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Abstract: To solve the problems of low accuracy and high miss rate in the 

recognition of cotton apical buds during mechanical topping, an enhanced 

method based on the RetinaNet network is proposed for the accurate 

identification of cotton apical buds under natural light. The traditional 

RetinaNet algorithm is validated to improve the recall rate and average 

accuracy of cotton apical bud recognition (mAP@0.5) at 83.61% and 77.64% 

respectively. Due to the shallow nature of the network, there is still 

overfitting and the RetinaNet algorithm is improved. This algorithm 

incorporates R-CBAM and ShuffleViT Block network modules and uses 

Atrous Spatial Pyramid Pooling (ASPP) to connect the cross-domain feature 

layer to the feature fusion layer. The results indicate thatcompared with the 

traditional RetinaNet algorithm, theimprovedRetinaNet algorithm has an 

average accuracy (mAP@0.5) of 96.25% and a recall rate of 91.10% for 

cotton apical bud recognition. This indicates that the improved RetinaNet 

algorithm has optimal recognition performance and high recognition 

accuracy for cotton apical buds, laying a solid foundation for precise topping 

operations in cotton cultivation. 
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Introduction 

Cotton is an important economic crop and textile raw 

material in China. To increase the cotton yield, it is 

necessary to control the height and branch growth of 

cotton. Topping is a commonly used method that can 

effectively control the growth height of cotton and increase 

yield (He et al., 2021). To solve the problem of how to 

quickly and efficiently identify cotton top buds in field 

topping machinery, the recognition of cotton apical buds 

based on a neural network algorithm is deeply studied. 
The cotton topping period is from late July to early 

August and the operation time is short. Simple manual 

work is labor-intensive, low-efficiency, and high-cost 

(Han et al., 2022). Chemical topping has a strong 

inhibitory effect and can easily lead to cotton peach 

deformities and mechanical topping is an important 

direction for future development (Biradar et al., 2011). 

However, there are some problems with mechanical 

topping, such as high miss rate and poor accuracy in 

cotton apical bud recognition (Tang et al., 2008). To solve 

this problem, optimizingthe target detection algorithm of 

cotton apical bud has become an important way to 

improve the identification accuracy, making it better serve 

the automation and intelligence of cotton topping 

machinery and equipment. 

Target detection methods can be divided into two 

categories: Two-stage algorithms and single-stage 

algorithms. The two-stage algorithms include R-CNN, 

SPP-Net (He et al., 2015), Faster R-CNN (Ren et al., 

2015) and the single-stage algorithms include YOLO 

(Redmon and Farhadi, 2018; Cardellicchio et al., 2023; 

Wang and Liu, 2022), SSD (Feng et al., 2019; Yao et al., 

2022) and RetinaNet (Wu et al., 2023). These algorithms 

are widely used in the identification of agricultural 

products, fruits and vegetables, plants, and cotyledons. 

Based on the YOLOV5s algorithm, Wang and He (2021) 

detected the apples in the fruit thinning period of channel 

pruning. Tian et al. (2019) used the YOLOV3 model to 

identify and detect apples from different periods. To 

distinguish the maturity status of tomatoes, Egi et al. 

(2022) used YOLOV5 and Deep SORT algorithms to 

detect their maturities. To identify plants and cotyledons, 

Pan et al. (2022) used a two-stage algorithm, faster R-CNN, 
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to automatically identify and detect the sugarcane 

seedlings to estimate the yield of this round of sugarcane. 

Islam et al. (2021) used the KNN algorithm to detect the 

weeds in pepper seedlings. The features of apple, tomato, 

sugarcane, and weeds are relatively distinct in the 

captured image environment. The image environment is 

controllable and the recognition accuracy and speed can 

meet practical application requirements. 

