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Abstract: Problem statement: This study introduced a variable step-size LeasaMSquare (LMS)
algorithm in which the step-size is dependent @nBhclidian vector norm of the system output error.
The error vector includes the last L values oféh®r, where L is a parameter to be chosen properly
together with other parameters in the proposedridgo to achieve a trade-off between speed of
convergence and misadjustmemtpproach: The performance of the algorithm was analyzed,
simulated and compared to the Normalized LMS (NLM&jorithm in several input environments.
Results: Computer simulation results demonstrated subsianthprovements in the speed of
convergence of the proposed algorithms over otlgarithms in stationary environments for the same
small level of misadjustment. In addition, the mpeed algorithm shows superior tracking capability
when the system is subjected to an abrupt distab&onclusion: For nonstationary environments,
the algorithm performs as well NLMS and other Vialgastep-size algorithms.
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INTRODUCTION Haibin et al., 2008), improvements of the algorithm are
constantly being sought.

The Least Mean-Square (LMS) algorithm is a Many variable step-size LMS-based algorithms
stochastic gradient algorithm in that it iteratesletap have been proposed in the literature (Sayed, 2003;
weight of the transversal filter in the directiohthe  Douglas and Meng, 1994; Harrisoet al., 1986;
negative instantaneous gradient of the squaredr errédboulnasr and Mayyas, 1997; Kwong and Johnston,
signal with respect to the tap weight in questibhe  1992; Kim et al., 1995) with the aim of altering the
simplicity of the LMS algorithm coupled with its step-size of the update equation to improve the
desired properties has made it and its variants afundamental trade-off between speed of convergence
important part of the adaptive techniques. The LMSand minimum Mean-Square Error (MSE). Of particular

recursion can be written as: importance are those algorithms in which the step-s
varies based on data or error normalization. The

w(n+21)=w(n)+u e(n) x(n) (1) Normalized Least Mean-Square (NLMS) algorithm
uses a normalized step-size with respect to ther fil

Where: input signal. The NLMS algorithm provides a faster

n = The iteration number rate of convergence than the typical LMS (Haykin,

w = The vector of adaptive filter weights 2001). A modified version of the NLMS (MNLMS)

x = The adaptive filter input vector algorithm is proposed in (Douglas and Meng, 1994).

I = A positive scalar called the step-size that algorithm, performance improvements over LMS

and NLMS algorithms were shown for a small number

Because of the successful use of the LMS algorithmof filter taps, N and comparable achievements for
in modeling unknown systems (Bersheidal., 2008; large N. Other algorithms use different criteria to
Papoulis and Stathaki, 2004), in CDMA systems adjust the step-size for improving system
(Seo et al., 2010; Aparinet al., 2006), in image performance. Harrisoret al. (1986), the proposed
processing (Oktenet al., 2001; Costa and Bermudez, variable step-size LMS (VSLMS) algorithm is adjukte
2007), in adaptive noise canceling (Gorizl., 2009; based on the sign of e(n)x(n-i) in the coefficiaptiate
Greenberg, 1998; Ramadan, 2008), in channelerm of the LMS algorithm. If the sign of e(n)x(nis
equalization (Martinez-Ramcet al., 2004; Ikumeet al.,  changing frequently, then the step-size of thabrtlgm
2008) and in many other areas (Yu and Ko, 2003js decreased by some constant to achieve small MSE
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since the filter coefficients in this case are elts their The noise source is represented by g(n) and the
optimum values. On the other hand, if the signds n transmission paths from the noise source to thagwi
changing rapidly, then the step-size is increasgd band reference inputs are represented by filterschwhi
some constant to achieve a higher rate of convesgen have impulse responses hnd h, respectively. The
since the solution in this case is not close to itdilter weights w are adapted by means of an LMS:Has
optimum value. algorithm to minimize the power in e(n). This
A new time-varying step-size was suggested imminimization is achieved by processing(n) via the
(Aboulnasr and Mayyas, 1997) based on the estiofate adaptive filter to provide an estimate of d(n) ahdn
the square of a time-averaged autocorrelation fomct subtracting this estimate from d(n) to obtain efijus:
between e(n) and e(n-1). Kwong and Johnston (1992),
the step-size is adjusted based on the energy eof the( n=g 0+ v( -y (2)
instantaneous error. The performance of this algori
degrades in the presence of measurement noise inS?nce:
system modeling application (Aboulnasr and Mayyas
1997). The step-size in (Kimet al., 1995) is assumed to
vary according to the estimated value of the noizedl
absolute error. The normalization was made with
respect to the desired signal. Most of these dlyos

