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Abstract: Problem statement: This study introduced a variable step-size Least Mean-Square (LMS) 
algorithm in which the step-size is dependent on the Euclidian vector norm of the system output error. 
The error vector includes the last L values of the error, where L is a parameter to be chosen properly 
together with other parameters in the proposed algorithm to achieve a trade-off between speed of 
convergence and misadjustment. Approach: The performance of the algorithm was analyzed, 
simulated and compared to the Normalized LMS (NLMS) algorithm in several input environments. 
Results: Computer simulation results demonstrated substantial improvements in the speed of 
convergence of the proposed algorithms over other algorithms in stationary environments for the same 
small level of misadjustment. In addition, the proposed algorithm shows superior tracking capability 
when the system is subjected to an abrupt disturbance. Conclusion: For nonstationary environments, 
the algorithm performs as well NLMS and other variable step-size algorithms.  
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INTRODUCTION 

 
 The Least Mean-Square (LMS) algorithm is a 
stochastic gradient algorithm in that it iterates each tap 
weight of the transversal filter in the direction of the 
negative instantaneous gradient of the squared error 
signal with respect to the tap weight in question. The 
simplicity of the LMS algorithm coupled with its 
desired properties has made it and its variants an 
important part of the adaptive techniques. The LMS 
recursion can be written as: 
 
w(n 1) w(n) e(n) x(n)+ = + µ  (1) 

 
Where: 
n = The iteration number 
w = The vector of adaptive filter weights 
x = The adaptive filter input vector 
µ = A positive scalar called the step-size 
 
 Because of the successful use of the LMS algorithm 
in modeling unknown systems (Bershad et al., 2008; 
Papoulis and Stathaki, 2004), in CDMA systems 
(Seo et al., 2010; Aparin et al., 2006), in image 
processing (Oktem et al., 2001; Costa and Bermudez, 
2007), in adaptive noise canceling (Gorriz et al., 2009; 
Greenberg, 1998; Ramadan, 2008), in channel 
equalization (Martinez-Ramon et al., 2004; Ikuma et al., 
2008) and in many other areas (Yu and Ko, 2003; 

Haibin et al., 2008), improvements of the algorithm are 
constantly being sought. 
 Many variable step-size LMS-based algorithms 
have been proposed in the literature (Sayed, 2003; 
Douglas and Meng, 1994; Harrison et al., 1986; 
Aboulnasr and Mayyas, 1997; Kwong and Johnston, 
1992; Kim et al., 1995) with the aim of altering the 
step-size of the update equation to improve the 
fundamental trade-off between speed of convergence 
and minimum Mean-Square Error (MSE). Of particular 
importance are those algorithms in which the step-size 
varies based on data or error normalization. The 
Normalized Least Mean-Square (NLMS) algorithm 
uses a normalized step-size with respect to the filter 
input signal. The NLMS algorithm provides a faster 
rate of convergence than the typical LMS (Haykin, 
2001). A modified version of the NLMS (MNLMS) 
algorithm is proposed in (Douglas and Meng, 1994). In 
that algorithm, performance improvements over LMS 
and NLMS algorithms were shown for a small number 
of filter taps, N and comparable achievements for 
large N. Other algorithms use different criteria to 
adjust the step-size for improving system 
performance. Harrison et al. (1986), the proposed 
variable step-size LMS (VSLMS) algorithm is adjusted 
based on the sign of e(n)x(n-i) in the coefficient update 
term of the LMS algorithm. If the sign of e(n)x(n-i) is 
changing frequently, then the step-size of that algorithm 
is decreased by some constant to achieve small MSE 
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since the filter coefficients in this case are close to their 
optimum values. On the other hand, if the sign is not 
changing rapidly, then the step-size is increased by 
some constant to achieve a higher rate of convergence 
since the solution in this case is not close to its 
optimum value.  
 A new time-varying step-size was suggested in 
(Aboulnasr and Mayyas, 1997) based on the estimate of 
the square of a time-averaged autocorrelation function 
between e(n) and e(n-1). Kwong and Johnston (1992), 
the step-size is adjusted based on the energy of the 
instantaneous error. The performance of this algorithm 
degrades in the presence of measurement noise in a 
system modeling application (Aboulnasr and Mayyas, 
1997). The step-size in (Kim et al., 1995) is assumed to 
vary according to the estimated value of the normalized 
absolute error. The normalization was made with 
respect to the desired signal. Most of these algorithms 
do not perform very well if an abrupt change occurs to 
the system impulse response.  
 This study introduces an LMS-type algorithm 
where the step-size varies according to error vector 
normalization. The proposed algorithm is analyzed and 
simulated in both system identification and adaptive 
noise cancellation for stationary and nonstationary 
environments. A system identification block diagram 
set up is shown in Fig. 1. The aim is to estimate the 
impulse response h, of the unknown system. The 
adaptive filter adjusts the weights w using one of the 
LMS-like algorithms, to produce an output, y(n), that is 
as close as possible to the output of the unknown 
system, d(n). When the MSE is minimized, the adaptive 
filter (w) represents the best model of the unknown 
system. Both the unknown system and the adaptive 
filter are driven by the same input x(n). The internal 
plant noise is represented as an additive noise v(n). 
 A typical Adaptive Noise Canceller (ANC), shown 
in Fig. 2 is composed of two inputs: primary input and 
reference input. The primary input d(n) consists of the 
original speech signal, S(n), corrupted by an additive 
noise v1(n). The input to the adaptive filter is the 
reference noise signal, v2(n), that is correlated with 
v1(n), but uncorrelated with S(n).  
 