 For the identification and detection of cotton plants and 

cotyledons, recognition and detection methods based on 

deep learning have been widely applied to the identification 

of cotton plants and the detection of the tops of cotton 

plants. Liu (2022) used SSD and YOLO algorithms to 

detect targets on the top of cotton in natural environments, 

achieving excellent performance. They also introduced the 

decoupled head module and Anchor Free method to 

improve the Head of YOLOV4, achieving an accuracy of 

90.15%. Xiaochen and Shen (2018) input the preprocessed 

images into the improved VGG network to improve the 

accuracy of cotton top target detection in complex field 

environments. Its recognition accuracy is 83.4%, which can 

effectively detect and locate the top of cotton. Siqi (2021) 

replaced the original Residual Unit with a dense connection 

block and replaced the original dense connection block 

with separable convolution, integrating multi-scale 

receptive fields and improving the YOLOv3 network, with 

a recognition accuracy of 90.93%. Although the accuracy 

of cotton top bud recognition based on YOLO algorithms 

has met the requirements of practical applications, they 

have the common problems of slow recognition speed and 

long inference time. 

Due to the complex natural environment, high planting 

density, and relatively small apical bud area, as well as the 

presence of cotyledon occlusion of cotton plants, this 

study aims to reduce computational complexity and 

obtain more accurate prediction boxes. Based on the 

traditional RetinaNet deep learning algorithm, 

optimizations and improvements are made to accurately 

determine the position of the cotton apical buds. 

Materials and Methods 

Image Processing of Cotton Plants 

Preparation of Test Materials 

The hardware system mainly contains the computer and 

camera (IPHONE12). Ubuntu 20.04.1 is adopted as the 

operating system, PyTorch 1.7 and CUDA 11.0 as the 

deep learning environment, and python3.8 as the 

development language, in Table 1. 

To obtain the optimal optical effect of cotton plants, the 

shooting time was arranged at 12 noon and the shooting 

distance of the camera in the recognition system of the 

cotton plant top was simulated. When shooting, cotton 

plants with different growth levels were selected. The 

distance between the camera and the top of the cotton was 

controlled as 10-20cm and the shooting was at a vertical 

angle of 90°C directly above the cotton apical buds. A total 

of 800 top photos of cotton plants with a resolution of 

2532×1170 were collected in the experiment. 

To obtain continuous image data of cotton apical buds, 

the images were collected four times between July 5 and July 

8, each with 200 images of different occlusion conditions 

and lighting angles. The dataset sample is shown in Fig. 1. 

Image Preprocessing of Cotton Plants 

Data Set Expansion 

The training of deep learning networks typically 

requires a large amount of data and a small amount of data 

can easily lead to overfitting in network training (Hu et al., 

2018; Woo et al., 2018; Dosovitskiy et al., 2020). Here 

we use data augmentation to expand the dataset samples of 

cotton apical buds to enhance the generalization ability and 

robustness of the trained model ((Pinto et al., 2019; 

Rohaziat et al., 2020). The main methods such as horizontal 

flipping, mirror transformation, image brightness 

adjustment, and image black-and-white processing are used 

to expand the data set of cotton top buds. The rendering is 

shown in Fig. 2 and a total of 4000 cotton top bud images 

were obtained. 90% (3600) images were randomly selected 

from the total sample as the training set and the remaining 

400 images were used as the set to verify the performance 

of the experimental evaluation model. 

Target Detection Algorithm for Cotton Apical Buds 

Based on Retinanet 

Settings of the Retinanet Network Structure  

RetinaNet is specially designed to solve class 

imbalance and multi-scale problems in target detection, 

with optimal detection performance and efficient 

computing speed (Wu et al., 2023; Ju et al., 2019). 

RetinaNet introduces a new Feature Pyramid Network 

(FPN) and focal loss function (Li et al., 2023). The 

RetinaNet network architecture is shown in Fig. 3, which 

mainly consists of a backbone network and a feature 

pyramid network. First, the backbone feature extraction 

network of RetinaNet is ResNet18, which is stacked by a 

residual network structure, in Fig. 4. It is used for 

preliminary feature extraction of the target. 

 
Table 1: Experimental environment 

Software and hardware configuration Parameters 

Operating system Ubuntu 20.04.1 

CPU Intel® Xeon® Gold 5218 

CPU@2.3Hz 

GPU GTX3090 (24GB) 

The programming language Python 3.8 

Deep learning framework PyTorch 1.7, CUDA 11.0 
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Fig. 1: Sample data graph 

 

 
Mirror Transformation 

 
Adjust brightness 

 
Black-and-white processing 

 
Horizontal flip 

 

Fig. 2: Example of data set expansion part 

 

 

 

Fig. 3: RetinaNet algorithm network architecture 

 
 
Fig. 4: Residual structure 

 

