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Abstract: Soybean diseases and insect pests are important factors that affect 

the output and quality of soybeans, thus it is necessary to do correct inspection 

and diagnosis of them. For this reason, based on improved transfer learning, 

this study proposed a classification method for soybean leaf diseases. Firstly, 

leaves were segmented from the whole image after removing the complicated 

background images. Secondly, the data-augmented method was applied to 

amplify the separated leaf disease image dataset to reduce overfitting. At last, 

the automatically fine-tuning convolutional neural network (Autotun) was 

adopted to classify the soybean leaf diseases. The verification accuracy of 

the proposed method is 94.23, 93.51 and 94.91% on VGG-16, ResNet-34 and 

DenseNet-121 networks respectively. Compared with the traditional fine-

tuning method of transfer learning, the results show that this method is better 

than the traditional transfer learning method. 
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Introduction 

Soybeans, the primary source of edible oils, are one of 

the leading seed soybean plants in the world today. Soybean 

oil accounts for 25% of the global edible oil. At the same 

time, it accounts for 60% of the global livestock feed, which 

is the main component in poultry and fish formula fodders 

(Agarwal et al., 2013). Besides, with the comprehensive 

soybean nutrition and abundant content, it is contributed to 

preventing heart disease and diabetics. Nowadays, China is 

the 4th soybean producing country in the world, next only to 

the USA, Brazil, and Argentina. Dating back to the 

agricultural era of China, the Chinese began to cultivate and 

plant soybeans. Also, the northeast is the leading soybean 

planting area in China. Different prevalent diseases and 

insect pests will take place every year. More severely, it will 

result in more than 30% of the output loss (Zhou et al., 2021). 

The insufficient soybean plant protection procedure, the 

increase of fungus virus pathogen categories, and poor 

cultivation methods are causes for increasing the damage 

degree of soybean plant diseases and insect pests. This thesis 

studied the categories of the soybean leaf diseases, which can 

be divided into multiple types, including anthracnose, 

bacterial blight, bacterial leaf spot, soybean mosaic virus, 

copper poison disease, charcoal rot, frogeye, leaf blight, 

wind blight, downy mildew, powdery mildew, rust 

disease and tan disease (Ohki et al., 2021).  

At present, recognition of soybean leaf diseases is 

based on human eye recognition, which will be influenced 

by a subjective explanation of crop disease professionals, 

resulting in misjudgment (Barbedo, 2016). Moreover, for 

most small and medium-sized farmers, it is difficult for them 

to contact professionals, leading to some delays in finding 

out the reasons for the leaf disease symptoms and preventive 

solutions. This severely affects the quality and output of 

soybeans. As a result, an automatic and reliable computer-

assisted system is needed to solve the efficiency issue of 

soybean leaf disease detection and recognition. At present, 

establishing accurate technology to identify soybean leaf 

diseases is the key to preventing soybean leaf diseases and 

insect pests. Detecting the plant diseases by using the 

technology of image processing is a difficult task 

(Sardogan et al., 2018; Rastogi et al., 2015; Prasad et al., 

2016; Khirade and Patil, 2015) Martinelli et al. (2015) have 

proposed various technologies of plant pest identification 

and detection and summarized the traditional detection 

technology and innovative detection technology from many 

aspects (Martinelli et al., 2015; Sankaran et al., 2010). 

In current days, the traditional detection technologies 

get involved in molecules, serology, and DNA while 

the innovative detection technologies include volatile 

organic compounds, spectrum technology 

Convolutional Neural Networks (CNN), etc. Shrivastava and 

Hooda (2014) put forward the digital picture processing 
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technique to detect and classify the tan disease and 

frogeye. In detail, the recognition accuracy rate of the tan 

disease and frogeye respectively reached 70 and 80%. 

However, the above-mentioned methods have shown 

some limitations. Firstly, the research only considered 

two kinds of soybean diseases and insect pests. 

