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Abstract: Problem statement: This study reviewed the needs of different constie models for
rubber like material undergone large elastic de&dgiom. The constitutive models are widely used in
Finite Element Analysis (FEA) packages for rubbemponents. Most of the starting point for
modeling of various kinds of elastomer is a stemergy function. In order to define the hyperetasti
material behavior, stress-strain response is reduio determine material parameters in the strain
energy potential and also proper selection of rutbdlastic material model is the first attention.
Conclusion: This review provided a sound basis decision tarerggs and manufactures to choose the
right model from several constitutive models basadstrain energy potential for incompressible and
isotropic materials.
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INTRODUCTION cycles. The residual strain are not accounted foenw
the mechanical properties of rubber are presemed i
Rubber material usually has long chain moleculeserms of a strain energy function (Dorfmann and
recognized as polymers. The term elastomer is th@&gden, 2004; Cheng and Chen, 2003). The Mullins
combination of elastic and polymer and is oftenduse effect is closely related to the fatigue of rubber
interchangeably with the rubber (Smith, 1993). Incomponents using in engineering applications andrit
recent years, rubber component as an engineerinige considered as a necessary step for evaluatitimeof
material has been used in many industries such dde of a rubber parts. There are many
automotive and in a wide range of applications ins phenomenological theories to define the Mullineeff
of engine mountings, tires, vibration isolators,dmal in literature (Horganet al., 2004). The viscous and
devices and structural bearings. Rubber is an idealastic components change with temperature anthstra
material for many applications because it can wdthd rate. These characteristics present complicatiortbe
very large strains over 500% with no permanentmodeling of elastomers compared with other tradilo
deformation or fracture (Mars, 2002). Besides @ast engineering materials (Whibleyet al., 2005).
recovery, elastomers have special physical praggerti Geometrical and different physical nonlinearities/é
(flexibility, extensibility, resiliency and duraly), to be taken into account in order to model rubber
which are unmatched by other types of materialanaterials and nowadays, the finite element methods
(Coran, 2006), however it still presents behavior i (FEM) is a powerful tool to analyze rubber
common with other material (Abrahaet al., 2005). components. Usually, these structures can not be
This notable characteristics change with diversedefined analytically because of material nonlingesi
variable including fatigue, light, heat, oxygen andand their complex geometry (Kaliskeal., 2001).
ozone, during passing of time (Nagdi, 1993). Elastomers are basically super-condensed gases
Elastomers present a very complicated mechanicdlecause most primary monomers are gases and after
behavior that exceed the linear elastic theory angbolymerization have long chain molecules which will
contain large deformations, plastic and viscoatastibe in an amorphous (rubber), glassy or crystalline
properties and stress softening (Chagebal., 2004; phase. During cross linking or vulcanization, rubbe
Naseret al., 2005). Stress softening is known as themolecules are chemically fastened together at wario
Mullins effect and happened during initial loading points to form a network. They make stationary
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positions to prevent slippage of chains. Figurddws N
the tensile stress-strain diagram for three physiedes Nominal
of a polymer. A glassy polymer is brittle. A crylfitee Stress, o
polymer pass sequence of changes consist of, elasti
deformation, vyield, plastic flow, necking, strain
hardening and strain fracture. Rubbers are unique i
being soft, very extensible and very elastic (¥aal.,
2005; Hertz, 1992; Yan and Strenskowski, 2006).

Rubber can be defined by a stored energy funetion
hyperelastic material. The coefficients in thesections
should be determined by uniaxial, biaxial and shesr
data. The essential problem is to determine thainstr F|g 1:Tensi|e Stress_strain diagrams for po'ymms

energy function for providing good fit with a nunnbef three physical states; x denotes rupture
sets of experiment data. The purpose of this redeto

introduce the popular models which are available in
numerical community and offered in the literature.

_ Glassy

Crystalline

Rubbery

Y

Extension
Ratio, A

Equation 1 can be represented as:

Elasticity: Rubber has long and flexible molecular yy = i C, (1, =3) 1, -3) {1, - 1) (3)
structures which are the ability to stretch to save e T ? :

times its original length. By a simple assumptidn o

linear stress-strain relationship, rubber can be By considering that rubber is incompressible, for
considered as a linearly elastic material at sstedins,  these materials E 1, thus Eq. 3 decreases to:

like all solids and can be understood in many commo

rubber design problems. However for analyzing rubbe - _ _
behavior in large deformation, the large elasticW =" C,(l,~3) {l,-3) 4)
deformation theory should be considered (Gent, 1992 i+