dho not perform vlery well if an abrupt change ocaors The performance of an adaptive algorithm can be
the system impulse response. measured in terms of a dimensionless quantity calle

This study introduces an LMS-type algorithm oo i istment M, which is a normalized mean-square
where the step-size varies according to error vecto

o . . error defined as the ratio of the steady state &xce
normalization. The proposed algorithm is analyzed a Mean-Square Error (EMSE) to the minimum mean-
simulated in both system identification and adaptiv q )
noise cancellation for stationary and nonstationar)fquare error:
environments. A system identification block diagram
set up is shown in Fig. 1. The aim is to estimée t ;- EMSE; ®)
impulse response h, of the unknown system. The MSE,,
adaptive filter adjusts the weights w using onethef

Vo(n) = Uncorrelated with S(n)
y(n) = An estimate of ¥n)

Therefore, the error e(n) is an estimate of the
original signal S(n).

LMS-like algorithms, to produce an output, y(n)ktls The EMSE at theth iteration is given by:
as close as possible to the output of the unknown
system, d(n). When the MSE is minimized, the adapti EMSE (n)= MSE (n)- MSE,, (4)

filter (w) represents the best model of the unknown

system. Both the unknown system and the adaptivé/here:

filter are driven by the same input x(n). The ingdr _ _

plant noise is represented as an additive noisge v(n MSE (n)= Efle(n)]. ()
A typical Adaptive Noise Canceller (ANC), shown

in Fig. 2 is composed of two inputs: primary ingund

reference input. The primary input d(n) consistghaf

original speech signaly(n), corrupted by an additive

noise \(n). The input to the adaptive filter is the » 1

reference noise signal,(m), that is correlated with MSE(n)==%|e(n)’ (6)

vy(n), but uncorrelated with S(n). b

S(n din e(n
v S b W
dn) N\
‘K h, y(n)
J'/ |
YT ( Zal

The MSE in (4) is estimated by averaging |é(n)|
over | independent trials of the experiment. Thi4s,
can be estimated as:

\

x(n) v(n)
® Zal - Ly h | w
W
g(n)
Fig. 1: System identification Fig. 2: Adaptive noise canceller
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From (4), we can write: Equation 11 is the squared norm of the error
vector, e(n) estimated over its entire updated tlemy
EMSE, = MSE,- MSE,;, @) and (12) is the squared norm of the error vectfn) e

estimated over its last L values.

E di 9 d I th t
When the coefficients of the unknown system andformui(;an Ing (9) and applying the matrix inversion

the filter match, the MSE, is equal to the noise
variancea?, for a zero-mean noise v(n).

[A+BCD] =
(13)

Proposed algorithm: Based on regularization A -A7B [C _1+ DA_lB}_lDA_l
Newton’s recursion (Sayed, 2003), we can write:

With:
w(n+1)=

_ 8 2

w(n)+p(n)[s(n)|+Rx]1[p—Rv(@] ® Aza"e(n)" I,B=x(n),C=y,andD=x(n
Where: We obtain:
n = The iteration number
w = An Nx1 vector of adaptive filter weights s
g(n) = An iteration-dependent regularization paramnet [G" || I+yx(n n)} —0('1" o f)"
K(n) = An iteration-dependent step-size (14)
| = The NxN identity matrix " 2 (n)a” || ||

a ||e || I x(n)

TR
p(n)=E[d ) (] is the cross-correlation vector

between the desired signal d(n) and the input signa Multiplying both sides of (14) by x(n) from the
x(n) and Ry (n)=E[x(n)x"(n)] is the autocorrelation right and rearranging the equation, we have:
matrix of x(n).

