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Abstract: Verticillium wilt is a significant disease that affects cotton plants, 

which can lead to stunted growth and reduced yield. To address this, a multi-

spectral comprehensive monitoring disease index model is developed using 

an Unmanned Aerial Vehicle (UAV) to monitor the severity of cotton 

Verticillium wilt. First, multi-spectral dates were collected from Hexacopter 

(HY-6X) and the phenotype disease grade of cotton plants at monitoring sites 

was investigated. Then, a new indicator for cotton diseases was established 

using the correlation coefficient method and optimal index factor method and 

the regression models for four types of cotton diseases were established. The 

results show that cotton plants with different severity of Verticillium wilt 

have different spectral characteristics in the near-infrared and visible light 

bands. As the disease severity increased, the spectral reflectance of the cotton 

canopy increased from 470-656nm. Combined Difference Vegetation Index 

(DVI) with B3-B5-B8, a new index, UAV multispectral comprehensive 

monitoring disease index is created. Taking the comprehensive indicator as 

the independent variable, a regression model including multiple-linear 

regression, partial least squares regression, principal component analysis and 

support vector machine regression is established. The results show the 

support vector machine regression model has the highest accuracy 

(prediction set R2 = 0.91, RMSE = 0.07; validation set R2 = 0.89, RMSE = 0.08; 

and the linear relationship is significant at the 95% level). Compared with 

other indicators, using UAV for monitoring cotton disease severity will be 

the optimal model for motoring the severity of cotton diseases. 

 

Keywords: Cotton, Disease, UAV, Multi-Spectral, Comprehensive 

Monitoring Index of Disease, Regression Models 

 

Introduction 

Cotton Verticillium wilt is a major disease of cotton 

and is one of the diseases that restrict cotton production. 

Song et al. (2023) found that a reduction or no yield would 

seriously affect the production efficiency of cotton and 

bring great harm to the cotton industry. Cotton 

Verticillium wilthas become one of the most preventable 

diseases in the world.  

Jing et al. (2021) thought that traditional crop disease 

monitoring methods mainly rely on professional and 

technical personnel to investigate, analyze and determine 

the severity of the disease in the field, which is time-

consuming, laborious, highly subjective and has poor 

timeliness, making it difficult for large-scale investigation 

(Jing et al., 2021; Manowarul et al., 2023). Compared 

with the deficiencies of traditional crop disease 

monitoring methods, UAV multispectral technology is 

fast, non-destructive, efficient and objective, which can 

make up for the deficiencies of traditional monitoring 

points and provide a reference for large-scale crop 

disease monitoring by satellite remote sensing.  

Using hyper-spectral data, multispectral data and 

satellite images, (Chen et al., 2007; Chen et al., 2011) 

monitored the Crop diseases and analyzed the 

characteristics of spectral position variables (Hu et al., 

2022; Chen et al., 2007) after crop diseases. They include 

"blue shift" and "red shift" in the position of red edge and 

spectral characteristics absorption parameters, such as the 

position of absorption peak, valley, width, depth and area. 

The screening and sensitivity characteristics of vegetation 

index, including vegetation index, can better reflect the 

change characteristics after disease, as well as the 

combination of sensitive bands. The qualitative and 
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quantitative identification of crop diseases can be realized 

by establishing the monitoring model of crop disease 

severity. The monitoring models for crop disease 

severity can be generally divided into two categories: 

Statistical models and artificial intelligence models 

(Dhiman et al., 2023). Song thought that statistical 

models were intuitive and simple, such as linear and 

nonlinear models, but their accuracy was limited and the 

autocorrelation was relatively strong when the sample 

size was large (Song et al., 2022). Artificial intelligence 

models are highly accurate, but complex, such as 

artificial neural network models, support vector machine 

models and deep learning algorithm models. Different 

parameters need to be selected and input. Chen et al. 