 
 
Fig. 1: System identification 

 The noise source is represented by g(n) and the 
transmission paths from the noise source to the primary 
and reference inputs are represented by filters which 
have impulse responses h1 and h2, respectively. The 
filter weights w are adapted by means of an LMS-based 
algorithm to minimize the power in e(n). This 
minimization is achieved by processing v2(n) via the 
adaptive filter to provide an estimate of d(n) and then 
subtracting this estimate from d(n) to obtain e(n). Thus: 
 

( ) ( ) ( ) ( )1e n S n v n y n= + −  (2) 

 
Since: 
v2(n) = Uncorrelated with S(n) 
y(n) = An estimate of v1(n) 
 
 Therefore, the error e(n) is an estimate of the 
original signal S(n). 
 The performance of an adaptive algorithm can be 
measured in terms of a dimensionless quantity called 
misadjustment M, which is a normalized mean-square 
error defined as the ratio of the steady state Excess 
Mean-Square Error (EMSE) to the minimum mean-
square error: 
 

ss

min

EMSE
M

MSE
=  (3) 

 
 The EMSE at the nth iteration is given by: 
 

minEMSE (n) MSE (n) MSE= −  (4) 
 
Where:  
 

2MSE(n) E[| e(n) | ]=  (5) 
 
 The MSE in (4) is estimated by averaging |e(n)|2 
over I independent trials of the experiment. Thus, (4) 
can be estimated as: 
 

I 2

k 1

^ 1
MSE(n) (n)

I =
= ∑ e  (6) 

 

 
 
Fig. 2: Adaptive noise canceller 
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 From (4), we can write: 

 
 EMSEss = MSEss

 - MSEmin  (7) 

 
 When the coefficients of the unknown system and 
the filter match, the MSEmin is equal to the noise 
variance 2

vσ , for a zero-mean noise v(n).  