Secondly, the recognition accuracy rate in the current 

research field was not enough. Based on salient regions, 

(Gui et al., 2015) came up with a method to detect 

soybean left disease and insect pests, extracting disease 

areas from soybean leaf disease images. However, such 

a method failed to detect the soybean disease types and 

the recognition accuracy rate. Kaur et al. (2018) studied 

and designed a semi-automatic soybean disease and 

insect pest recognition system based on the K-means 

algorithm, and identified 3 diseases including downy 

mildew, frogeye, and leaf blight. The average maximum 

accuracy rate reached 90%, which could not satisfy the high 

recognition accuracy rate in today's research fields. Araujo 

and Peixoto (2019) put forward a digital picture processing 

technology combined with the color moments, Local Binary 

Pattern (LBP), and Bag-of-Visual-words (BoVw) and 

recognized 8 kinds of leaf diseases, including bacterial blight, 

rust disease, copper poison disease, soybean mosaic virus, 

target leaf spot, downy mildew, powdery mildew, and tan 

disease, showing the classification accuracy rate of 75.8%. 

For this reason, the follow-up study can pay much 

attention to analyzing how to improve the recognition 

accuracy rate while identifying multiple types of 

soybean leaf diseases. As a modern image processing 

and data analysis method, deep learning is equipped 

with a good image analysis effect and huge 

development potential. With the successful application 

of deep learning in each field, it has been gradually 

applied in the agricultural field (Kamilaris and 

Prenafeta-Boldú, 2018). In the past several years, deep 

learning has gained extremely excellent performance, 

especially for the Deep Neural Network (DNN) 

(Learning, 2020). In the image recognition field, CNN 

is rapidly developing, which can extract key features 

from lots of input images. Soybean leaf diseases could 

be easily and accurately classified through CNN, 

however, which needs lots of calculation resources and 

time, as well as huge datasets or plenty of input images. 

To solve the above shortcomings of a convolutional 

neural network, transfer learning, a widely used 

technology, uses a deep neural network pre-trained on a 

large-scale data set to solve the specific model training 

task with limited data (Sufian et al., 2020). This research 

regards autotun (Basha et al., 2021) as the skeleton and 

put forward a soybean disease recognition system, 

which is composed of two modules, including the 

image processing module and classification module. 

The purpose of the image processing module is to 

extract the leaf region from the leaf image with a complex 

background, that is, to remove the background from the 

whole image. The classification module uses autotun to 

fine-tune pre-trained CNN on the soybean leaf disease 

datasets, thus the classification model trained in the original 

datasets will show excellent performance on the target 

dataset. In other words, more complicated features can be 

learned from the soybean leaf disease datasets to improve 

the leaf disease recognition accuracy rate. The results of the 

recognition system proposed in this research were 

compared with the traditional fine-tuning methods of 

transfer learning. Such methods and the method in this 

research have used the same dataset. The experimental and 

comparative analysis indicated that the method proposed in 

this research showed excellent performance, namely, 

relatively unapparent and more detailed leaf structure 

features could be successfully learned while getting a 

higher classification accuracy rate in the validation set. 

Materials and Methods 

Experimental Materials 

The soybean leaf disease image data used in this research 

were gained from the digi pathos plant dataset images 

provided by Embrapa, including 459 images and 11 types, 

which could be subdivided into bacterial leaf spot, southern 

blight, target leaf spot, rust disease, powdery mildew, downy 

mildew, copper poison disease, grey speck disease, soybean 

mosaic virus, healthy and unknown diseases. During the 

model training process, 80% of images were used for training 

while 20% of images were applied for validation. Table 1 

shows each leaf disease's image quantity in the training stage 

and validation stage in the original dataset. Figure 1 shows 

the sample image of soybean diseases. 