(2012) improved the algorithm accuracy, which is 

subjective to a certain extent and has a certain impact on 

the stability of results. They also established a statistical 

linear model based on hyperspectral data and a model 

based on an IKNOS image using a partial least squares 

regression method to quantitatively estimate the severity 

of cotton Verticillium wilt disease.  
There are also studies on crop disease estimation using 

digital images, thermal infrared images, fluorescence 

imaging and radar images. Shi et al. (2020) used the 

relationship between the RGB-to-HIS spatial 

transformation of cotton canopy images and the 

vegetation index of typical diseases to identify features 

sensitive to changes in Verticillium wiltsymptoms through 

the Relief-F algorithm and established a logarithmic model 

for disease monitoring. Calderón et al. (2013) used laser-

induced fluorescence imaging to monitor Verticillum wilt 

of citrus. Lan et al. (2022) reviewed the research progress of 

remote sensing monitoring and prediction of crop diseases 

and insect pests. 

 Previous research on crop diseases has been carried 

out by using different remote-sensing data sources. They 

mainly focused on wheat rust, rice spike neck plague, 

citrus Verticillium wilt and other diseases. There is no 

systematic report on the prediction of Verticillium wilt 

severity by regression model based on the new UAV 

multi-spectral monitoring comprehensive index. 
In recent years, studies on monitoring crop diseases 

mainly use UAV remote sensing. Yu et al. (2021) using 

the fusion of hyperspectral imaging data of UAV and laser 

radar data accurately evaluated the damage rate of pine 

forest branches in the early monitoring of pine shoot 

beetles. Dang et al. (2020) obtained UAV-based visible 

radish wilt image data, segmented the images using a 

linear spectral clustering super-pixel algorithm and 

constructed a Rad RGB model to classify different radish, 

soil and plastic film regions. Xavier et al. (2019) used 

multi-spectral sensors to obtain multi-spectral images of 

different pest and disease stress areas, extracted spectral 

information and established classification models to 

successfully identify pests and diseases in cotton wilt 

stress areas. Pan et al. (2021) classified healthy wheat, 

yellow rust wheat and bare soil in UAV images based on 

the PSP Net semantic segmentation model and the 

recognition accuracy reached 98%. Kong et al. (2020) 

established the UAV hyperspectral vegetation index 

combination based on the random forest method and 

realized the monitoring of rice spike neck blast; the 

prediction set accuracy was 90%. Zhang et al. (2020) 

proposed a rice disease ratio method based on UAV 

multi-spectral images and established a corresponding 

model for rice leaf blasts based on the support vector 

machine algorithm.  

In this study, taking the field of cotton Verticillium 

wilt as the research object, a new UAV multi-spectral 

monitoring comprehensive disease index was established 

and different types of regression models were constructed 

to estimate the severity of Verticillium wilt. It could 

provide a theoretical basis for the quantitative and 

accurate identification of cotton field diseases by UAV 

multi-spectral remote sensing and provide a reference for 

the quantitative monitoring of similar crop diseases and 

pests by UAV multi-spectral remote sensing. Our main 

contributions are as follows: 
 
1. The multi-spectral changes of cotton Verticillium wilt 

canopy monitored by UAV were significant in 

different degrees. Especially at 710-950 nm, the 

spectral curves of cotton fields with different degrees 

of disease changed significantly 

2. DVI was the optimal vegetation index for UAV 

multi-spectral identification of cotton Verticillium 

wilt canopy with different severity  

3. Four regression models were established based on B-

RBDVI, among which the accuracy of the support 

vector machine regression model was the highest 
 

Materials and Methods 

Test Site Overview and Test Design 

This study was conducted at the cotton Verticillium 

wiltnursery of Xinjiang academy of agricultural Reclamation 

sciences in Shihezi (44°32′N, 85°97′E), Xinjiang. The soil is 

grey desert soil, with an organic matter of 21.3 g/kg, total 

nitrogen of 0.2%, available phosphorus of 55.5 mg/kg and 

available potassium of 664.1 mg/kg. The cotton, Xinluzao 8 

was sown on April 17, 2020 and April 20, 2021, respectively. 

The planting mode was drip irrigation under film, with a 

width and narrow row (66+10) cm of machine-harvested 

cotton, a plant spacing of 9.6 cm and a planting area of 

approximately 1.45 hm2. The plot was divided into 3 plots 

(0.49 hm2 for each plot), that is, 3 replicates. The irrigation 

was about 5775 m3/hm2 in the whole cotton growth 

period. It was applied with pure N 420, P2O5 210 and k2 

O 155 kg/hm2 with water and no base fertilizer. There were 

a total of 66 ground monitoring points arranged in a network 

format, with 22 monitoring points in each repeated plot. Each 
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plot was equipped with 3 or more replicates of disease 

severity. Each monitoring point was marked with a 

measuring instrument-Global Positioning System (GPS). 

