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Abstract: Problem statement: This study reviewed the needs of different constitutive models for 
rubber like material undergone large elastic deformation. The constitutive models are widely used in 
Finite Element Analysis (FEA) packages for rubber components. Most of the starting point for 
modeling of various kinds of elastomer is a strain energy function. In order to define the hyperelastic 
material behavior, stress-strain response is required to determine material parameters in the strain 
energy potential and also proper selection of rubber elastic material model is the first attention. 
Conclusion: This review provided a sound basis decision to engineers and manufactures to choose the 
right model from several constitutive models based on strain energy potential for incompressible and 
isotropic materials.  
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INTRODUCTION 

 
 Rubber material usually has long chain molecules 
recognized as polymers. The term elastomer is the 
combination of elastic and polymer and is often used 
interchangeably with the rubber (Smith, 1993). In 
recent years, rubber component as an engineering 
material has been used in many industries such as 
automotive and in a wide range of applications consist 
of engine mountings, tires, vibration isolators, medical 
devices and structural bearings. Rubber is an ideal 
material for many applications because it can withstand 
very large strains over 500% with no permanent 
deformation or fracture (Mars, 2002). Besides elastic 
recovery, elastomers have special physical properties 
(flexibility, extensibility, resiliency and durability), 
which are unmatched by other types of materials 
(Coran, 2006), however it still presents behavior in 
common with other material (Abraham et al., 2005). 
This notable characteristics change with diverse 
variable including fatigue, light, heat, oxygen and 
ozone, during passing of time (Nagdi, 1993).  
 Elastomers present a very complicated mechanical 
behavior that exceed the linear elastic theory and 
contain large deformations, plastic and viscoelastic 
properties and stress softening (Chagnon et al., 2004; 
Naser et al., 2005). Stress softening is known as the 
Mullins effect and happened during initial loading 

cycles. The residual strain are not accounted for when 
the mechanical properties of rubber are presented in 
terms of a strain energy function (Dorfmann and 
Ogden, 2004; Cheng and Chen, 2003). The Mullins 
effect is closely related to the fatigue of rubber 
components using in engineering applications and it can 
be considered as a necessary step for evaluation of the 
life of a rubber parts. There are many 
phenomenological theories to define the Mullins effect 
in literature (Horgan et al., 2004). The viscous and 
elastic components change with temperature and strain 
rate. These characteristics present complications to the 
modeling of elastomers compared with other traditional 
engineering materials (Whibley et al., 2005). 
Geometrical and different physical nonlinearities have 
to be taken into account in order to model rubber 
materials and nowadays, the finite element methods 
(FEM) is a powerful tool to analyze rubber 
components. Usually, these structures can not be 
defined analytically because of material nonlinearities 
and their complex geometry (Kaliske et al., 2001).   
 Elastomers are basically super-condensed gases 
because most primary monomers are gases and after 
polymerization have long chain molecules which will 
be in an amorphous (rubber), glassy or crystalline 
phase. During cross linking or vulcanization, rubber 
molecules are chemically fastened together at various 
points to form a network. They make stationary 
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positions to prevent slippage of chains. Figure 1 shows 
the tensile stress-strain diagram for three physical states 
of a polymer. A glassy polymer is brittle. A crystalline 
polymer pass sequence of changes consist of, elastic 
deformation, yield, plastic flow, necking, strain 
hardening and strain fracture. Rubbers are unique in 
being soft, very extensible and very elastic (Yan et al., 
2005; Hertz, 1992; Yan and Strenskowski, 2006). 
 Rubber can be defined by a stored energy function as 
hyperelastic material. The coefficients in these functions 
should be determined by uniaxial, biaxial and shear test 
data. The essential problem is to determine the strain 
energy function for providing good fit with a number of 
sets of experiment data. The purpose of this review is to 
introduce the popular models which are available in 
numerical community and offered in the literature.  
 