 
Proposed algorithm: Based on regularization 
Newton’s recursion (Sayed, 2003), we can write: 
 

( )
( ) ( ) ( ) ( )1

x x

w n 1

w n n n I R p R w n
−

+ =

   + µ ε + −   

 (8) 

 
Where: 
n = The iteration number 
w = An N×1 vector of adaptive filter weights 
ε(n) = An iteration-dependent regularization parameter 
µ(n) = An iteration-dependent step-size 
I = The N×N identity matrix 
 

( ) ( ) ( )p n E d n x n =    is the cross-correlation vector 

between the desired signal d(n) and the input signal 
( )x n  and ( ) ( ) ( )X

TR n E[x n x n ]=  is the autocorrelation 

matrix of x(n).  
 Writing (8) in the LMS form by replacing p and Rx 
by their instantaneous approximation d(n)x(n) and 
x(n)xT(n) respectively, with appropriate proposed 
weights, we obtain: 
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

L

1
2 T

w n 1 w n e n

e n I x n x n x n e n
−

+ = + µ

 × α + γ  

 (9) 

 
Where: 
µ = A positive constant step-size 
α and γ = Positive constants 
e(n) = The system output error defined by: 
 

( ) ( ) ( ) ( )Te n d n x n w n= −  (10) 

 

( ) ( )n 12 2

i 0
e n e n i

−

=
= −∑  (11) 

 
and: 
 

( ) ( )L 12 2

L
i 0

e n e n i
−

=
= −∑  (12) 

 Equation 11 is the squared norm of the error 
vector, e(n) estimated over its entire updated length n 
and (12) is the squared norm of the error vector, e(n) 
estimated over its last L values. 
 Expanding (9) and applying the matrix inversion 
formula: 
 

1

1 1 1 1 1 1

A + BCD =

A - A B C + DA B D A

−

− − − − − −

  

 
 

 (13) 

 
With:  
 

( ) ( ) ( )2 TA = α e n I, B = x n , C =γ, and D = x n  

 
 We obtain: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1
22 T 1

2T 1
21

21 T 1

e n I x n x n e n I

x n e n
e n I x n

x n e n x n

− −−

−−
−−

−− −

 α + γ = α −  

α
α

γ + α

 (14) 

 
 Multiplying both sides of (14) by x(n) from the 
right and rearranging the equation, we have: 
 

( ) ( ) ( ) ( )
( )

( ) ( )

12 T

2 2

e n I x n x n x n

x n

e n x n

−
 α + γ =
  

α + γ

 (15) 

 
 Substituting (15) in (9), we obtain a new proposed 
Robust Variable Step-Size (RVSS) algorithm: 
 

( )

( ) ( )
( ) ( )

( ) ( )
2

L

2 2

w n 1

e n
w n x n e n

e n (1 ) x n

+ =

µ
+

α + − α

 (16) 

 
where, γ is replaced by (1−α) ≥0 in (16) without loss of 
generality. It should be noted that α and µ in this 
equation are different than those in the preceding 
equations. However, since these are all constants, α and 
µ are reused in (16). 
 The fractional quantity in (16) may be viewed as a 
time-varying step-size, µ(n) of the proposed RVSS 
algorithm. Clearly, µ(n) is controlled by normalization 
of both error and input data vectors.  
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 The parameters α, L and µ are appropriately 
chosen to achieve the best trade-off between rate of 
convergence and low final mean-square error. The 
quantity ||eL(n)||2 is large at the beginning of adaptation 
and it decreases as n increases, while ||x(n)||2 fluctuates 
depending on the most N recent values of the input 
signal. On the other hand, ||e(n)||2 is an increasing 
function of n since e(n) is a vector of increasing length. 
To compute (11) and (12) with minimum computational 
complexity, the error value produced in the first 
iteration is squared and stored. The error value in the 
second iteration is squared and added to the previous 
stored value. Then, the result is stored in order to be 
used in the next iteration and so on.  
 A sudden change in the system response will 
slightly increase the denominator of µ(n), but will result 
in a significantly larger numerator. Thus, the step-size 
will increase before attempting to converge again. The 
step-size µ(n) should vary between two predetermined 
hard limits. The lower value guarantees the capability 
of the algorithm to respond to an abrupt change that 
could happen at a very large value of iteration number 
n, while the maximum value maintains stability of the 
algorithm.  
 