According to Rivlin’s phenomenological theory,
rubber is assumed isotropic in elastic behavioraerg ~ Hyperelastic models. A considerable amount of
nearly incompressible. The elastic properties of diterature has been published on modeling of rubber
rubber can be explained in terms of a strain energynaterial. The choice of the model depends to its
function based on the strain invariantslj and k. This  application, corresponding variables and its atégla
theory offers a mathematical framework to describedata to determine material parameters. The validlity
rubbery behavior based on continuum mechanics. Ipossible models should be studied and the simpdest
this approach, stress and strain analysis problems selected with high accuracy and low materials
be solved independent of the microscopic system Oparameters (Lemaitre, 2001).
molecular concepts and the elasticity theory cathie The modeling and design of hyperelastic materials
starting point of any kind of modeling effort adléovs s the selection of a proper strain energy functiin
(Boyce and Arruda, 2000; Achenbach and Duartegnq accurate determination of material constants fo

2003; Pucci and Saccomandi, 2002; Yeoh and Fleming,tion (Garcia Ruiz and Suarez Gonzalez, 2006).

1997; Changt al., 1991): There are various forms of strain energy potenfials
W=f(1,0,1,) y(1 modeling of incompressible and isotropic elastomer
(Ogden, 1972; Mars and Fatemi, 2004; Guo and Sluys,
2006; Selvadurai, 2006; Horgan and Saccomandi, ;1999
2003; Aminet al., 2002; Beatty, 2003; Meuniet al.,
2008; Muhr 2005; Sasse al., 2008). However, only
defined per unit volume some of them describe the complete behavior ofethes

I, l,and k= The three invariants of the green m.aterials, .especially, for different loading coratis
deformation tensor given in terms of the with experimental data (Markmann and Verron, 2005;

principle extension ratios;, A;andAs, by: 2006). o ) )
An efficient hyperelastic model can be explained

L =AZ+A24A 2 by four main qualities (Chagnabal., 2004):

— 2y 2 2y 2 2
o ZANS+ AT +A (2) « It should have the ability to exactly reproduce the
I, =A2A A7 whole ‘S’ shaped response of rubbers
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« The change of deformation modes must not be This model of strain energy function is usually
problematic, i.e., if the model operates suffidignt used in modeling the stress-strain behavior oédill
in uniaxial tension, it must also be exact in denp elastomers, with four to five terms (Fostial., 1999).
shear or in equibiaxial tension ] ]

«  The number of fitting material parameters shouldR€duced polynominal model: This model follows

be small, in order to decrease the number ofiMPle form of polynomial model by just omittingeth
experimental tests for their determination second invariant of the left Cauchy Green tensor

. The mathematical formulation should be simple(P€eters and Kussner, 1999), by doing this, U besom

display practicable for the numerical performance N o oag _
of the model U=3Co(1,-3) 250 -7 (6)
i=1 i=1 i

Five and six different models were compared for .
describing of the deformation behavior with Where, jis always zero.
experimental data by Boyce and Arruda (2000) an R .
Seibert and Schoche (2000), respectively. In amothe gde_n model: This modgl broposes the strain energy
study, Markmann and Verron (2006) compared twentftnction based on the principal stretch®s Rz, As) for
hyperelastic models for rubber-like materials andiNncompressible materials that is assumedA; = 1.
classified them with respect to their ability tot fi 1he principal ~stretches are directly measurable
experimental data. They reviewed hyperelastic nedelduantities and it is one obvious advantage of usieg
in three major categories including, phenomenogic (Changetal., 1991). _ .
and empirical models, physical-based models, The relation of the Ogden strain energy poteiial

approaches in derivativé§V/ol; andoW/al . given by:

The statistical or kinetic theory attempts to deri
stress-strain properties of rubber from some idedli :ZNZZLQ(XJ" RS ‘3)+ZN:i(Jel— ) @
model of its macromolecular structure and the iz a im b,

phenomenological theory treats the problem based on
continuum mechanics without reference to moleculatwhere:
concepts (Yeoh and Fleming, 1997). -2
X =33\,