By introducing an adjustable balance parameter, 

setting the loss function of RetinaNet, and reducing the 

weight of the loss function, the model pays more attention 

to the cotton plant samples that are difficult to classify 

andimprovesthe performance ofdifficult samples. The 

total loss of RetinaNet detection model training can be 

expressed as follows: 

 

i j

cls reg

i jpos pos

1 1
L = l + l

N N
   (1) 

 

where, clsl is the classification loss Focal Loss; regl  is 

the border regression loss smooth L1 Loss;
posN  is the 

number of positive and negative samples; i is the 

positive sample and j is the negative sample. 
Focal loss is defined as follows: 

 

( ) *(1 ) * ( )t t t tFL p p log p    (2) 

 

where,
tp  is the target category probability predicted by 

the model; 
t is an adjustable balance parameter used to 

adjust the loss weight of different categories; γ is an 

adjustment factor that is used to control the attention of 

difficult samples. 

RetinaNet Algorithm Validation and Comparison of 

Typical Algorithms 

RetinaNet Algorithm Validation 

In the experiment, the RetinaNet algorithm is used for 

target detection of cotton apical buds. The experimental 

parameter settings are shown in Table 2. 
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Table 2: Verification experiment and parameter settings of the 

RetinaNet algorithm 

Parameters Value settings 

Learning rate 0.001 

Batch size number 64.000 

Iterations 100.000 

Input feature size 640*640 

 
Table 3: Experimental result data of the RetinaNet algorithm 

 Accuracy/ Recall/ Harmonic Average precision 

Model % % mean/% (mAP@0.5)/% 

RetinaNet 80.11 83.61 76.11 77.64 

 
Table 4: Experimental results of the YOLOv5s algorithm  

   Average precision  

Model Accuracy/% Recall/% (mAP@0.5)/% 

YOLOv5s 67.20 82.01 73.68 

 
Table 5: The Experimental result of the SSD algorithm 

   Average precision  

Model Accuracy/% Recall/% (mAP@0.5)/% 

SSD 70.11 81.90 75.57 

 

 
 
Fig. 5: Partial detection effect of the RetinaNet algorithm on the 

dataset of cotton apical buds 

 

 
 
Fig. 6: RetinaNet Algorithm loss function curve 
 

The detection results are shown in Fig. 5, the loss 

function curve is shown in Fig. 6 and the test results are 

shown in Table 3. 

According to the experimental result data shown in 

Table 3, the RetinaNet algorithm has a certain 

performance in the detection of cotton apical buds. The 

accuracy rate is 80.11%, indicating the ratio between the 

number of apical buds correctly predicted by the 

algorithm and the total predicted number. The recall rate 

is 83.61%, indicating the ratio between the number of 

apical buds successfully detected by the algorithm and the 

actual number of apical buds. The harmonic average is 

76.11%, indicating the balance between accuracy and 

recall. The average accuracy is 77.64%, which is the 

detection results calculated under different confidence 

thresholds. In general, the experimental results show that 

RetinaNet has achieved relatively good performance in 

the recognition and detection of cotton apical buds. Figure 6, 

the training loss and testing loss show significant 

differences within the first 10 iterations. However, after 

10 iterations, the training loss is generally stable, while 

the validation loss significantly decreased. This indicates 

there is an overfitting in the RetinaNet model in the 

preliminary experiment. In the case of sufficient sample 

dimensions, this indicates that excessive noise in the 

dataset causes the model to over-identify the noise 

features, thus ignoring the true relationship between input 

and output. In other words, the model has weak feature 

selection ability in the case of a large number of samples. 

Comparison of Typical Algorithms 

Based on the dataset in Chapter 1, YOLOv5s and SSD 

algorithms are used to conduct experiments on the target 

detection of cotton apical buds. The hardware 

configuration and experimental environment of these 

algorithms are consistent with those used in the RetinaNet 

experiment. After 100 training epochs, the performance 

metrics of the YOLOv5s algorithm and the detection 

results are shown in Table 4. 

The initial learning rate of the SSD algorithm in the 

detection experiment is set to 0.01, the BatchSizeto64, 

the momentum size to 0.937, the weight delay size is 

0.0005 and the epoch size to 100. The detection results 

are shown in Table 5. 