Other cultivation techniques are managed according to the 

high yield of cotton, in Fig. 1. 

Test Site Overview and Test Design 

The UAV is a Hexacopter (HY-6X), with a weight of 

4.1 kg, a flight control voltage of 21.5 V~23 V, an 
endurance time of about 25 min and a maximum load of 3.0 
kg. A multi-spectral camera with 12 channels was installed 
under the UAV and the camera is equipped with 
12801024 pixel Complementary Metal-Oxide-
Semiconductor (CMOS), with a focal length of 9.6 mm in 

each of 12 bands. The characteristics of Micro MCA12 
snap in Table 1. 

The UAV aerial photography operation was carried 

out from 11:00-13:00, under high visibility and low wind 

speed on clear days, with a flying altitude of 100 m and 

a flying speed of 5 ms1. The lateral overlap rate of 

heading was 80% and the flight overlap rate also was 

80%, with a multi-spectral resolution of 10-20 nm and a 

spatial resolution of about 5.5 cm. The acquisition time 

of UAV multi-spectral images in the test field was: June 

30 (bud stage), July 15 (blessing and boll-forming 

stages), August 10 (blossing and boll-forming stages), 

August 23 (blossing and boll-forming stages) and 

September 17 (boll opening stages), 2020; July 1 (bud 

stage), July 19 (blossing and boll-forming stages), 

August 11 (blossing and boll-forming stages) and 

August 25 (boll opening stages), 2021. 

Methods of Disease Investigation and Classification 

After the UAV multi-spectral image data collection 

was completed, the phenotype of cotton plants at the 

monitoring sites was immediately investigated and the 

disease grade was performed according to the disease 

grade classification standard of "technical specification for 

evaluation of resistance to pests and diseases of cotton, part 

5: Verticillium Wilt" (GB/T 22101.5-2009) (Zhang et al., 

2020). Then, disease severity (b0-b4) was divided 

according to the disease index (Huang et al., 2023). 

Details are shown in Table 2. Meanwhile, the incidence 

of the cotton canopy in the monitoring sites was 

recorded by camera. 

Data Processing and Analysis 

Multi-spectral Image Pretreatment of UAV 

Image stitching, overlay, radiation correction and 

accuracy (over 95%) correction were performed in pix 

4D mapper software. Using the ENVI 5.3 software, 

based on the characteristics of UAV multi-spectral data 

combined with previous studies, 15 vegetation indices 

were selected (Table 3).  

 
 
Fig. 1: Schematic diagram of test area 

 
Table 1: Band characteristics of micro MCA12 snap 

Bands Wavelength-width Bands Wavelength-width 

B1 470-10 B07 760-10 

B2 515-10 B08 800-10 

B3 550-10 B09 830-10 

B4 610-10 B10 860-10 

B5 656-10 B11 900-20 

B6 710-10 B12 950-20 

 
Table 2: Classification standard of cotton verticillium wilt 

disease severity 

Disease severity Disease index (%) Disease division standard 

b0 (Health) 0 No diseased leaves 

b1 (Slight) 0＜DI≤25 Less than 25% of leaves 

  showed symptoms 

b2 (Moderate) 25＜DI≤50 25-50% of leaves 

  showed symptoms 

b3 (Serious) 50＜DI≤75 50~75% of leaves 

  showed symptoms, some 

  leaves wither and fall 

b4 (Critical) 75＜DI≤100 More than 75% of 

  leaves were infected,  

  with the majority  

  showing brown spot 

 

Optimal Band Combination Selecting 

The optimal band combination was selected based on 

the best index factor (optimum index factor, ROIF) and 

calculated by the following formula (Song et al., 2022): 
 