Polynominal model: The polynomial model offered 3 =) )\,

here in the compressible form, based on the 1sttend A = The principal stretches

2nd invariant |, and 1, of the deviatoric Cauchy-Green j = The Jacobean determinant

tensor, that is: Jo = The elastic volume ratio
U= ZN: o} (I _3)‘ (Tz _3)1’ +ZN:Di(‘]eI _ ])Zi (5) The con_stantai andaq; describe_ the shear behavior
i iz D, of the material and Rhe compressibility.
The calculation of the invariant derivatives oéth
Where: Ogden’s energy function is more used and
U = The strain energy potential (or strain computationally intensive than of the polynomiatnfo
energy density), that is the strain per unit(Forni et al., 1999). This model can be more accurate
of reference volume in fitting experimental, when data from multiple
el = The elastic volume ratio experimental tests are available (Korochkigaal.,

lL,and1, = The first and second invariants of the 2005).

deviatoric strain, o _ o
Cj and D= Material constant Mooney-Rivlin model: Strain energy potential is
N = A positive determining the number of Proposed:

terms in the strain energy function

(N=1.23) u=3c (1-3)(L-3) +32(3,-9" 8

G = Describes the shear behavior of the uz:'a ”(H )(2 ) = Di(el ) ®
material

D; = Introduces compressibility and is setwhere, G are material parameter andgC= 0
equal to zero for fully incompressible (Markmann and Verron, 2006). The first order for
materials incompressible materials is presented as follows:

234



Am. J. Engg. & Applied <ci., 3 (1): 232-239, 2010

U=Cy(1,-3)+Cyy(1,-3 (9) Yeoh model: The Yeoh strain energy function is
presented as following when N = 3 in the Reduced

By setting N = Og; = 0 anday = -2 in the Ogden Polynomial model (Peeters and Kussner, 1999):

model, the Mooney-Rivlin model is obtained as foio

3 3
(Sasscet al., 2008; Tottet al., 2005); U=>C,(%-3) +ZDi( =% (14)
i=1 i=1
_Wye .y 2,y Moy 2,5 -2, % -
-51(7\12+A22+A32‘3)‘72(A12+A22+7\32—3) (10) The initial shear modulus and bulk modulus are
given by:
where,c,, =M andc, =-H2. 2
T 2 o 2 Mo = 2C10’ Ko = E (15)
The most favorite ones of constitutive models are t

Mooney-Rivlin and Ogden models. Their disadvantage

is that the material parameters must be obtained b ; . ,
. , 0 describe the hyperelastic properties of rubber

experiments and they are not physically-base % ompounds (Ghosét al., 2003):

parameters. The fitting method can be complicated i P '

tzhoeosr;umber of parameters is large (Bol and Reese, Yeoh model is applicable for a much wider range

of deformation
Neo-Hookean model: This model is pre-programmed ¢ This model is able to predict the stress-strain
into ABAQUS package. If N = 1, the reduced behavior in different deformation modes from data

Polynomial Model change to neo-Hookean Model: gained in one simple deformation mode like
uniaxial extension

For following reasons this model has been chosen

w=cm(Tl—3)+Di(Jel—J)2 (11)

3 Arruda and Boyce model: Physical models such as

Arruda and Boyce are based on an explanation of a
This model is offered only in terms of the first molecular chains network. The strain energy is mgsl
deviatoric invariant (Timbrelkt al., 2003). By setting to be equal to the sum of the strain energies ef th
N = 1,a; = 2 in the Ogden model, the neo-Hookean carindividual  chains oriented in space in randomly

be offered (Bol and Reese, 2003): (Raoultet al., 2005). This model is offered as below:
=H(R24R,7 40 2-3)=C,(1,-9) (12) 14°-1
U= —| 2 —"-1n(J
2( 1 2 3 ) 10\ "1 p; m ( ) D 2 n( el) (16)
M

with the constant,, = With:

And also this model is the simplest hyperelastic
model for elastomeric materials when material data C, =
insufficient. The significance of this model is bese
of the statistical theory of rubber elasticity aprseat

c=L gl o 10 o 510
20" 7°1050" ' 7000" ° 673750

(17)

I\)\H

the strain energy function: M = The initial shear modulus
Am = The locking stretch, at which the upturn of the
1 stress-strain curve would rise significantly
W=5NKT(I1—3) (13) D = Double the inverse bulk modulus at small strain
i.e.
Where:
N = Number of network chains per unit volume D :% (18)