Comparing the RetinaNet, YOLOv5s, and SSD 

algorithms after 100 training epochs, it is evident that 

YOLOv5s can achieve an accuracy of 67.20%, a recall 

rate of 82.01% and an average accuracy (mAP@0.5) of 

73.68%. On the other hand, the corresponding SSD 

algorithm has an accuracy of 70.11%, a recall rate of 

81.90%, and an average precision (mAP@0.5) of 75.57%. 

Comparing the pre-training, it is observed that the 

RetinaNet algorithm demonstrates superior performance 

in the recognition of cotton apical buds, with an accuracy 

of 80.11% and a recall rate of 83.61%. These results 

indicate that the RetinaNet has the best performance in 

target detection, with superior recognition capability for 

cotton apical buds. 

Improvement of the Target Detection Algorithm for 

Cotton Apical Buds Based on RetinaNet 

Multi-Head Attention Mechanism Backbone 

Network Based on Channel Rearrangement  

To solve the problem of the weak feature selection 

ability of the RetinaNet algorithm, a new global 

mailto:mAP@0.5)/%25
mailto:mAP@0.5)/%25
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information extraction module, ShuffleViT Block is 

designed. The ShuffleViT Block utilizes the "shuffling" 

mechanism in ShuffleNet and the slicing mechanism in 

MobileViT. First, the block features in the ViT are sliced 

and split to scramble the information within the block. In 

this way, the interaction of local feature information in the 

block is achieved while keeping the block sequence 

information unchanged, which can reduce the calculation 

and overcome the problems of high training cost and 

unsatisfactory inference speed in MobileViT. At the same 

time, through the slicing mechanism, the network can 

retain the positional information of the slices, eliminating 

the noise and retaining the key local features. 

Analysis of the ShuffleNet Network Module Model 

ShuffleNet is a lightweight convolutional neural 

network structure that minimizes computational and 

storage complexity (Yu et al., 2023; Bi et al., 2019). It 

uses the hierarchical convolution to divide the input and 

convolution kernel into several groups. Each group 

operates the convolution independently and eventually 

connects the outputs of all groups. The convolution 

structure is shown in Fig. 7. The input features and 

convolution kernels are divided into G groups 

respectively. The number of channels in each group is 

C/G and that of convolution kernels in each group is K/G. 

For the input feature Xg, each set of convolutions can be 

expressed as follows: 
 

g g g gy W x b    (3) 

 

where, Xg represents the G group of input features; Wg 

represents the G group of convolution kernel; bg 

represents the G group of offset term and Yg represents the 

output result of the G group. The final output result is the 

connected set of all group results, namely: 
 

 1 2 Gy = y , y , ... , y  (4) 

 
Assuming that its feature input and output are 

1W H C    and 
2' 'W H C  , respectively and the size of a 

single convolutional kernel is k × k and the input features 

are divided into g groups. Then the feature input data of 

each group is 1C
W H

g
  ; the single convolution kernel in 

each group 2C
k k

g
  and each set of the output feature 

data is ' 'W H g  . Then the parameters of the grouped 

convolution are calculated as follows: 

 

2 21 2 1
2

C C C
Params k g k C

g g g
      (5) 

 
 

Fig. 7: Diagram of the group convolutional structure 
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Gconv

Channel

Shuffle

3×3 DWConv

(stride =2)

1×1
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Fig. 8: Structure of the ShuffleBlock module network 

 

2 1
2 ' '

C
FLOPs k C W H

g
     (6) 

 

The structure of the ShuffleNet network module is 

shown in Fig. 8. Based on the simple residual structure, 

an average pooling layer with a pooling core of 3 is added; 

1*1 group convolutions are used and the feature 

information of packet convolution is interacted by channel 

rearrangement. Then a 3*3 depth separable convolution 

and a 1*1 grouped convolution are used to extract features 

and restore the channel dimension of the aforementioned 

"shuffled" (channel rearrangement) data. Through the 

Concat function, the dimension of the input feature channel 

is expandedwithout additional calculation. 

