fué t

We first evaluate the developed algorithms fordeveloped GA. Also, this research can be expanadled t
small size problems (n = 10), which can be solvedlifferent configurations as parallel machines, ghiops
optimally by the math LP algorithm using the softeva and flexible job shops.
package LINGO. Table 1 show that the LP on the
average spent 97 seconds to find the optimal solsti REFERENCES
while the GA spent less than 25 seconds to findrait . )
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