Writing (8) in the LMS form by replacing p and R
by their instantaneous approximation d(n)x(n) and[ || || I+yx(n (”)} {n) =
x(n)x'(n) respectively, with appropriate proposed x(n) (15)
weights, we obtain: - -

ale(n)]+v] x(n)]

w(n+g)= +qu i
a (9) Substituting (15) in (9), we obtain a new proposed
[ e || 1+yx(n (n)} ) €1 Robust Variable Step-Size (RVSS) algorithm:
Where: w(n+1)=
M = A positive constant step-size U" e n)||2 (16)
a andy = Positive constants w(n)+ 2 x(n)e(n)
e(n) = The system output error defined by: 0‘" e( “)" +(-a 1| X “)"
e(n)=dn-x(n w1 (10)  where,yis replaced by (40) =0 in (16) without loss of
generality. It should be noted that and p in this
" e(n) "z ;f o n Mz (11) equat!on are d|fferen_t than those in the preceding
i=0 equations. However, since these are all constarasd
| are reused in (16).
and: The fractional quantity in (16) may be viewed as a
time-varying step-size, u(n) of the proposed RVSS
L-1 . . .
" eL(n) "2 =y |e( n— MZ (12) algorithm. Clearly, K(n) is controlled by normalina
i=0 of both error and input data vectors.
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The parametersy, L and p are appropriately for noise environments in which the noise g(n) was
chosen to achieve the best trade-off between rate @ssumed to be zero-mean white Gaussian with three
convergence and low final mean-square error. Thdlifferent variances.
quantity ||e(n)|f is large at the beginning of adaptation
and it decreases as n increases, while |xfh)jfuates Case 1. White Gaussian input: In this case, the
depending on the most N recent values of the inpuadaptive filter and the unknown system are botlitestc
signal. On the other hand, [|lef)§ an increasing by a zero-mean white Gaussian signal of unit vagan
function of n since e(n) is a vector of increadieiggth.  The optimum values ofi that produce M = 1.5% are
To compute (11) and (12) with minimum computationalppyss = 7.0x102 pnws = 3.0x1072 and pynivs =
complexity, the error value produced in the first4.1x10 The learning curves of these algorithms are
iteration is squared and stored. The error valuéhé  shown in Fig. 3. While retaining the same level of
second iteration is squared and added to the previo misadjustment, the RVSS algorithm clearly provides
stored value. Then, the result is stored in ordebé the fastest speed of convergence among the other
used in the next iteration and so on. algorithms.

A sudden change in the system response will
slightly increase the denominator|gf), but will result  Case 2: Abrupt changein the plant parameters: This
in a significantly larger numerator. Thus, the sé&f®  is the same as the previous case but, with an abrup
will increase before attempting to converge agdiiee  change in the impulse response of the plant, h. In
step-sizeu(n) should vary between two predeterminedparticular, it is assumed that all the element$ afre
hard limits. The lower value guarantees the cajtabil multiplied by 1) at iteration number 1500. Figure 4
of the algorithm to respond to an abrupt change thashows the superior performance of the proposed
could happen at a very large value of iteration beim algorithm in providing the fastest speed when tiragk
n, while the maximum value maintains stability bét the statistical changes in the system. Figure Svsho

algorithm. how the step-size of the RVSS algorithm immediately
increases to a large value as a response to tlhuptabr

RESULTSAND DISCUSSION change of the system parameters to provide thedast

speed of convergence to track changes in the system
A comparison of the RVSS with MNLMS Performance improvement of the RVSS algorithm

(Douglas and Meng, 1994) and NLMS algorithms isover other algorithms is confirmed in Fig. 6 which
demonstrated here for several cases using systeRjoWs the plot of the ensemble average trajectéry o

identification and adaptive noise cancellation lasven € Of the adaptive filter —coefficients for each
in Fig. 1 and 2 respectively. Several cases oftlgorithm.  The actual value of the corresponding

uncorrelated and  correlated  stationary anddnknown system coefficient to be identified is 0.5.

nonstationary input data environments are illustiat .