Elasticity: Rubber has long and flexible molecular 
structures which are the ability to stretch to several 
times its original length. By a simple assumption of 
linear stress-strain relationship, rubber can be 
considered as a linearly elastic material at small strains, 
like all solids and can be understood in many common 
rubber design problems. However for analyzing rubber 
behavior in large deformation, the large elastic 
deformation theory should be considered (Gent, 1992). 
 According to Rivlin’s phenomenological theory, 
rubber is assumed isotropic in elastic behavior and very 
nearly incompressible. The elastic properties of a 
rubber can be explained in terms of a strain energy 
function based on the strain invariants I1, I2 and I3. This 
theory offers a mathematical framework to describe 
rubbery behavior based on continuum mechanics. In 
this approach, stress and strain analysis problems may 
be solved independent of the microscopic system or 
molecular concepts and the elasticity theory can be the 
starting point of any kind of modeling effort as follows 
(Boyce and Arruda, 2000; Achenbach and Duarte, 
2003; Pucci and Saccomandi, 2002; Yeoh and Fleming, 
1997; Chang et al., 1991): 
 

( )1 2 3W f I , I , I=                                                  (1)                

 
Where: 
W  = Sometimes is written as U is the strain 

energy density or stored energy function 
defined per unit volume  

I1, I2 and I3 = The three invariants of the green 
deformation tensor given in terms of the 
principle extension ratios λ1, λ1 and λ3, by: 
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Fig. 1: Tensile stress-strain diagrams for polymers in 

three physical states; x denotes rupture 
 
 Equation 1 can be represented as: 
 

( ) ( ) ( )i j k

ijk 1 2 3
i j k 1

W C I 3 I 3 I 1
∞

+ + =

= − ⋅ − ⋅ −∑       (3)    

 
 By considering that rubber is incompressible, for 
these materials I3 = 1, thus Eq. 3 decreases to: 
 

( ) ( )i j

ij 1 2
i j 1

W C I 3 I 3
∞

+ =

= − ⋅ −∑          (4) 

 
Hyperelastic models: A considerable amount of 
literature has been published on modeling of rubber 
material. The choice of the model depends to its 
application, corresponding variables and its available 
data to determine material parameters. The validity of 
possible models should be studied and the simplest is 
selected with high accuracy and low materials 
parameters (Lemaitre, 2001). 
 The modeling and design of hyperelastic materials 
is the selection of a proper strain energy function W, 
and accurate determination of material constants for 
function (Garcia Ruiz and Suarez Gonzalez, 2006). 
There are various forms of strain energy potentials for 
modeling of incompressible and isotropic elastomer 
(Ogden, 1972; Mars and Fatemi, 2004; Guo and Sluys, 
2006; Selvadurai, 2006; Horgan and Saccomandi, 1999; 
2003; Amin et al., 2002; Beatty, 2003; Meunier et al., 
2008; Muhr 2005; Sasso et al., 2008). However, only 
some of them describe the complete behavior of these 
materials, especially, for different loading conditions 
with experimental data (Markmann and Verron, 2005; 
2006). 
 An efficient hyperelastic model can be explained 
by four main qualities (Chagnon et al., 2004): 
 
• It should have the ability to exactly reproduce the 

whole ‘S’ shaped response of rubbers 
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• The change of deformation modes must not be 
problematic, i.e., if the model operates sufficiently 
in  uniaxial tension, it must also be exact in simple 
shear or in equibiaxial tension 

• The number of  fitting material parameters should 
be small, in order to decrease the number of 
experimental tests for their determination 

• The mathematical formulation should be simple 
display practicable for the numerical performance 
of the model 

 
 Five and six different models were compared for 
describing of the deformation behavior with 
experimental data by Boyce and Arruda (2000) and 
Seibert and Schoche (2000), respectively. In another 
study, Markmann and Verron (2006) compared twenty 
hyperelastic models for rubber-like materials and 
classified them with respect to their ability to fit 
experimental data. They reviewed hyperelastic models 
in three major categories including, phenomenological 
and empirical models, physical-based models, 
approaches in derivatives ∂W/∂I1 and ∂W/∂I2.  
 The statistical or kinetic theory attempts to derive 
stress-strain properties of rubber from some idealized 
model of its macromolecular structure and the 
phenomenological theory treats the problem based on 
continuum mechanics without reference to molecular 
concepts (Yeoh and Fleming, 1997).   
 