RESULTS AND DISCUSSION 
 
 A comparison of the RVSS with MNLMS 
(Douglas and Meng, 1994) and NLMS algorithms is 
demonstrated here for several cases using system 
identification and adaptive noise cancellation as shown 
in Fig. 1 and 2 respectively. Several cases of 
uncorrelated and correlated stationary and 
nonstationary input data environments are illustrated.  
 In system identification simulations it is assumed that 
the internal unknown system noise v(n) is white 
Gaussian with zero-mean and variance 2

vσ  equals to 

0.01. The impulse response of the unknown system is 
assumed to be h = [0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1], 
α = 0.5, L = 10 N in the RVSS algorithm and the length 
of the adaptive filter N = 10 (Walach and Widrow, 
1984). The optimum values of µ in the three algorithms 
are chosen to obtain the same exact value of 
misadjustment M. Simulation plots are obtained by 
ensemble averaging of 200 independent simulation 
runs.  
 In adaptive noise cancellation, the simulations are 
carried out using a male native speech saying “sound 
editing just gets easier and easier” sampled at a 
frequency of 11.025 kHz. The number of bits per 
sample is 8 and the total number of samples is 33000 or 
3 sec of real time. The simulation results are presented 

for noise environments in which the noise g(n) was 
assumed to be zero-mean white Gaussian with three 
different variances.  
  
Case 1: White Gaussian input: In this case, the 
adaptive filter and the unknown system are both excited 
by a zero-mean white Gaussian signal of unit variance. 
The optimum values of µ that produce M = 1.5% are 
µRVSS = 7.0×10−2, µNLMS = 3.0×10−2 and µMNLMS = 
4.1×10−3. The learning curves of these algorithms are 
shown in Fig. 3. While retaining the same level of 
misadjustment, the RVSS algorithm clearly provides 
the fastest speed of convergence among the other 
algorithms.  
 
Case 2: Abrupt change in the plant parameters: This 
is the same as the previous case but, with an abrupt 
change in the impulse response of the plant, h. In 
particular, it is assumed that all the elements of h are 
multiplied by (−1) at iteration number 1500. Figure 4 
shows the superior performance of the proposed 
algorithm in providing the fastest speed when tracking 
the statistical changes in the system. Figure 5 shows 
how the step-size of the RVSS algorithm immediately 
increases to a large value as a response to the abrupt 
change of the system parameters to provide the fastest 
speed of convergence to track changes in the system.  
 Performance improvement of the RVSS algorithm 
over other algorithms is confirmed in Fig. 6, which 
shows the plot of the ensemble average trajectory of 
one of the adaptive filter coefficients for each 
algorithm. The actual value of the corresponding 
unknown system coefficient to be identified is 0.5. 
 

 
 
Fig. 3: MSE learning curves of RVSS, MNLMS and 

NLMS algorithms for white input case (M = 1.5%) 



Am. J. Engg. & Applied Sci., 3 (4): 710-717, 2010 
 

714 

 
 
Fig. 4: MSE learning curves of RVSS, MNLMS and 

NLMS algorithms for an abrupt change in the 
plant parameters 

 

 
 
Fig. 5: Step-size variations of RVSS, MNLMS and 

NLMS algorithms for an abrupt change in the 
plant parameters 

 
Case 3: Correlated input: This simulation repeats the 
previous one with the exception that both the unknown 
system and the adaptive filter are now excited by a 
correlated signal generated by the first order difference 
equation: 
 

( ) ( ) ( )x n 0.9 x n 1 g n= − +  (17) 

 
where, g(n) is a zero-mean, unit variance white Gaussian 
noise process and is independent of the plant internal noise. 

 
 
Fig. 6: Ensemble averages of the 5th coefficient of the 

adaptive filter in RVSS, MNLMS and NLMS 
algorithms for the case with an abrupt change in 
the plant parameters 

 
In physical terms, the input signal in this case, x(n), 
may be viewed as originating from the noise signal 
g(n), passing through a one-pole low pass filter which 
has a transfer function equal to 1/(1-0.9z−1), where z−1 is 
the unit-delay operator. This choice of low pass filter 
coefficients results in a highly colored input signal with 
large eigenvalue spread (around 135.8) which makes 
convergence more difficult. The two noise signals, g(n) 
and v(n), are assumed to be independent of each other.  
 A misadjustment M = 5% is achieved with µRVSS = 
1.76×10−2, µNLMS = 2.8×10−2 and µMNLMS = 1.6×10−3. 
The fastest rate of convergence is attained by the RVSS 
algorithm as shown in Fig. 7. To produce the same 
misadjustment value obtained in the uncorrelated input 
case (i.e., M = 1.5%), a larger number of iterations are 
required in all algorithms to reach such level of steady-
state.  
 