Analysis of Vit Network Module Model 

ViT is an image classification network model based on 

the Transformer model (Yu et al., 2023). The features of 

the image are extracted and classified by segmenting the 

image into small pieces and then feeding them into the 

Transformer model as a sequence. The ViT network 

structure model is shown in Fig. 9: 

 

 

 

Input 

Features 

Output 

Features 

Group 1 

 

Group 2 

 

Group 3 
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Fig. 9: ViT network structure 

 

 
 
Fig. 10: Diagram of the ShuffleViT block module structure 
 

The overall structure of ViT can be divided into five 

components: Input layer, embedding layer, learnable 

embedding, position offset, and Transformer encoder 

layer. The image is decomposed into small pieces and 

serialized into vectors by VIT and the self-attention 

mechanism of the Transformer model is used to capture 

the global context information of the image. 

Improved ViT Module (ShuffleViT) 

To improve the accuracy and adaptability of target 

detection for cotton apical buds, a lightweight and high-

performance backbone network is designed based on the 

structural principles of the visual Transformer and 

ShuffleNet network module models. The diagram of the 

ShuffleViT Block module structure is shown in Fig. 10. 

Figure 10, the ShuffleViT Block model is different 

from ViT. Because it uses point-wise convolution and 

depth-separable convolution as feature extractors, which 

can better capture important information and multi-scale 

information in the image and improve the representation 

ability of features. In terms of data processing, the input 

feature map B C W HX     (B, C, W, and H respectively 

represent the batch, channel number, width, and height 

of the convolution feature) is directly divided into 

multiple sub-tensors along the channel dimension. That 

is, a 1*1 group convolution is projected to a fixed D 

dimension B D W HX     and then the features are divided 

into blocks of h wP P  ( , ,h wP P H W ; h and w 

respectively represent the height and width of the block 

features). The processed features are
h w

h w

HW
B P P

P P
pX

  

 , 

through which the calculation and parameters of the 

model are reduced, maintaining the effectiveness and 

expressive ability of the model. 

Next, feature a is segmented into two parts based on the 

second dimension: 2
1 2,  

h w

h w

P P HW
B D

P P
ps psX X

  

 Image slicing 

is performed to reduce the computational complexity of 

the network and improve the processing capability of 

large-size features as follows: 
 

 ps1 ps2X , X = Split X  (7) 

 

where, ps2X  serves as the input of the self-attention 

module; ps1X  serves as the residual connection and 2psX is 

concatenated according to the second dimension. Then, 

the "shuffling" mechanism is used to "shuffle" the 

concatenated features in the second dimension and the 

formula can be obtained as follows: 

 

     attn ps1 ps2 ps2 ps2 ps1F X , X = Cat Attn LN X + X , X  (8) 

 

The "shuffle" process is to scramble pixels inside the 

slice to achieve interaction within the block without 

changing the original block position. In the subsequent 

nonlinear transformation stage of the feedforward neural 

network, a similar processing method as described above 

is also used as follows: 
 

 shuffle attnX = Shuffle F  (9) 

 

 ps1 ps2 shuffleX' , X' = Split X  (10) 

 

     ffn ps1 ps2 ps2 ps2 ps1F X' , X' = Cat FFN LN X' + X' , X'  (11) 

 

 ShuffleViT ffnX = Shuffle F  (12) 

 

where, 
attnF  represents the output feature of the multi-

head attention network part; shuffleX  represents the feature 

data after the secondary channel rearrangement;
ps1X'  and 

ps2X' represents the block feature vectors after the 

secondary slicing process; LN represents the 

normalization operation; FFN represents the feedforward 

Neural network;
ffnF  represents the output of the 

feedforward network after channel rearrangement and

ShuffleViTX represents the output characteristics of the 

entire improved module. 

According to the improved method, the calculation of 

the ShuffleViT Block is significantly reduced. Through 

sharing and channel rearranging, the ability to extract 

global features is improved without losing the position 

information of slices, thereby addressing the issue of 

algorithm overfitting (Appendix 1 for detailed code). 
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Fig. 11: Structure diagram of multi-head attention mechanism backbone network based on channel rearrangement 
 

 
 
Fig. 12: R-CBAM module structure 
 

Overall Structure of the Backbone Network with 

Multi-Head Attention Mechanism Based on Channel 

Rearrangement 

The Shuffle Block module and ShuffleViT Block 

module are combined to form the overall network 

structure, in Fig. 11. A convolution module with a 3×3 

size convolution kernel, a pooling module with a 3×3 size 

pooling kernel, and three down sampling Shuffle Block 

modules are selected to down sample the input features. 