Polynominal model: The polynomial model offered 
here in the compressible form, based on the 1st and the 
2nd invariant 1I and 2I of the deviatoric Cauchy-Green 

tensor, that is: 
 

( ) ( ) ( )
N Ni j 2i

ij 1 2 el
i j 1 i 1 i

1
U C I 3 I 3 J 1

D+ = =

= − − + −∑ ∑  (5) 

 
Where: 
 U = The strain energy potential (or strain 

energy density), that is the strain per unit 
of reference volume 

Jel = The elastic volume ratio 

1I and 2I  = The first and second invariants of the 

deviatoric strain, 
Cij and Di = Material constant 
N = A positive determining the number of 

terms    in  the   strain   energy function 
(N = 1,2,3) 

Cij  = Describes the shear behavior of the 
material 

Di  = Introduces compressibility and is set 
equal to zero for fully incompressible 
materials 

 This model of strain energy function is usually 
used in modeling the stress-strain behavior of filled 
elastomers, with four to five terms (Forni et al., 1999). 
 
Reduced polynominal model: This model follows 
simple form of polynomial model by just omitting the 
second invariant of the left Cauchy Green tensor 
(Peeters and Kussner, 1999), by doing this, U becomes:  
 

( ) ( )
N Ni 2i

i0 1 el
i 1 i 1 i

1
U C I 3 J 1

D= =

= − + −∑ ∑      (6) 

 
where, j is always zero. 
 
Ogden model: This model proposes the strain energy 
function based on the principal stretches (λ1, λ2, λ3) for 
incompressible materials that is assumed λ1λ2λ3 = 1. 
The principal stretches are directly measurable 
quantities and it is one obvious advantage of using them 
(Chang et al., 1991).  
 The relation of the Ogden strain energy potential is 
given by: 
 

( ) ( )i i i

N N
2ii

1 2 3 el2
i 1 i 1i i

2 1
U 3 J 1

D
α α α

= =

µ= λ + λ + λ − + −
α∑ ∑    (7)

  
Where: 

1

3
i iJ

−

λ = λ  

J = λ1λ2λ3 

λi  = The principal stretches 
J = The Jacobean determinant  
Jel = The elastic volume ratio 
 
 The constants µi and αi describe the shear behavior 
of the material and Di the compressibility.  
 The calculation of the invariant derivatives of the 
Ogden’s energy function is more used and 
computationally intensive than of the polynomial form 
(Forni et al., 1999).  This model can be more accurate 
in fitting experimental, when data from multiple 
experimental tests are available (Korochkina et al., 
2005).    
 
Mooney-Rivlin model: Strain energy potential is 
proposed: 
 

( ) ( ) ( )
N Ni j 2i

ij 1 2 el
i, j 0 i 1 i

1
U C I 3 I 3 J 1

D= =

= − − + −∑ ∑  (8) 

 
where, Cij  are material parameter and C00 = 0 
(Markmann and Verron, 2006). The first order for 
incompressible materials is presented as follows:  
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( ) ( )10 1 01 2U C I 3 C I 3= − + −  (9) 

 
 By setting  N = 0, α1 = 0 and α2 = -2 in the Ogden 
model, the Mooney-Rivlin model is obtained as follows 
(Sasso et al., 2008; Toth et al., 2005):  
 

( ) ( )2 2 2 2 2 21 2
1 2 3 1 2 3U 3 3

2 2
− − −µ µ= λ + λ + λ − − λ + λ + λ −  (10) 

 

where, 1
10C

2

µ= and 2
01C .

