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Abstract: Tree peony is a deciduous shrub endemic to China and the Peony 

Seed Oil (PSO) is an important plant oil resource. However, at present, 

fruits harvesting of peony are mainly completed by manual work with low 

efficiency. In response to the need for a mechanized operation, a multi-

sources vision system based on Time-Of-Flight (TOF) and RGB cameras 

was set up in this study. To achieve this, an RGB camera and a TOF camera 

were used to capture tree peony images over the same time period. A 

method based on Speeded-Up Robust Features (SURF) algorithm, nearest 

neighbor and Random Sample Consensus (RANSAC) algorithm was 

carried out to detect and match the feature points of grayscale images and 

intensity images. Then, the Normalized Direct Linear Transformation 

(NDLT) algorithm was used to achieve image registration of RGB images 

and depth images through the matched feature points. Based on Multi-

Layer Perceptron (MLP) algorithm, by using the depth image and RGB 

image, the localization and maturity classification for peony fruits were 

achieved in this study. In our research, 90 groups of tree peony fruit images 

captured by this vision system were used to verify the feasibility of the 

algorithm. The result shows that in these images, 152 of 173 fruits were 

correctly recognized and the fruit recognition rate was 85.74%. The average 

of localization errors was 3.53, which is accuracy for harvesting operation. 

As for maturity classification, this system achieved a high recognition rate, 

91.68% in total. The results show that the vision system achieved extracting 

location and color information of the fruit at the same time and it is not easy 

to be affected by environmental illumination and other factors. The 

proposed method can achieve high efficiency and high accuracy in terms of 

fruit localization and maturity classification. 

 

Keywords: Tree Peony Fruit, Multi-Sources, Feature Points, Vision 

System, SURF, NDLT, MLP 

 

Introduction 

Tree peony, which belongs to the family Paeoniaceae, 

genus Paeonia and Sect. Moutan DC is a woody 

deciduous shrub endemic to China, which has grown there 

since the Eastern Jin Dynasty (Sun et al., 2016). Its pod 

contains dark oval seeds characterized by various 

Unsaturated Fatty Acids (UFAs) and a high proportion of 

n-3 fatty acids (Su et al., 2016). Peony Seed Oil (PSO) 

was declared as a new resource food in China in 2011, 

owing to its high level of α-Linolenic Acid (ALA). In the 

past few years, tree peony has been considered as an 

economic plant and some species (such as Paeoniarockii 

and Paeoniaostii) are widely planted in China with a 

potential annual seed production of 60000 tons in the next 

decade (Mao et al., 2017). The harvesting of peony pods 

is a time-consuming task and is currently performed by 

hand, accounting for more than 60% of the total labor time 

of this crop in China. Moreover, the harvesting period is 

very short, around 5 weeks. The key to increase the output 

of PSO is to prune branches reasonably in the growing 

process and to harvest fruits in time during the frutescence 

(Liu et al., 2020). However, increasing costs and decreasing 

supply of skilled labor force are restrictive factors in the 

development of the peony industry in China. The 

development of a peony pod harvesting robot is an effective 

way to address the labor shortage and high labor cost.  

Harvesting robots are designed to sense the complex 

field environment by various sensors and to employ this 

information effectively to perform harvesting actions. 
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The bottleneck to promote the application of harvesting 

robot lies in the performance of the vision system. Three 

major functions should be achieved in a vision system 

applied to a harvesting robot: Recognizing the peony 

fruit from the tree, identifying the maturity of the fruit 

and locating the fruit. These functions provide important 

information to the harvesting robot to guide the 

harvesting actuating mechanism. 

The basic technology employed in this study is 
computer vision, which has become a mature theory with 
many achievements in several fields, such as features 
extraction and image segmentation (Bulanon and 
Kataoka, 2010; Bulanon et al., 2010; Park et al., 2017; 
Chen and Hashimoto, 2017; Sharma et al., 2020). With 

the developments in the areas of Digital Image 
Processing and Intelligent Control technologies, machine 
vision is extensively used in agriculture (Kumar and 
Rajpurohit, 2019). For example, (Wu, 2020) reported a 
method for determining the chlorophyll content of rice 
based on computer vision, by the three color 

characteristic parameters of GR, BR and R/(G+B). 
Nowadays, a vision scheme for a harvesting robot is 
achieved by various visual sensors (De-An et al., 2011; 
Zhao et al., 2016). As an example, (Rakun et al., 2011) 
described a multi-view computer vision-based model for 
object detection that can serve as a preliminary step in 

fruit prognosis, which involves the estimation of the 
number, diameter and yield of apple fruits. This vision 
system uses three features-color, texture and three-
Dimensional (3D) shape of possible areas-to detect and 
verify all areas fruits. Similar work was done by (Ding, 
2009). In her work, a matching method using centroid 

characters of the fruit was described, so as to match the 
binocular images of kiwifruit. With precise dimensional 
measurements on the position data, the experiments 
showed that the calculation error of the special position 
was 9.03 mm when the orientation depth was near 800 
mm. However, most of the studies presented drawbacks 

of timeliness and veracity and the results could be 
disturbed by environmental features such as illumination 
intensity. This resulted in limitations of the effect of the 
vision system in some situations. 