231312

321

RRR

SSS
ROIF






 (1) 
 
where, S1, S2 and S3 represent the standard deviation of any 

three multi-spectral bands and R12, R13 and R23 are the 

corresponding Pearson (Pearson) correlation 

coefficients between any three bands. The 12 bands 

could derive 220 band combinations that are made up of 

three bands. Gray scale variance and correlation were 

analyzed in SPSS 12.0 software to calculate ROIF. The top 

15 band combinations with the largest ROIF values were 

selected. The larger the ROIF value, the higher the quality 

and quantity of band combination information and the 

better the correlation. 
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Table 3: Vegetation indexes related to crop diseases and insect pests 

Name of vegetation index Abbreviation Formula Reference  

Normalized differential vegetation index NDVI 800 656 800 656( ) / ( )R R R R   He et al. (2018) 

Ratio vegetation index RVI 800 656/R R  Hikishima et al. (2010) 

Differential vegetation index DVI R800-R656 Huang et al. (2019) 

Re normalized differential vegetation index RDVI 656800656800 /)( RRRR   Jonas and Gunter (2007) 

Green band normalized differential vegetation index GNDVI    800 550 800 550/R R R R   Kerkech et al. (2018) 

Red edge normalized difference vegetation index RENDVI 760 710 760 710( ) / ( )R R R R   Kumar et al. (2012) 

Normalized difference greenness index NDGI 550 656 550 656( - ) / ( + )R R R R  Jia et al. (2012) 

Triangle vegetation index TVI 800 550 656 5500.5*[120*( ) 200*( )]R R R R    Li et al. (2012) 

Soil adjusted vegetation index SAVI 800 656 800 6561.5*( ) / ( 0.5)R R R R    Lin et al. (2016) 

Optimize soil-adjusted vegetation index OSAVI   )16.0/( 656800656800  RRRR  Elkington (1987) 

Modified soil adjusted vegetation index MSAVI      
2

800 800 800 6560.5* 2* 1 2* 1 8R R R R     
  

 Mcfeeters (1996) 

Anthocyanin reflex index ARI 550 7101/ 1/R R  Mirik et al. (2012) 

 Enhanced vegetation index EVI 800 656 800 656 5502.5*{( ) / ( 6* 7.5* 1)}R R R R R     Penuelas and Filella (1998) 

Normalized differential water index NDWI    950 550 950 550
/R R R R   Phadikar et al. (2012) 

Water band index WBI 900 950R / R  Naidu et al. (2009) 

 

Modeling Method and Evaluation Indexes 

Four modeling methods: Multiple Linear Regression 

(MLR), Partial Least Squares Regression (PLSR), 

Principal Component Analysis regression (PCA) and 

Support Vector Machine regression (SVM) were used. In 

2020, 55 samples were used to establish patterns and in 

2021, 56 samples were used to test patterns. The larger the 

R2, the smaller the RMSE, indicating the higher the 

accuracy and reliability of the model. 

Results and Discussion 

Multi-Spectral Characteristics of UAV in the 

Canopy of Cotton with Different Disease Severity 

The lighter the degree of disease in cotton fields, the 
higher the spectral reflectance value (vertical axis) in Fig. 2. 
Compared with b0, the canopy spectral reflectance of 
cotton with different disease severity (b1-b 4) changes 
greatly (Fig. 2). In the range of visible band (470-656 
nm), the reflectance of the canopy of b1-b 4 remains 
unchanged in the band of 470-515 nm; the reflectance of 
the canopy of b0-b 4 increased in 515-550 nm and reached 
its peak at 550 nm; the reflectance of b0-b4 decreases within 
610-656 nm. In the red sideband range (710-760 nm), the 
canopy reflectance of b0~b4 increases significantly and 
the reflectance value gradually decreases with the disease 
severity (b0-b4) increased. In the range of near-infrared 
band (800-950 nm), the canopy spectral reflectance of 
cotton with different disease severity (b0-b4) was 
basically stable and the spectral reflectance values rank 
as b0>b1>b2>b3>b4. The above results indicate that 
the multi-spectral image characteristics (spectral 
reflectance) of UAV change greatly with different 

cotton Verticillium wilt and can effectively reflect the 
cotton diseases. 

Established a New Comprehensive Monitoring 

Disease Index from Multi-Spectrum Data of UAV 

Through extracting the spectral reflectance of cotton 

canopy with different disease severity at the monitoring 

points, the vegetation index was constructed and its 

correlation with disease severity was analyzed (Table 4). 