2

µ= −  

 The most favorite ones of constitutive models are 
Mooney-Rivlin and Ogden models. Their disadvantage 
is that the material parameters must be obtained by 
experiments and they are not physically-based 
parameters. The fitting method can be complicated if 
the number of parameters is large (Bol and Reese, 
2003). 
 
Neo-Hookean model: This model is pre-programmed 
into ABAQUS package. If N = 1, the reduced 
Polynomial Model change to neo-Hookean Model: 
 

( ) ( )2

10 1 el
1

1
W C I 3 J 1

D
= − + −    (11) 

 
 This model is offered only in terms of the first 
deviatoric invariant (Timbrell et al., 2003). By setting 
N = 1, α1 = 2 in the Ogden model, the neo-Hookean can 
be offered (Bol and Reese, 2003): 
 

( ) ( )2 2 21
1 2 3 10 1U 3 C I 3

2

µ= λ + λ + λ − = −  (12) 

 

with the constant, 1
10C .

2

µ=   

 And also this model is the simplest hyperelastic 
model for elastomeric materials when material data is 
insufficient. The significance of this model is because 
of the statistical theory of rubber elasticity appears at 
the strain energy function: 
 

( )1

1
W NKT I 3

2
= −  (13) 

 
Where: 
N = Number of network chains per unit volume 
K = Boltzmann’s constant 
T = The absolute temperature 
 
 Although the statistical and phenomenological 
begin from quite various premises, Eq. 13 is of the 
same form as Eq. 11 (Achenbach and Duarte, 2003). 

Yeoh model: The Yeoh strain energy function is 
presented as following when N = 3 in the Reduced 
Polynomial model (Peeters and Kussner, 1999): 
 

( ) ( )
3 3i 2i

i0 1 el
i 1 i 1 i

1
U C I 3 J 1

D= =

= − + −∑ ∑  (14) 

 
 The initial shear modulus and bulk modulus are 
given by: 
 

0 102Cµ = , 0
1

2
K

D
=   (15) 

 
 For following reasons this model has been chosen 
to describe the hyperelastic properties of rubber 
compounds (Ghosh et al., 2003): 
 
• Yeoh model is applicable for a much wider range 

of deformation 
• This model is able to predict the stress-strain 

behavior in different deformation modes from data 
gained in one simple deformation mode like 
uniaxial extension 

 
Arruda and Boyce model: Physical models such as 
Arruda and Boyce are based on an explanation of a 
molecular chains network. The strain energy is assumed 
to be equal to the sum of the strain energies of the 
individual  chains  oriented in space in randomly 
(Raoult et al., 2005). This model is offered as below: 
 

( ) ( )
25

i ii el
1 el2i 2

i 1 m

C 1 J 1
U I 3 Ln J

D 2−
=

 −= µ − + − λ  
∑  (16) 

 
With: 
 

1

1
C ,

2
= 2

1
C ,

20
= 3

11
C

1050
= , 4

19
C ,

7000
= 5

519
C

673750
=  (17) 

 
µ = The initial shear modulus  
λm = The locking stretch, at which the upturn of the 

stress-strain curve would rise significantly 
D = Double the inverse bulk modulus at small strain; 

i.e.: 
 

2
D

K
=     (18) 

 
where, D is set to zero for incompressible material 
(Seibert and Schoche, 2000). 
 This model, in the range of smaller strains, helps to 
make accurate solutions with neglecting the second 
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invariant of the left Cauchy-Green tensor. With 
increasing locking stretch parameter, a sufficient 
accuracy in both small and large strain is obtained 
(Seibert and Schoche, 2000). 
 Strain energy function is independent of the second 
stretch invariant for several hyperelastic constitutive 
models such as the neo-Hookean model, the Yeoh 
model and the Arruda-Boyce model (Sharma, 2003). 
Each of these models has a set of mathematical form 
with different parameters that are established by using 
algorithm based curve-fitting of experimental data. If 
the strain energy density is supposed to be independent 
of the second invariant, a single test such as a uniaxial 
tension test is needed for material response. As a result, 
it can not present closely the behavior in other modes as 
a multi-parameter model but it will present a reasonable 
approximation and is easier to use (Marlow, 2003). 
 