In system identification simulations it is assunibdt ' ‘ 1 RvSS

the internal unknown system noise v(n) is white ; gmf\sﬂs

Gaussian with zero-mean and variancg equals to P

0.01. The impulse response of the unknown system is
assumed to be h =[0.1 0.2 0.3 0.4 0.5 0.4 0.3APp
o =0.5,L =10 N in the RVSS algorithm and the ldng
of the adaptive filter N = 10 (Walach and Widrow,
1984). The optimum values gfin the three algorithms
are chosen to obtain the same exact value of
misadjustment M. Simulation plots are obtained by
ensemble averaging of 200 independent simulation )
runs.

In adaptive noise cancellation, the simulatiores ar
carried out using a male native speech saying ‘Goun 25
editing just gets easier and easier” sampled at a
frequency of 11.025 kHz. The number of bits per
sample is 8 and the total number of samples is@800 Fig. 3: MSE learning curves of RVSS, MNLMS and
3 sec of real time. The simulation results are qmesd NLMS algorithms for white input case (M = 1.5%)
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Fig. 4: MSE learning curves of RVSS, MNLMS and
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Fig. 6: Ensemble averages of the 5th coefficierthef
adaptive filter in RVSS, MNLMS and NLMS
algorithms for the case with an abrupt change in

the plant parameters

In physical terms, the input signal in this casé)x
may be viewed as originating from the noise signal
g(n), passing through a one-pole low pass filteictvh
has a transfer function equal to 1/(1-0'9zwhere Z* is
the unit-delay operator. This choice of low pasffi
coefficients results in a highly colored input sagwith
large eigenvalue spread (around 135.8) which makes
convergence more difficult. The two noise signgls)
and v(n), are assumed to be independent of eaeh. oth

A misadjustment M = 5% is achieved wijthyss =
1.76x1072, pams = 2.8x1072 and pynivs = 1.6x10°2
The fastest rate of convergence is attained bRW8S
algorithm as shown in Fig. 7. To produce the same
misadjustment value obtained in the uncorrelat@ditin
case (i.e., M = 1.5%), a larger number of iteratione
required in all algorithms to reach such level tefasly-
state.

Nonstationary  environment:  The

NLMS algorithms for an abrupt change in the performance of the RVSS algorithm is compared with

plant parameters

Case 3: Correlated input: This simulation repeats the
previous one with the exception that both the umkmo

the NLMS algorithm in an adaptive noise canceller.
The values of step-size were chosen in both alyost

to achieve a compromise between small Excess Mean-
Square Error (EMSE) and high initial rate of

system and the adaptive filter are now excited by &onvergence for a wide range of noise variances.

correlated signal generated by the first orderedéffice
equation:

x(n)=0.9xn-3+ d 1)

where, g(n) is a zero-mean, unit variance whitesSian
noiseprocess and is independent of the planhaitaoise.

17

The simulations are carried out using a male pativ
speech saying “sound editing just gets easier and
easier” sampled at a frequency of 11.025 kHz. The
number of bits per sample is 8 and the total nunolber
samples is 33000 or 3 sec of real time. In the RVSS
algorithm, we usedi = 0.7 and L = 20 N. The order of
the adaptive filter was assumed to be N = 10. Tdisen
g(n) was assumed to be zero-mean white Gaussian.
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From top to bottom: Original clean spee¢h)S

noise which corrupts speech(w), corrupted
speech S(n)+yn), recovered speech e(n) using

RVSS algorithm 67 =0.01)