Due to the small dataset in this research, transfer 

learning can be trained under the small-scale dataset. Also, 

the data-augmented technology can be applied to amplify 

the dataset to reduce overfitting and under fitting. In the 

computer vision field, each dataset of image classification 

issues needs to use a specific data-augmented strategy to 

gain the best classification effect. This research applied a 

high-efficient automatic data-augmented method based 

on the search algorithm: Auto augment (Hataya et al., 

2020). The data augment in the image recognition field 

generally applies equalization, flip horizontal, cutting, 

and rotation. Auto augments in this research define the 

search space. The data-augmented scheme is composed of 

multiple strategies while each strategy includes two 

different image processing methods (the equalization, flip 

horizontal, cutting, and rotation), as well as the use 

sequence and probability for each image processing 

method. In this research, the genetic algorithm (Guan et al., 

2020) was chosen as the search algorithm to find out the 

best data-augmented scheme in the search space.
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Fig. 1: Soybean leaf disease sample figure including heathy and unknown 

 

 
 

Fig. 2: The image processing module: Leaves in the entire image can be separated clearly 

 
Table 1: The image quantity in the training stage and verification stage 

No. Disease (healthy) types Training sets Validation sets Total 

  1 Bacterial blight 44 12 56 

  2 Southern blight 49 13 62 

  3 Target spot 26 6 32 

  4 Rust 52 13 65 

  5 Healthy 7 2 9 

  6 Powdery mildew 61 16 77 

  7 Downy mildew 40 11 51 

  8 Copper phytotoxicity 18 5 23 

  9 Brown spot 16 5 21 

10 Soybean mosaic virus 17 5 22 

11 Unknown 32 9 41 

 Total 362 97 459 

The Image Processing Module 

By observing the sample image in Fig. 1, it can be 

found that the area of the blade is much smaller than that 

of the background. The leaves in the whole image are 

segmented before the image is input into the classifier, then 

the classifier can accurately extract the features related to leaf 

disease for accurate leaf disease recognition. The image 

processing module is composed of four submodules and its 

composition structure and output image are shown in Fig. 2. 

The first submodule converts the RGB color space 

image into L*a*b color space, which is the 3D real space. 

L represents luminance, a stands for the component from 
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green to red and b is the component from blue to yellow. 

Among them, the output of the b channel component is 

the input of the second submodule, as shown in Fig. 2(B). 

The second submodule applies K-means (Sinaga and Yang, 

2020) clustering algorithm to cut b channel components' 

images into two clusters (k = 2). One cluster corresponds to 

the leaf area (the interesting area) while another cluster 

corresponds to the background area excluding leaves. In 

detail, white (the pixel 255) is used to represent the 

foreground (the leaf area) while black (the pixel 0) is applied 

to represent the background. In this research, L and A 

channels did not get excellent output in the image 

segmentation, thus components of L and A channels did not 

participate in the K-means cluster. However, after the 

soybean leaves are segmented by the K-means clustering 

algorithm, there are still some non-leaf areas in the image 

background area, which means the K-means clustering 

algorithm divides some areas into prospects in the 

background, as shown in Fig. 2(C). Beyond that, the third 

submodule applies K-means clustering output images as the 

images after improved input segmentation. The main 

purpose of the third submodule is to find out and cut out the 

maximum connected domain, that is, the soybean leaf area. 

The image includes a plurality of connected domains, the 

image region composed of foreground pixels with the same 

pixel value and in adjacent positions in the image, which 

includes leaf regions and other connected domains that are 

not needed or irrelevant but are divided into the 

foreground. In this research, the connected domain label 

algorithm (Perri et al., 2020) was adopted to gain the 

number of connected domains in the input images and 

different connected domains are marked with different 

colors, as shown in Fig. 2(D). Besides, the maximum 

connected domain or a pair of binary images can be extracted 

from the marked connected domains. Pixel 1 with data 

normalization represents the leaf area while pixel 0 means 

the background area. At last, binary images are mapped to 

the original input RGB images, gaining the RGB images 

with the leaf areas which are used as the input of the 4th 

submodule. The mapping algorithm converts the 

normalized binary images into the three-channel images 

and then multiplies the original input RGB images.  
The 4th submodule converts the binary processing of 