The non-down sampling Shuffle Block modules and 

ShuffleViT modules in different structural regions are 

used to extract features of the input image data. 

Introduction of R-CBAM Hybrid Attention Mechanism 

When detecting cotton apical buds in the field, it is 

difficult to accurately detect small targets due to the 

small size and complex background of the target in real-

scene image data. To this end, attention mechanisms 

need to be added. CBAM (Convolutional Block 

Attention Module) is an attention mechanism module 

that is used to enhance the modeling ability of 

convolutional neural networks for spatial and channel 

attention (Hu and Mingyu, 2022; Ran et al., 2023). 

CBAM has the disadvantages of increasing the 

complexity and calculation of the network, as well as 

increasing the time and resource consumption of training 

and inference (Wang et al., 2023). CBAM needs to be 

improved. The improved structure is shown in Fig. 12. The 

fully connected layer in the channel attention is replaced 

with a 1×1 convolution and the attention in the channel 

domain and spatial domain is adjusted to a parallel state, 

with the original input feature B C W HX    serving as the 

input of the two-dimensional attention module. Then, the 

feature information extracted from the spatial domain is 

multiplied with the original input feature 
B C W HX     to 

obtain the mixed information of the spatial domain. The 

obtained mixed information of the spatial domain is 

multiplied with the output feature of the channel domain to 

obtain the complete spatial channel mixed attention feature 

information. Finally, the feature information of the two 

dimensions is achieved without mutual interference, 

thereby effectively avoiding overfitting caused by the 

weighted overlap. The improved model is called R-CBAM 

(detailed code can be found in Appendix 2). 

The R-CBAM module is define  saF X d as representing 

the spatial domain output features;  caF X  representing the 

channel domain output features;  1

MLPF X  and  2

MLPF X

representing the output features of two fully connected 

neural network layers, respectively, and  R-CABMF X

representing the output features of the entire attention 

module, then B C W HX    . When inputting features, the 

inference process of R-CBAM can be expressed as follows: 
 

        saF X = s Conv Cat Mean X , Max X  (13) 

 

      1

MLPF X = Conv ReLu Conv AvgPool X  (14) 

 

      2

MLPF X = Conv ReLu Conv MaxPool X  (15) 

 

      1 2

ca MLP MLPF X = σ F X +F X  (16) 

 

      R-CABM ca saF X = F X AX AF X  (17) 

 
where,  represents the sigmoid function; Conv represents 

the convolution module with a core of 7×7; Mean represents 

the mean function; Relu represents the Rectified Linear Unit 

activation function; Max represents the maximum value 

function; Avg pool and Max pool represent the mean pooling 

and maximum pooling functions, respectively. 
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Fig. 13: Improved RetinaNet network structure 
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Improved RetinaNet Network Architecture 

The overall network structure of the target detection 

algorithm for cotton top buds based on improved RetinaNet 

is shown in Fig. 13. The network introduces a multi-head 

attention mechanism to capture feature information of 

different scales and semantics and rearranges the features 

of different channels. The multi-head attention mechanism 

is shown in Fig. 13. Figure 13, there are two intervals in the 

three 1×1 convolution kernels. The ASPP atrous 

convolution module is added to the intervals to connect the 

convolution kernel (Conv2d). Then the receptive field of 

the convolution kernel is expanded through two up-

samples, so as to combine the two up-sampling results with 

Concat and output it as a 3×3 convolution kernel. Finally, 

before extracting the feature values, the CBAM module is 

introduced to combine the channel attention mechanism 

and the spatial attention mechanism, which can pay 

attention to the feature information of the channel dimension 

and the spatial dimension at the same time. By applying a 

parallel spatial attention mechanism in the connection part of 

the detection head, the sensitivity of the network to the target 

location and scale can be improved. In this way, the 

accuracy and robustness of target detection can be 

improved, especially for small targets and occluded targets.  

Results 

Verification of the Target Detection Algorithm for 

Cotton Apical Buds Based on RetinaNet 

To further illustrate the improved target detection 

algorithm for cotton apical buds based on the RetinaNet 

algorithm, the effectiveness of the improved algorithm 

will be verified through multiple sets of experiments. 