The results show that NDWI, WBI and NDGI have a 

positive correlation with cotton disease severity and the 

correlation coefficient is small. NDVI, RVI, DVI, RDVI, 

GNDVI, RENDVI, TVI, SAVI, OSAVI, MSAVI, ARI 

and EVI have a significant negative correlation with cotton 

disease severity and DVI has the strongest negative 

correlation with cotton disease severity, with a correlation 

coefficient of -0.86. Therefore, DVI could be initially used 

as the optimal vegetation index for optimum vegetation 

index for identifying the severity of cotton disease. 

 

 
 
Fig. 2: Multi-spectral characteristic curve of UAV for cotton 

Verticillium wilt of different severity 
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Table 4: Correlation between spectral vegetation indexes and disease severity of 

cotton canopy 

 Correlati   Correlati 

Vegetation  on  Vegetation on 

index coefficient Order index coefficient Order 

DVI -0.86** 1 RENDVI -0.49**   9 

TVI -0.73** 2 NDVI -0.37** 10 

RDVI -0.71** 3 EVI -0.36** 11 

SAVI -0.70** 4 NDGI 0.30** 12 

MSAVI -0.68** 5 RVI -0.27** 13 

GNDVI -0.67** 6 WBI 0.16** 14 

ARI -0.56** 7 NDWI 0.12* 15 

OSAVI -0.55** 8 - - - 

Note: ** and *indicate extremely significant difference (p<0.01) and significant (p<0.05) 

 
Table 5: The top 15 band combinations of OIF values 

No Band combination OIF value Number Band combination OIF value 

1 B3,B5,B8 153.44  9 B1,B6,B10 81.88 

2 B4,B6,B8 132.26 10 B1,B7,B8 80.98 

3 B4,B6,B9 128.28 11 B1,B6,B8 79.61 

4 B4,B6,B10 109.57 12 B1,B6,B9 79.21 

5 B2,B3,B8 097.48 13 B4,B5,B9 73.56 

6 B4,B5,B8 091.76 14 B3,B6,B9 70.73 

7 B3,B6,B8 089.27 15 B2,B8,B11 67.83 

8 B3,B5,B9 083.71 / / / 

 

According to the correlation coefficient results in 

Table 2, the optimal band combination of cotton disease 

severity was further selected with the help of OIF value 

(Table 5). Table 3 shows the OIF values of the top 15 

bands between 67.83-153.44 and the top three bands 

are [B (3-5-8)], [B (4-6-8)] and [B (4-6-9)]. Since the 

combination of B3, B5 and B8 corresponds to the largest OIF 

value; the wavelength of this band combination corresponds 

to 550, 656 and 800 nm respectively, representing the green 

light band, red band and red sideband. It is a sensitive band 

for vegetation identification and consistent with the analysis 

results of the above correlation coefficients and can better 

reflect the incidence of cotton disease severity. Therefore, 

based on the reflectance value of the optimal spectral band 

B3-B5-B8 for cotton diseases, [B (3-5-8)] could be used 

as the best band combination for UAV multi-spectral data 

and a new integrated multi-spectral disease monitoring 

index to B-RBDVI (RB (3-5-8) + DVI) could be created 

to provide a basis for UAV multi-spectral data to monitor 

cotton diseases. 

Establishment of a Cotton Disease Model Using 

UAV Multi-Spectrum Data 

Using the multi-spectral disease monitoring index 

B-RBDVI (RB (3-5-8) + DVI) as the independent 

variable, four estimation models of cotton disease severity 

are established, namely the multiple linear regression 

model, partial least squares regression model, principal 

component analysis regression model and support vector 

machine regression model (Table 6). Table 6 shows that 

the complexity of the four regression monitoring 

models is similar. According to the accuracy evaluation 

index of the prediction set, the difference between R2 and 

RMSE values is small. All R2 exceeds 0.88(0.880-0.912) 

and RMSE is less than 0.08 (0.065-0.079), which can be 

used to accurately estimate the disease severity of cotton 

canopy. Among them, the support vector machine 

regression model has the highest accuracy (prediction 

set R2 = 0.912, RMSE = 0.065), followed by the 

multivariate linear regression model (prediction set 

R2=0.912, RMSE = 0.065) and then the partial least 

squares regression model and principal component 

analysis model, with the same accuracy of the prediction 

set (prediction set R2 = 0.879, RMSE = 0.079). 
 