input images into the single-channel, as shown in Fig. 2(E). 
Two lists are set up to do the simple iterative algorithm. The 
horizontal list conducts traversal on the x-axis of input 
images while the vertical list conducts traversal on the y-axis 
of input images. Coordinate points with the pixels of 254 are 
added to the list. The minimum of the horizontal list is the 
left boundary while the maximum is the right boundary. The 
minimum of the vertical list is the bottom boundary while the 
maximum is the top boundary. The leaf area images are cut 
on the corresponding interval, as shown in Fig. 2(F).  

The above-mentioned image processing module is 

applied to all images of the dataset but only leaves the leaf 

area, removing the irrelevant background. With a tiny 

minority, this module will cut the leaf area into the 

background while the background area will be cut into the 

foreground. The sum of pixels after cutting and clipping 

all image leaf areas is not the same, thus the image size is 

reset as 224*224*3 as a whole. 

Autotun Methods 

In recent years, deep learning has made remarkable 

achievements in target detection, computer vision, natural 

language processing, automatic speech recognition, and 

semantic analysis (Fan, 2020). Compared with the 

shallow algorithm model of traditional machine learning, 

deep learning shows remarkable superiority in feature 

extraction and modeling. At present, CNN is one of the 

primary forms of deep learning, featured with the local 

connection, weight sharing, pooling operation, and multi-

layer structure. It is suitable for the image classification field. 

Models with excellent performance include VGG-16 

(Simonyan and Zisserman, 2014), ResNet-34 (He et al., 

2016), Inception (Szegedy et al., 2015), dense net (Huang et al., 

2017), and Exception (Chollet, 2017). They generally need 

lots of training data and calculation resources to gain 

excellent performance. However, it is a pity that the new 

research field does not have sufficient data to support such 

models. Facing the above-mentioned challenges, transfer 

learning is a common solution and can provide favorable 

performance in small-scale datasets. Transfer learning uses 

CNN advantages and conducts fine-tuning on the pre-trained 

CNN in the source tasks on the target dataset to satisfy the 

demands of target tasks (Pio et al., 2021). However, in actual 

applications, relative to the source dataset, the target dataset 

has a limited scale so the model overestimates the overfitting 

caused by the feature capacity of target tasks. Based on the 

improved transfer learning, Bayesian optimization was 

carried out to fine-tune the pre-trained CNN and fit the 

soybean disease classification task in this research. This 

section focuses on discussing the experimental method. 

Figure 3 shows the improved strategies for the training 

of CNN and traditional transfer learning in this research. 

Autotun method was applied in this research so that 
hyper-parameter search space will not be limited to the last 
fixed layer or several layers. This method firstly removes the 
pre-trained CNN softmax layer and uses a new softmax layer 
for replacement. The number of nerve cells is equal to the 
category of the target dataset. Also, Bayesian optimization is 
used to automatically adjust the CNN layer. The layer in 
front of CNN represents the general original features, such as 
the margin and spot. These features are common to most 
tasks. The exclusive features of target tasks can be extracted 
from several last layers. As a result, this method could adjust 
the CNN layers from right to left (from the last layer to 
the initial layer). As shown in Fig. 3(C), the locking 
symbol means to freeze this layer while the unblocking 
symbol refers to conducting fine-tuning on this layer. 
The specific steps of using Bayesian optimization to 
adjust CNN automatically are stated in Table 2.
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Fig. 3: Improved transfer learning. Generally, transfer learning removes the last layer (softmax) of the pre-trained CNN and adds a 

new softmax layer to adapt to the target task. Then, it conducts training on the target dataset of the last layers or the last several 

layers. The number of the selected training layers is judged by the target dataset size and the similarity with the source dataset. 