Case 4: Nonstationary environment: The 
performance of the RVSS algorithm is compared with 
the NLMS algorithm in an adaptive noise canceller. 
The values of step-size were chosen in both algorithms 
to achieve a compromise between small Excess Mean-
Square Error (EMSE) and high initial rate of 
convergence for a wide range of noise variances.  
 The simulations are carried out using a male native 
speech saying “sound editing just gets easier and 
easier” sampled at a frequency of 11.025 kHz. The 
number of bits per sample is 8 and the total number of 
samples is 33000 or 3 sec of real time. In the RVSS 
algorithm, we used α = 0.7 and L = 20 N. The order of 
the adaptive filter was assumed to be N = 10. The noise 
g(n) was assumed to be zero-mean white Gaussian.  
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Fig. 7: MSE learning curves of RVSS, MNLMS and 

NLMS algorithms for correlated input case with 
M = 5% 

 

 
 
Fig. 8: From top to bottom: Original clean speech S(n), 

noise which corrupts speech v1(n), corrupted 
speech S(n)+v1(n), recovered speech e(n) using 
RVSS algorithm ( 2

g 0.01σ = ) 

 
 From top to bottom, Fig. 8 shows the original clean 
speech, corrupting noise with2g 0.01σ =  speech 

corrupted by noise and the recovered speech after noise 
cancellation using RVSS algorithm. Listening tests 
show that the recovered speech is of a high quality and 
is very close to the original speech. 

 
 
Fig. 9: Excess mean-square error of the RVSS and 

NLMS algorithms ( 2
g 0.01σ = ) 

 

 
 
Fig. 10: Excess (residual) error (S(n)−e(n)) of the 

RVSS and NLMS algorithms (2g 0.01σ = ) 

 
 Figure 9 compares the performance of the RVSS 
algorithm with that of the NLMS for the case when 

2
g 0.01σ = . Figure 9 shows plots of the EMSE in dB for 

that noise level of the two algorithms. While both 
algorithms have almost the same initial rate of 
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convergence, the average excess mean-square error in 
RVSS is less than that of the NLMS by 10.6 dB. The 
values of EMSE were measured in both algorithms over 
all samples starting from sample number 2000, where 
the transient response has approximately ended. Figure 10 
demonstrates the superiority of the proposed algorithm by 
plotting the excess (residual) error (e(n)−S(n)) of the two 
algorithms. This excess error is a measure of how much 
closer the noise v1(n) is to its estimate y(n). As Fig. 10 
shows, the excess error in RVSS is much less than that in 
the NLMS. The superiority of the RVSS algorithm was 
also confirmed by listening tests which produced a higher 
quality of the recovered speech with less signal distortion 
and reverberation than that when the NLMS algorithm 
was used.  
 

CONCLUSION 
 
 In this study, a variable step-size LMS-based 
algorithm is provided to enhance the trade-off between 
misadjustment and speed of convergence. The step-size 
of the proposed algorithm is dependent on mixed 
normalization of both data and error vectors. Simulation 
results using system identification setup demonstrated 
significant improvements of the proposed algorithm in 
providing fast speed of convergence with a very small 
value of misadjustment in stationary environments for 
white and colored Gaussian input noise. In addition, the 
algorithm shows superior performance in responding to 
an abrupt change in the unknown system parameters. 
For nonstationary environment the proposed algorithm, 
simulated using adaptive noise cancellation, provides 
less signal distortion and lower value of misadjustment 
compared to other algorithms with different time-
varying step-sizes. 
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