A Time-Of-Flight (TOF) camera is a 3D camera that 

able to capture the 3D geometry of a scene. Objects can 

be then segmented and recognized from their 3D 

geometry (Conde, 2020). It’s fundamental principles are 

using the time-of-flight method, which continually sends 

a light pulse to the target object and records the time the 

sensor receives the reflected pulse to calculate the distance 

between the object and camera (Chiabrando et al., 2009; 

Schwarz et al., 2014; Falie and Buzuloiu, 2007). There 

are several advantages to using a TOF camera to locate 

an object, including its smaller size, lighter weight and 

better signal-to-noise ratio (Conde, 2020). TOF cameras 

have been widely used in several fields such as gesture 

recognition, face detection and object localization 

(Kollorz et al., 2008; Takahashi et al., 2011; Lee et al., 

2011). For example, some researchers reported a flexible 

sensor fusion approach to retrieve scale information in 

monocular Visual Odometry (VO) through integrating 

range measurements from a wide variety of depth 

sensors spanning from small-resolution Time-Of-Flight 

(TOF) cameras to 2-D and potentially 3-D LiDARs. 

(Chiodini et al., 2020). In addition, many studies focus on 

the accuracy of the TOF camera. A correction method 

based on Delay Line (DLL) was demonstrated to improve 

the linearity and accuracy of the TOF camera (Li et al., 

2020). However, the depth image is a pseudo-color image 

as the color of each pixel represents the depth data 

instead of the actual color, which means that the color 

information of the target object cannot be shown in the 

obtained image. For robotic harvesting, this drawback 

prevents the identification of the maturity of the fruit.  

This study intends to develop a multi-source vision 

system based on RGB and time-of-flight cameras that 

can be applied to robotic harvesting for tree peony fruit. 

This system is designed to combine the advantages of 

the two cameras for achieving fruit recognizing, locating 

and maturity classifying. RGB images captured from an 

RGB camera contain the full color and texture 

information of the fruit, which can be used to achieve 

maturity identification. The depth image captured from a 

TOF camera contains location information of fruit, 

which can be used to achieve fruit detection and 

localization. An algorithm is described in this study to 

match RGB images captured from an RGB camera with 

depth images captured from a TOF camera. A classifier 

based on Multi-Layer Perceptron (MLP) neural networks 

algorithm for fruit recognition as well as an MLP 

classifier for maturity classification are set up to locate 

the fruits and classify their maturity. 

Image Registration 

Images captured from the RGB camera and TOF 

camera were processed in several stages, as coarsely 

illustrated in Figure 1. In this system, the RGB camera 

captures RGB images and the TOF camera captures 

three images (depth image, amplitude image and 

intensity image). The RGB image is transformed to a 

grayscale image and the intensity image is enhanced by 

histogram equalization to improve its quality for the next 

stages. The next stage is to extract and match features of 

the two images. Considering the nature of the image, we 

used a Speeded-Up Robust Features (SURF) algorithm 

to detect the feature points of these images and presented 

an algorithm based on the nearest-neighbor algorithm, 

Hessian matrix trace accelerates and the RANSAC 

algorithm to achieve image features matching. When this 

work was accomplished, we finished the image 

registration of the two cameras using the Normalized 

Direct Linear Transformation (NDLT) algorithm. 



Jiaming Liu et al. / American Journal of Biochemistry and Biotechnology 2020, 16 (3): 392.406 

DOI: 10.3844/ajbbsp.2020.392.406 

 

394 

RGB 

Camera
RGB Image

Grayscale 

Image

Feature 

points

Feature 

points

Enhanced 

Image

SURF
Features 

matching

Nearest-neighbor

Images registration

NDLT

Intensity 

Image

Amplitude 

Image

Depth Image

TOF 

Camera

RANSAC

 
 

Fig. 1: The conceptual algorithm of image registration of the vision system 

 

 
 (a) (b) (c) (d) 

 

Fig. 2: Images captured from the RGB camera and Time-of-Flight (TOF) camera at the same time (a) RGB image; (b) depth 

image; (c) amplitude image; (d) intensity image 

 

Image Preprocessing 

This study used a vision system to simultaneously 

capture four images (RGB image, depth image, amplitude 

image and intensity image), which are illustrated in Fig. 2. 