The pre-trained CNN model is designed for the source dataset, showing the poor performance on the target dataset 
 
Table 2: Bayesian optimization algorithm 

No. Algorithm: Bayesian optimization for automatic adjustment of CNN  

  1 Input: Original CNN, hyper-parameter search space S, training set, verification set, and epochs (pre-trained CNN's epochs 

quantity)  

  2 Output: The improved CNN network for the target dataset  

  3 1: Procedure: Autotun 

  4 2: It is assumed that GP is used as the prior distribution of the target function F 

  5 3: At the initial point m0, n = m0, the target function F is calculated. m0 in this experiment is initialized as 10 

  6 4: while kn + 1, …, N do //Traversal hyper-parameter search space 

  7 5: Prior is used to update the posteriori distribution of the target function F   

  8 6: The next sample point xk of the gathering function's maximum is selected   

  9 7: Calculation of yk = F(xk)  

10 8: Return xk //Return the point with the best structure  

 
Table 3: Relevant hyper-parameter search space in the CNN layer 

No. Network layer type Relevant parameter types Parameter values 

1 Convolutional layer Filter size {1,2,3,5} 

  Step size 1 

  The number of filters {64,128,256,512} 

2 Maximum pooling layer Filter size {2,3} 

  Step size 1 

3 Average pooling layer Filter size {2,3} 

  Step size 1 

4 Fully connected layer or dense layer The number of fully connected layer {1,2,3} 

  nerve cells {64,128,256,512,1024} 

5 Dropout Dropout factor [0,1] interval is 0.1 

 

In this study, the hyper-parameter search space 

involved in different CNN layers was discussed. This 

research applied VGG-16, ResNet-34, and DenseNet-121. 

Such networks could be gained by pre-training in the 

ImageNet (Deng et al., 2009) dataset. Autotun applied in this 

research conducted fine-tuning on the soybean leaf disease 

dataset to gain better performance. Hyper-parameter search 

space of fine-tuning is illustrated in Table 2, which involves 

6 operations of the convolutional layer and pooling layer. 

The fully-connected hyper-parameter includes the number of 

layers and nerve cells. Dropout is adopted on the fully-

connected layer and dense layer. Dropout is a mainstream 

regularization with the factor to be adjusted in the range of [0, 1]. 

The offset is 0.1, namely the Dropout factor value should be 

{0, 0.1, 0.2, 0.3,0.4 ,0.5, 0.6, 0.7 ,0.8 ,0.9 ,1}. 

In the process of the experiment, the connectivity of 

pre-trained CNN was not modified to make the model 

suitable for the soybean leaf disease dataset. Two 

operators including 1*1 convolution and upper 

sampling operation were used in the research to 

respectively solve the unmatched issue of tensors in 

deep and spatial dimensions. 
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Bayesian Optimization 

On the target dataset, the pre-trained CNN conducts 

the automatic fine-tuning and it is regarded as a black box 

optimization issue. In other words, target functions are not 

directly accessed. In this thesis, Bayesian optimization 

was applied to do fine-tuning for CNN. F was set up as 

the target function with the mathematical form as (1): 
 

: dF R R  (1) 
 

Bayesian optimization can be expressed by formula (2): 
 

 * arg max x Sx F x  (2) 

 
where, is used as the input. In formula (2), S represents 
the hyper-parameter search space, as shown in Table 3. 
Any point in search space is used to solve the value 
consumption calculation resource of the target function F, 
which can be gained by conducting fine-tuning (re-
training) for the original CNN layer on the target dataset. 
x* represents the optimal estimation of relevant hyper-
parameter in the CNN layer after fine-tuning. 

Bayesian optimization is composed of the agent model 

and gathering function (Pelikan, 2005). The agent model is a 

Bayesian statistical model and uses Gaussian Process 

(GP) regression to establish the approximation of the 

target function F. It is assumed that GP is used as the 

prior distribution of the target function F. The 

gathering function uses the EI function to find out the 

global maximum of the target function F. 

Results and Discussion 

This research was applied for the classification and 
identification of bacterial leaf spot, southern blight, target 
leaf spot, rust disease, powdery mildew, downy mildew, 
copper poison disease, grey speck disease, and soybean 
mosaic virus. 