Van der Waals model: This model is known as the 
Kilian model and introduced as follows (Seibert and 
Schoche, 2000):  
 

( ) ( )

( )

3

2
2
m

2

2 I 3
U 3 Ln 1 a

3 2

1 J 1
Ln J

D 2

 
 − = µ − λ −  − η + η −   
  

 

 −+ − 
 

ɶ

 (19) 

 
 With β representing the linear mixture parameter 
in: 
 

( ) 1 2I 1 I I= − β + βɶ ɶ  and 
2
m

I 3

3

−η =
λ −

ɶ

 (20) 

 
 It uses two invariants of the left deviatoric Cauchy 
Green tensor inIɶ . If  β = 0, only the effects of the first 
invariant are considered and if there is only one type of 
test data, this parameter is recommended to be set to 
zero. The interaction parameter α is difficult to 
measure. It is usually between 0.1 and 0.3. The formula 
of this model cannot be used, when the deformation of 
the material makes stretches larger than the locking 
stretch λm (Peeters and Kussner, 1999). 
  
Fitting experimental data to hyperelastic models: 
Hyperelastic models are widely used in the Finite 
Element Analysis (FEA) programs. A relation between 
stress and strain is required for the FEA of rubber 
materials. The material parameters in the strain energy 
potential can be determined by the fitting of the strain 
energy function to stress-strain data based on a non-

linear least square optimization method. The 
optimization process is used in software to minimize 
the error with respect to the model’s parameter. There 
are various algebraic forms to curve fit the dependence 
of the strain energy based on the invariants and the 
principal stretches. The strain energy density 
parameters have been fitted on experimental data from 
tensile, compression, pure shear. Then, hyperelastic 
models coefficients will obtain to provide a good fit 
between the predictions from the model and stress-
strain data. In most cases, the uniaxial test data have 
been used to obtain the coefficients of the strain energy 
function. However, it requires a great deal of effort to 
take a curve fitting with good accuracy. The material 
parameters can be assessed in terms of their ability to 
match the stress-strain data over a large range of 
deformations.  It should be noted that fitting results 
should always be checked in curve fitting approach 
with the recommended strategies such as using a 
different model and providing more data points. 
However, models with few material parameters are 
preferred for the purpose of computational efficiency 
(Meunier et al., 2008; Ogden et al., 2004; Wang et al., 
2002; 2008; Li  et al., 2009; Zhao et al., 2008; 
Mahmoud et al., 2007; Zine et al., 2006 Liechti et al., 
1989;  Murphy,  2000;  Subhani  and Kumar, 2009; 
Choi et al., 2005; Shangguan and Lu, 2004; Woo and 
Kim, 2006; Avanzini, 2005; Liang and 
Chandrashekhara, 2008; Chui et al., 2004; Wissler and 
Mazza, 2005).  
 

CONCLUSION 
 
 Rubber-like material can be explained by 
continuum based mechanical models. Research on 
accurate constitutive modeling has presented several 
models describing the elastic energy as a function of the 
deformation. The models are based on strain invariant 
or stretch ratio. Conventional hyperelastic material 
models such as the Mooney-Rivlin or Ogden model 
operate very well for many applications. Mooney-
Rivlin polynomial and Ogden theoretically provide, the 
same results. However there is a difference between the 
methods in terms of their formula. Mooney-Rivlin 
model present the strain energy density based on the 
principal strain invariants, whereas, Ogden model offer 
the strain energy density based on three principal 
stretches. And also, Mooney-Rivlin and neo-Hookean 
are as special case of this model. Generally, 
classification of the models is presented based on 
domain of validity for all modes of deformation, the 
number of parameters and the type of formulation used 
to derive the models. So that, it depends on the 
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considered domain of deformation, for example the 
neo-Hookean model, the Mooney model and the Ogden 
model can be used for small, moderate and large strain, 
respectively. 
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