Table 6: Cotton verticillium severity monitoring model 

Variable Model Model expression R2 RMSE 

 Multiple linear y = 1.694- 0.880 0.078 

 regression models 4.106*RB3+ 

  2.313*RB 

  RB5-2.40RB8- 

  0.272*DVI 

 Partialleast y = 1.729- 0.879 0.079 

 squaresregression 0.427*RB3+ 

 model 0.583*RB 

  RB5-3.064*RB8- 

  0.386*DVI 

RB (3-5-8) +DVI Principal y = 1.723- 0.879 0.079 

 component 0.442*RB3+ 

 analysis 0.619*RB5- 

  3.062*RB8- 

  0.344*DVI 

 Vectormachine / 0.912 0.065 

 regression model  

 

 
(a) 
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(c) 

 

 
(d) 

 
Fig. 3: Correlation between the measured and predicted values 

of different monitoring models; (a) Correlation between 

the measured and predicted values of the multiple linear 

regression models; (b) Correlation between the measured 

and predicted values of the partial least squares 

regression model; (c) Correlation between the measured 

and predicted values of the regression model by principal 

component analysis; (d) Correlation between the 

measured and predicted values of the support vector 

machine regression model 
 

Verification of the Cotton Disease Model by Multi-

Spectrum Data of UAV 

To verify the reliability of the four prediction models 

based on B-RBDVI (RB (3-5-8) + DVI), the four tested 

regression models from B-RBDVI are established and 

verified. The correlation between the measured values and 

predicted values of the verified models is Fig. 3. 

Figure 3, the four test regression models of B-RBDVI 

have high accuracy, with R2 higher than 0.88 and RMSE 

lower than 0.09. The validation accuracy and reliability 

of the support vector machine regression mode of B-

RBDVI are the highest, with R2 = 0.89 and RMSE = 0.08. 

The multiple linear regression model of B-RBDVI is 

followed, with R2 = 0.88 and RMSE = 0.08. The accuracy 

and reliability of the partial least squares regression 

model and principal component analysis regression 

model of B-RBDVI are basically the same, (which are 

inferior to the support vector machine regression mode 

and multiple linear regression model), with the validation 

set R2 = 0.88, RMSE = 0.09. Therefore, the support vector 

machine regression model of B-RBDVI (RB (3-5-8) + 

DVI) can be used as the optimal model for monitoring the 

cotton disease severity. 

Using the comprehensive index, the statistical 

method and the mathematical method are combined to 

realize the detection of cotton Verticillium wilt, 

improving the monitoring accuracy. It is found that the 

UAV multi-spectral reflectance of cotton disease 

decreases in the visible band and increases in the near-

infrared band after the occurrence of Verticillium wilt. 

This is consistent with the results of near-earth 

hyperspectral remote sensing monitoring (Hu et al., 

2022). The reason may be that the physiological and 

biochemical parameters of cotton plants are changed after 

being subjected to Verticillium wilt pathogen stress, 

leading to changes in external morphology and canopy 

parameters. The main symptoms are water loss, LAI, 

coverage and biomass reduction (Song et al., 2022), 

which leads to significant changes in the spectral response 

characteristics within specific bands (Hu et al., 2022; 

Chen et al., 2007). At the same time, cotton plants are also 

affected by other factors (such as soil type, weather 

information, geographical factors, multiple stresses, etc.,) 

in the process of Verticillium wilt infection. 

When estimating the severity of cotton Verticillium 

wilt by using near-ground hyper-spectrum, the optimal 

vegetation index DVI from UAV multispectral data to 

monitor cotton Verticillium wilt were consistent with the 

research results by Chen et al. (2007) It is verified that the 

optimal vegetation index DVI of near-earth hyperspectral 

and UAV multispectral is verified to be consistent with 

the results of cotton Verticillium wilt. It provides a 

reference for data normalization of remote sensing 

monitoring platforms (usually with different spectral 

resolution, temporal resolution and spatial resolution). 