The image processing module output of the soybean 

leaf disease recognition system used in this research is 

illustrated in Fig. 2. The experimental results indicated 

that such a method was effective for the background 

segmentation of soybean leaf disease images. The 

interesting areas or leaf areas can be separated from the 

complicated background. The features of the infected 

disease and insect pest parts were reserved in the 

separated leaf images, thus the output images of the image 

processing module will be suitable for the classification 

module to do feature extraction. 
After gaining the leaf images without the complicated 

background, auto augment technology can be used for 
data augment. 80% of images could be used as the training 
set at random while 20% of images could be selected as 
the validation set to verify the accuracy rate of the 
classifier. The accuracy rate can be defined as formula (3): 
 

  px

px nx

T
accuracy x

T T



 (3) 

 
where, x represents the leaf disease type. Tpx and Tm 

respectively represent the times of success and failure to 
identify the leaf disease x in the entire system or the 
average classification accuracy rate of each leaf disease in 
the entire system. 

Influence of Bayesian Optimization on 

Experimental Results 

The classifier autotun used in this research can fit the 

soybean leaf dataset's CNN structure through algorithm 1 

learning to improve the training transfer learning. As 

shown in Table 3, the optimal configuration of different 

layer structures and related super parameters were 

obtained after automatically fine-tuning CNN by the 

Bayesian optimization algorithm. In the soybean leaf 

disease dataset, the VGG-16 network (pre-training on 

ImageNet dataset) was conducted fine-tuning in this 

research to gain a 92.55% of validation accuracy rate in 

the experiment, overlapping a fully connected layer with 

1024 nerve cells. In detail, the Dropout factor with the 

originally connected layer is 0.6, overlapping the 

maximum pooling layer. The filter size is 3*3 to do fine-

tuning for the ResNet-34 network. The dropout factor 

including the originally connected layer is 0.3. The filter 

size of the last two convolutional layers is 3*3, 

respectively including 512 and 256 pieces. Through fine-

tuning on the DenseNet-121 network, 92.29% of the 

validation accuracy rate was gained in the experiment, 

overlapping a new fully-connected layer with 1024 nerve 

cells. The Dropout factor with the originally connected 

layer is 0.4. The filter size of the last two convolutional 

layers respectively reaches 5*5 and 2*2, including 512 

and 128 pieces. The fully-connected layer and parameters 

listed exclude the fully connected layer of output because 

of the number of nerve cells in the output category. Table 

4 indicates that 3 CNN structures obtained by Bayesian 

optimization could gain excellent performance on the 

soybean leaf disease dataset.
 
Table 4: Optimal hyper-parameter configuration 

  Fully connected layer Convolutional layer  Maximum pooling 

  ------------------------------------ ------------------------------------------------ ----------------------------- 

No. CNN types Layers Cells Dropout Layers Filter size Filters Layers Filter size Accuracy 

1 VGG-16 1 1024 0.6 - - - 1 3*3 92.55 

2 ResNet-34 1 256 0.3 2 {3*3,3*3} {512,256} - - 90.16 

3 DenseNet-121 1 1024 0.4 2 {5*5,2*2} {512,128} - - 91.29 



Xiao Yu et al. / American Journal of Biochemistry and Biotechnology 2022, 18 (2): 252.260 

DOI: 10.3844/ajbbsp.2022.252.260 

 

258 

Table 5: Classification performance comparison 

No CNN types Transfer learning types Fine-tune layers Trained parameters(million) Validation accuracy 

1 VGG-16 Autotun 3 0.82 94.23% 

  Traditional fine-tune 3 1.33 85.52% 

2 ResNet-34 Autotun 2 0.66 93.51% 

  Traditional fine-tune 2 0.54 87.13% 

3 DenseNet-121 Autotun 4 1.50 94.91% 

  Traditional fine-tune 4 0.80 87.74% 

 

Influence of Autotun Method on 

Experimental Results 

Table 5 shows the accuracy rate from the traditional 

fine-tuning method of transfer learning and autotun in the 

research in VGG-16, ResNet-34, and DenseNet-121 

structures for the soybean leaf disease dataset. To prove 

the autotun improvement on transfer learning, the layers 

of the traditional fine-tuning method remain consistent 

with the layers gained by automatic fine-tuning of autotun. 