K = Boltzmann’s constant
T = The absolute temperature
where, D is set to zero for incompressible material
Although the statistical and phenomenological(Seibert and Schoche, 2000).
begin from quite various premises, Eq. 13 is of the  This model, in the range of smaller strains, héips
same form as Eq. 11 (Achenbach and Duarte, 2003). make accurate solutions with neglecting the second
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invariant of the left Cauchy-Green tensor. Withlinear least square optimization method. The
increasing locking stretch parameter, a sufficientoptimization process is used in software to minaniz
accuracy in both small and large strain is obtainedhe error with respect to the model's parameteer&h
(Seibert and Schoche, 2000). are various algebraic forms to curve fit the depeieg
Strain energy function is independent of the sdconof the strain energy based on the invariants ard th
stretch invariant for several hyperelastic constitu  principal stretches. The strain energy density
models such as the neo-Hookean model, the Yeoparameters have been fitted on experimental data fr
model and the Arruda-Boyce model (Sharma, 2003)tensile, compression, pure shear. Then, hyperelasti
Each of these models has a set of mathematical forrmodels coefficients will obtain to provide a goat f
with different parameters that are established §imgus  between the predictions from the model and stress-
algorithm based curve-fitting of experimental dafa. strain data. In most cases, the uniaxial test datae
the strain energy density is supposed to be indbpen been used to obtain the coefficients of the steaiergy
of the second invariant, a single test such asiaxiah  function. However, it requires a great deal of dffo
tension test is needed for material response. ves@t, take a curve fitting with good accuracy. The maieri
it can not present closely the behavior in othedesoas parameters can be assessed in terms of theiryatuilit
a multi-parameter model but it will present a remdle  match the stress-strain data over a large range of
approximation and is easier to use (Marlow, 2003). deformations. It should be noted that fitting tesu
should always be checked in curve fitting approach
Van der Waals model: This model is known as the with the recommended strategies such as using a
Kilian model and introduced as follows (Seibert anddifferent model and providing more data points.
Schoche, 2000): However, models with few material parameters are
preferred for the purpose of computational efficien
AN (Meunieret al., 2008; Ogderet al., 2004; Wangt al.,
U=y —()\51_3)[|_n(1_n)+n}_2{|_3] 2002; 2008;Li et al., 2009; Zhaoet al., 2008;
3\ 2 (19) Mahmoudet al., 2007; Zineet al., 2006 Liechtiet al.,
1989; Murphy, 2000; Subhani and Kumar, 2009;
+1[Jz‘ 1 Ln(g)] Choi et al., 2005; Shangguan and Lu, 2004; Woo and
D 2 Kim, 2006; Avanzini, 2005; Liang and
Chandrashekhara, 2008; Chatiial., 2004; Wissler and
With B representing the linear mixture parameterMazza, 2005).

in:
CONCLUSION
7 = -3
I=(1-B)I,+Bl, andn = 273 (20) Rubber-like material can be explained by
m continuum based mechanical models. Research on

] ] ] ] accurate constitutive modeling has presented skevera
It uses two invariants of the left deviatoric Cayc  mpodels describing the elastic energy as a funaifdhe
Green tensor in. If B =0, only the effects of the first deformation. The models are based on strain invaria
invariant are considered and if there is only o/qEetof  or stretch ratio. Conventional hyperelastic materia
test data, this parameter is recommended to béoset models such as the Mooney-Rivlin or Ogden model
zero. The interaction parametex is difficult to  operate very well for many applications. Mooney-
measure. It is usually between 0.1 and 0.3. Theidta  Rivlin polynomial and Ogden theoretically providee
of this model cannot be used, when the deformatfon same results. However there is a difference betwen
the material makes stretches larger than the lgckinmethods in terms of their formula. Mooney-Rivlin
stretchA,, (Peeters and Kussner, 1999). model present the strain energy density based en th
principal strain invariants, whereas, Ogden modigro
Fitting experimental data to hyperelastic models: the strain energy density based on three principal
Hyperelastic models are widely used in the Finitestretches. And also, Mooney-Rivlin and neo-Hookean
Element Analysis (FEA) programs. A relation betweenare as special case of this model. Generally,
stress and strain is required for the FEA of rubbeclassification of the models is presented based on
materials. The material parameters in the stragrg@n domain of validity for all modes of deformation,eth
potential can be determined by the fitting of theis  number of parameters and the type of formulaticedus
energy function to stress-strain data based onma noto derive the models. So that, it depends on the
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considered domain of deformation, for example theCheng, M. and W. Chen, 2003. Experimental
neo-Hookean model, the Mooney model and the Ogden investigation of the stress-stretch behavior of

model can be used for small, moderate and largénstr EPDM rubber with loading rate effects. Int. J.
respectively. Solids Struct., 40: 4749-4768.
http://cat.inist.fr/?aModele=afficheN&cpsidt=1494
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