Wang et al. (2021) studied the differences and similarities 

in the vegetation index (NDVI, RVI, DVI) of cotton 

damage prediction and screening by hail. Wang et al. 

(2021) also selected the same vegetation index DVI, 

which is consistent with ours. Wang et al. (2021) also 

selected the vegetation index RVI and DVI, which are 

different from ours. It may be that the changes in the 

cotton canopy after a hail disaster are similar to the cotton 

canopy after disease, but the spectral characteristics are 

different. The grayscale standard deviation method and 

correlation analysis method are combined to select the 
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optimal band combination. The results of the selected 

optimal band group (B3-B5-B8) are inconsistent with those 

of (Si et al., 2022) (the optimal band was B1-B6-B12). The 

reason may be that here cotton plants and bare soil of 

different severity are mainly concerned. Si et al. (2022) 

mainly focused on trees, bare soil and vegetation. In this 

study, B-RBDVI (RB(3-5-8)+ DVI), a newly established 

multispectral of UAV disease monitoring index, is used as 

the parameter of the estimation model for Verticillium wilt 

and a cotton Verticillium wilt severity model was 

established based on the newly established index.  

The verification results show that the support vector 

machine regression monitoring model has the highest 

accuracy. Due to the different properties of models, their 

accuracy and reliability are also different. The accuracy 

and reliability of the established model are consistent with 

the cotton Verticillium wilt severity monitoring model 

(Jing et al., 2021). The results are more accurate than that 

of Liu et al. (2009), who used the NDVI index to build a 

model for wheat disease prediction and the accuracy R2 

reached 0.61. The possible reason is the modelling 

parameter used by Liu et al. (2009) is a single index NDVI 

with a modeling sample of 26. The prediction object is 

wheat stripe rust which is caused by different index types, 

modeling quantities and disease types. Compared with the 

research on the prediction methods of cotton mite damage 

in Xinjiang (Wang et al., 2017), the accuracy of the 

prediction model was improved to 96.84%, which was 

slightly higher than ours. However, they believe that 

the RVM model based on remote sensing 

meteorological data has the best prediction 

performance, with an accuracy of 85.7%, slightly lower 

than ours. It can be seen that different types of pests 

and diseases, different types of remote sensing and 

ground data sources and different types of models lead 

to different effects of model prediction and estimation. 

 There are still some limitations: Due to the limited 

number of bands used in the UAV multi-spectral sensor, the 

band accuracy and band screening of 12 bands are limited. 

To improve the accuracy of the model, it is necessary to 

further optimize the band screening algorithm and 

constantly improve the monitoring accuracy of the model. 

Considering many uncertain factors in field experiments, a 

comprehensive consideration of multiple factors (such as 

soil type, weather information, geographical factors, 

multiple stresses, etc.,) is needed in the future research 

process to verify the accuracy of the monitoring model. To 

improve the estimation accuracy of the model, these factors 

should be taken into account as independent variables to 

increase the universality of the model. 

Conclusion 

In this study, the multispectral image data of UAV and 

ground disease survey data were used to estimate the 

severity of Verticillium wilt in cotton and the severity of 

diseases in cotton fields was estimated. The main 

conclusions were as follows. 

The multi-spectral changes of cotton Verticillium wilt 

canopy monitored by UAV are obvious in different 

degrees. The spectral reflectance of the cotton canopy 

increased slightly at 470~656 nm and decreased slightly 

at 710~950nm with the increase in disease severity. 

DVI (|r| = 0.86) was the best vegetation index to identify 

cotton Verticillium wilt canopy with different severity by 

multi-spectral of UAV, B3- B5-B8 (550-656-800 nm) was 

the optimal band combination and combination on DVI 

and B3-B5-B8, a new comprehensive monitoring index of 

disease, namely BRBDVI (RB (3-5-8) + DVI) was 

established to estimate cotton Verticillium wilt. 

 Four regression models were established on the 

base of B-RBDVI, among the regression models, the 

support vector machine regression model had the 

highest monitoring accuracy (prediction set R2 = 0.91, 

RMSE = 0.07; Validation set R2 = 0.89, RMSE = 0.08). 
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