The RGB image was captured from the RGB camera, 

others were captured from the TOF camera. 

The RGB camera captured images with a resolution 

of 320×240 pixels and the TOF camera captured images 

with a resolution of 200×200 pixels. The TOF camera 

contains two kinds of sensors: CMOS based sensor and 

IR light emitter. The amplitude image reflects the 

infrared reflection characteristics of each object in the 

image and the intensity image is generated by CMOS 

components capturing ambient light and infrared light 

emitted by the camera. In this study, we achieved image 

registration between the RGB camera and TOF camera 

by matching the RGB image with the intensity image. 

In the natural growth environment situation, some 

parts of the intensity image were blurring as the image 

had infrared features. Therefore, it was necessary to 

conduct image enhancement to improve the image 

quality before image registration. 

In this study, considering the similar features of the 

intensity images and grayscale images, we enhanced the 

intensity images by histogram equalization, which can 

improve the contrast ratio and brightness of the image. 

This algorithm can enhance most details of a zone with a 

large area and combine the pixel points with the similar 

grayscale of a zone with a small area: 

 

   
0 0

/
k k

k j r kj j
s T r n N p r

 
      (1) 

 

The effect of the histogram equalization algorithm is 

illustrated in Fig. 3. This figure shows that the discrepancy 

between the target fruits and background environment was 

obviously improved without losing information and feature 

points after the treatment of the original image. 

Images captured from the RGB camera were 

transformed to grayscale images to match to the intensity 

images, as illustrated in Fig. 4. 

Features Detection of Images 

In order to achieve image registration, it was crucial 

to detect the features of each image. Point features, as a 

simple feature of an image, are widely used for features 

detection. Many researches have been conducted to 

detect the point features of an image and several 

algorithms have been described. Speeded-Up Robust 

Features (SURF) is a feature extraction algorithm 

described by (Bay et al., 2008). SURF algorithms are 

suitable for real-time information perception of non-

structural situations and has invariance of rotation, size, 

brightness and high execution efficiency (Li et al., 

2011; 2012; 2017). 
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 (a) (b) 

 
Fig. 3: The effect of the enhancement of the image intensity; (a) Source image; (b) enhanced image 

 

  
 (a) (b) 
 

Fig. 4: Gray preprocessing of the color image; (a) RGB image; (b) grayscale image transformed from (a) 

 

SURF algorithms detect interest points by the Hessian 

matrix, using the Gaussian filter to conduct a convolution 

operation. For a point X = (x, y) in the image, the Hessian 

matrix of X = (x, y) in  dimension is as follows: 

 

 
   

   

, ,
, .

, ,

xx xy

xx yy

D X D X
H X

D X D X

 


 

 
   

  

 (2)  

 

In Equation (2), Dxx is the convolution of the x-

direction filter, Dxy is the convolution of the xy-direction 

filter and Dyy is the convolution of the y-direction filter. 

The determinant form is: 
 

         
2

det , , , ,xx yy xyH X D X D X wD X       (3) 

 
In Equation (3), w denotes the weight coefficient, 

which was set as 0.9 in this study. 

Image Features Matching 

Nearest-Neighbor Algorithm 

In this study, we performed rough matching by 

using the nearest-neighbor algorithm, described by 

(Muja and Lowe, 2014). Defining ND as the nearest 

distance and NND as the next nearest distance, we 

calculated Rod as a specific value of ND and NND 

using Equation (4). We then set a threshold value and 

used the algorithm expressed in Equation (3.4) to match 

the point features of each image: 

 

/Rod ND NND  (4) 

 

if Rod threshold success

else failure





 (5) 

 

The smaller threshold value leads to a higher 

reliability of the result of feature registration. In this 

study, considering of the image size and empirical value, 

we set the threshold value as 0.6. 

Accelerates Matching Algorithm 

In our research, to improve the matching efficiency 

and reduce the matching time, the trace of Hessian 

matrix was used to determine the neighborhood 

brightness to speed up the matching 

The stages of this algorithm are described as follows. 

First, the brightness of the feature point and its 

neighborhood was compared with the background 

region. If the feature point and its neighborhood had a 

higher brightness, the Hessian matrix trace was a 

positive value; otherwise, the Hessian matrix trace was 

a negative value. When matching the feature points, it 

was considered whether the brightness of two feature 

points were the same by the Hessian matrix trace value. 
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We then calculated the Euclidean distance of each point 

with the same brightness to improve the matching 

efficiency (Bishop, 1992). 

The results of 10 feature point matching experiments 

are listed in Table 2. It is shown that the algorithm 

decreases the processing time by 31.9%, which is proved 

to be efficient. 