From top to bottom, Fig. 8 shows the original olea

speech, corrupting noise

wit = 0.01

speech

corrupted by noise and the recovered speech ajtse n

show that the recovered speech is of a high quality

is very close to the original speech.
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Figure 9 compares the performance of the RVSS
algorithm with that of the NLMS for the case when

o

h , ;
cancellation using RVSS algorithm. Listening tests ¢ =0.01. Figure 9 shows plots of the EMSE in dB for

that noise level of the two algorithms. While both

algorithms have almost the same

initial

rate of
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convergence, the average excess mean-square errorGosta, G.H. and J.C.M. Bermudez, 2007. Statistical
RVSS is less than that of the NLMS by 10.6 dB. The  analysis of the LMS algorithm applied to super-
values of EMSE were measured in both algorithms ove  resolution image reconstruction. IEEE Trans. Sign.

all samples starting from sample number 2000, where Process., 55: 2084-2095. DOI:

the transient response has approximately endedre=id) 10.1109/TSP.2007.892704

demonstrates the superiority of the proposed #tgorby  Douglas, S.C. and T.H.Y. Meng, 1994. Normalized
plotting the excess (residual) error (e@®n)) of the two data nonlinearities for LMS adaptation. IEEE
algorithms. This excess error is a measure of hawhm Trans. Sign. Process., 42: 1352-1365. DOI:

closer the noise{n) is to its estimate y(n). As Fig. 10 10.1109/78.286952
shows, the excess error in RVSS is much less tranit ~ Gorriz, J.M., J. Ramirez, S. Cruces-Alvarez, C.GntBnet
the NLMS. The superiority of the RVSS algorithm was ~ and E.W. Langet al., 2009. A novel LMS

also confirmed by listening tests which producddgher algorithm applied to adaptive noise cancellation.
guality of the recovered speech with less sigretbdion IEEE Sign. Process. Lett.,, 16: 34-37. DOI:
and reverberation than that when the NLMS algorithm  10.1109/LSP.2008.2008584
was used. Greenberg, J.E., 1998. Modified LMS algorithms for
speech processing with an adaptive noise canceller,
CONCLUSION IEEE Trans. Speech Audio Process., 6: 338-351.

DOI: 10.1109/89.701363
In this study, a variable step-size LMS-basedHaibin, H., P. Franti, H. Dongyan and S. Rahardja,

algorithm is provided to enhance the trade-off leamw 2008. Cascaded RLS-LMS prediction in MPEG-4
misadjustment and speed of convergence. The step-si  lossless audio coding. IEEE Trans. Audio, Speech,
of the proposed algorithm is dependent on mixed Lang. Process., 16: 554-562. DOL:
normalization of both data and error vectors. Satioh 10.1109/TASL.2007.911675

results using system identification setup demotestra Harrison, W.A,, J. Lim and E. Singer, 1986. A new
significant improvements of the proposed algoritimm application of adaptive noise cancellation. IEEE

providing fast speed of convergence with a verylsma  Trans. Acoust. Speech Sign. Process., 34: 21-27.
value of misadjustment in stationary environmeits f DOI: 10.1109/TASSP.1986.1164777

white and colored Gaussian input noise. In additbe ~ Haykin, S., 2001. Adaptive Filter Theoryth Edn.,
algorithm shows superior performance in responding Prentice-Hall, Upper Saddle River, NJ., ISBN: 10:
an abrupt change in the unknown system parameters. 0130901261, pp: 936.

For nonstationary environment the proposed algaorith Ikuma, T., A./A. Beex and J.R. Zeidler, 2008. Non-

simulated using adaptive noise cancellation, presid Wiener mean weight behavior of LMS transversal
less signal distortion and lower value of misadjuesit equalizers with sinusoidal interference. IEEE
compared to other algorithms with different time- ~ Trans. Sign. Process., 56: 4521-4525. DO
varying step-sizes. 10.1109/TSP.2008.925964
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