The findings indicated that compared with the traditional 

fine-tuning method of transfer learning, the autotun 

method used in this research significantly improved the 

performance (validation set's accuracy rate) or the number of 

trained parameters was relatively reduced). For the pre-

trained VGG-16 model, the traditional fine-tuning gained 

85.52% of the validation accuracy rate on the soybean leaf 

disease dataset, requiring 1.33 million parameters relating to 

three layers. The autotun method used in this research 

conducted automatic fine-tuning for the pre-trained VGG-16 

model, gaining 94.23% of the validation accuracy rate on the 

soybean leaf disease dataset. Compared with the traditional 

fine-tuning method, the trained parameters only used 

823000 which was reduced by 38% The autotun method 

used in this research could conduct fine-tuning for the pre-

trained ResNet-34 and DenseNet-121 model on the soybean 

leaf disease dataset, finding that the trained parameters were 

slightly higher than the traditional fine-tuning method of 

transfer learning because the extra fully-connected layer was 

considered in the parameter search space. Such a method 

respectively gained 93.51 and 94.91% of the validation 

accuracy rate on the soybean leaf disease dataset while the 

traditional fine-tuning method respectively gained 87.13 and 

87.74% of the validation accuracy rate. Through comparison, 

it could be proven that the extra fully-connected layer could 

improve the performance of the validation data. 

In addition to the comparative analysis between Table 3 

and Table 4, the same source data set (ImageNet dataset) 

and target data set (the soybean leaf disease dataset) were 

used during the fine-tuning of vgg-16, resnet-34, and 

densenet-121 networks by autotun method and traditional 

fine-tuning method. At the same time, the number of fine-

tuning layers in the traditional fine-tuning method 

remained the same as the layers gained by automatic fine-

tuning from the autotun method. The analysis of these 

trainable parameters and verification accuracy obtained 

from the control experiment shows that the autotun 

method used in this study has excellent performance on 

the soybean leaf disease data set and possesses good 

generalization ability on convolutional neural networks 

with different structures. 

Conclusion 

The quality and quantity of soybeans can be affected 

by diseases and insect pests. In this research, the 

identification method for 9 kinds of leaf diseases 

including bacterial leaf spot, southern blight, target leaf 

spot, rust disease, powdery mildew, downy mildew, 

copper poison disease, and soybean mosaic virus, as well 

as healthy leaves and unknown leaf diseases was proposed 

while the traditional transfer learning method was 

improved to identify soybean leaf diseases. 

In this research, the image segmentation method was 

applied to remove the complicated background and cut it into 

the leaf areas with the auto augment technology to augment 

data and reduce overfitting. Relevant findings indicated that 

the current research method of conducting background 

segmentation for soybean leaf disease images was effective. 

The interesting areas or leaf areas could be separated from 

the complicated background. The characteristics of disease 

symptoms were reserved in the segmented leaf image. The 

autotun method used in this research improved transfer 

learning. On the soybean leaf disease dataset, VGG-16, 

ResNet-34, and DenseNet-121 network models (ImageNet 

pre-training) were conducted automatic fine-tuning. The 

validation accuracy rates of VGG-16, ResNet-34, and 

DenseNet-121 networks obtained through the methods used 

in this study reached 94.23, 93.51 and 94.91% respectively, 

showing better performance and fewer trained parameters 

than the traditional fine-tuning method of transfer learning. 

Other existing soybean leaf disease databases would be 

considered to train and test the generalization ability on 

different data sets of the autotun method, in further research. 
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