Experimental Parameters and Environment Settings 

In the experiment, 4,000 images were used as a data 

set, which was divided into a training set and a test set at 

a ratio of three to one. The process of data reading in the 

experiment includes the following steps: 
 
(1) Use the voc_annotation.py file to divide the data set into 

four Txt files, including the original image of the training 

set, the label image of the training set, the original image 

of the test set, and the label of the test set image 

(2) In the data loader, read these four txt files and obtain 

the path information of the image 

(3) Read the corresponding picture according to the path 

information and return it as part of the data 

(4) At the same time, label information is provided for 
each picture and the position of cotton apical buds is 
m. Through this data reading process, the images and 
labels in the training set and the test set are paired for 
model training and performance evaluation on the 
test set, marked as 1, indicating that this is the 
position of the cotton core 

Table 6: Experimental parameters and environmental configuration 

Types Setting content 

Data enhanced Rotation, mirror image, black  

 and white, brightness 

Input feature size 640*640 
Category 1 

Batch size 32 

Training times  100 epoch 
Learning rate adjustment strategy Simulated cosine annealing 

 algorithm 

Graphics card RTX3090 (24GB) 

System Ubuntu 20.0 

 

 
 
Fig. 14: Improved RetinaNet algorithm confidence curve 
 

 
 

Fig. 15: Loss function of the improved RetinaNet algorithm 
 

The specific experimental parameters and 

environmental settings are in Table 6.  

Verification Results of the Target Detection 

Algorithm for Cotton Apical Buds based on RetinaNet 

The detection and recognition results in Fig. 14. It can 

be seen from Fig. 14 that the improved algorithm can 

accurately identify cotton apical buds. 

The confidence curve is shown in Fig. 15. It can be 

seen from Fig. 15 that the confidence performance is 

optimal, which tends to be stable after training for about 

60 times and the confidence of the prediction results is 

relatively high. 

The image of the loss function of the improved 

RetinaNet algorithm is shown in Fig. 15. It can be seen 

that both the training set loss and the test set loss tend to 
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decrease, indicating that the model detection is normal 

and the model parameters are well modulated. 

From the above experimental results, it can be 

concluded that the model has a high accuracy in 

determining the cotton apical buds. The improved 

RetinaNet algorithm has a recall rate of 91.10%, 

mAP@0.5 and the average accuracy is 96.25%. 

Discussion 

In order to improve the recognition accuracy of cotton 

top buds, an improved method based on RetinaNet network 

for accurate identification of cotton top buds under natural 

light is proposed. By introducing improved modules such 

as ShuffleViT Block, ASPP and R-CBAM, compared with 

the original Retina Net model, the improved recall rate can 

reach 91.10%, mAP@0.5 can reach 0.96, the recall rate is 

83.61%, and the average precision of mAP@0.5 is 77.64%, 

which are increased by 7.49% and 18.61% respectively. 

The effectiveness of the improved RetinaNet algorithm has 

been verified, and its advantages in cotton top bud 

recognition have been demonstrated. 

However, this algorithm lacks a critical discussion of 

the limitations and potential sources of errors in the 

results, and it has not been tested in the field, nor has it 

taken into account the impact of wind on cotton 

cotyledons that cover the top buds of cotton. In the future, 

we will focus on analyzing the limitations and potential 

sources of errors of this algorithm, further optimizing it, 

and verifying it in cotton fields. 

Conclusion 

Through introducing improved modules such as 

ShuffleViT Block, ASPP, and R-CBAM, the improved 

RetinaNet algorithm has achieved satisfactory results 

in the recognition of cotton apical buds compared with 

the original RetinaNet model, the recognition and 

positioning accuracy of the improved model is 

significantly improved. The improved recall rate can 

reach 91.10%, and mAP@0.5 can reach 0.96. 

Compared with the traditional RetinaNet algorithm, 

the recall rate is 83.61% and mAP@0.5 (average 

precision mean) is 77.64%, increased by 7.49% and 

18.61% respectively. The effectiveness of the 

improved RetinaNet algorithm is demonstrated and its 

advantages in the recognitionof cotton apical buds are 

demonstrated. However, the algorithm has not 

experimented in the field, nor has it taken into account 

the effect of wind on the cotton cotyledons that shade 

the cotton apical buds. Our future work would focus 

on the verification of the effectiveness of the 

algorithm in the field. 
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