RANSAC Algorithm 

After the processing described before, it is necessary 

to check for mismatching and remove false matching 

points to output the final result. In this study, we used 

the Random Sample Consensus (RANSAC) algorithm 

(Matas and Chum, 2004; Schnabel et al., 2007), the steps 

for which are described as follows: 

 

Step 1. Set Imax as the maximum number of iterations, T01 

as the model fault tolerance and Nlim as the 

minimum number of consistent points. 

Step 2. Extract the numbers of matched feature points by 

random(nonlinearity) and set up the initial model 

by estimating the parameter of coordinate 

transformation. 

Step 3. Verify the rest of the points with the initial model 

and record the number of the matched points as 

Ncon(I). 

Step 4. If Ncon(I)  Nlim, reset the initial model, using the 

least squares method to improve it. 

Step 5. Repeat steps 1 to 4 until the cycle-index reaches 

Imax. Use the model of the largest number of 

Ncon(I) as the optimal model and remove any 

false matching points. 

 

NDLT Algorithm 

The Normalized Direct Linear Transformation 

(NDLT) algorithm is used to match two images after 

feature points matching is completed (Guo, 2009). 

Compared to the DLT algorithm (Guo, 2009;       

Abdel-Aziz et al., 2015), the NDLT algorithm has an 

invariance property of similarity transformation while 

having high calculation accuracy. The algorithm needs 

to perform the orthogonal transformation of the 

matched feature points before DLT to calculate the 

projection matrix and adjust the images. The steps of 

the NDLT algorithm are listed as follows: 

 

Step 1. Conduct the orthogonalization of feature point x: 

set R as the rotation matrix and t as the 

translation vector; then, the similarity 

transformation of the feature point in the other 

image can be described as 
0 1T

sR t
T

 
  
 

; next, 

transform xi to Xi by Xi = Txi. 

Step 2. Conduct the orthogonalization of feature point x’ 

by the same method as step 1. 

Step 3. Calculate the orthogonalization projection matrix 

by {xi  xi}. 

Step 4. Calculate the real homography projection matrix 

by H: H = T-1HT. 

 

Experiment of Image Registration 

Setup of the Vision System 

We firstly put the RGB camera on the tripod and 

then setup the TOF camera on the top of the RGB 

camera. So, these two cameras were pointed at the 

same space. The vision system we set up in this study 

contained an RGB camera, a TOF camera and 

computer, as shown in Fig. 5. The parameters of the 

two cameras are listed in Table 1. 

We set the frame rate of both camera to 30F/S and 

captured images of tree peony fruits. We then used the 

vision system to simultaneously capture four images, as 

illustrated in Fig. 1. We selected 15 groups of images to 

perform image rectification. 

 

 
 
Fig. 5: Multi-source vision system for peony fruit oil 

 
Table 1: The effects of speeded-up matching 

Method SURF matching time 

Matching without speeding-up 1.580928s 

Speeded-up matching 1.076284s 

 
Table 2: The effects of speeded-up matching 

Camera Name Visual angle Resolution ratio Frame rate 

RGB camera Logitech C270 60 320×240 pixels 40 F/S 

TOF camera PMD Camcube3.0 40 200×200 pixels 30 F/S 
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Result of Image Features Matching 

In order to verify the feasibility and accuracy of the 

image features matching algorithm, an experiment using 

15 groups of RGB images and intensity images was 

conducted. We evaluated the results by such parameters 

as those listed as follows: 

 

 MSE (Mean squared error): 

 

    
 

2

,

1
, ,SE r c

M R r c S r c
N

   (6) 

 

 CEF (Correlation coefficient): 

 

      

   
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C

R r c R S r c S

 


 



 
 (7) 

 

 NMI (Normalized mutual information): 

 

          
      

, , , ,

max , , ,
MI

H R r c H S r c H R r c S r c
N

H R r c H S r c

 
  (8) 

 

In Equations (6)–(8), N is the number of image pixels; 

S(r,c) is the grayscale of the standard image; R(r,c) is the 

grayscale of the matched image; H(S(r,c)) is the 

information entropy of the standard image; and H(R(r,c)), 

H(S(r,c)) is the information entropy of the matched image. 

The result of image features matching is shown in 

Fig. 6 and Table 3. The results are better when MSE is as 

small as possible, CEF is closest to 1 and NMI is as large 

as possible. 
Figure 6 shows the numbers of feature points were 

matched between the grayscale images and intensity 
images. Table 3 also shows that the method is efficient 
and accurate when using the above-described algorithm 
to achieve feature points detecting and matching. 

Result of Image Registration 

In this study, the TOF camera captured depth image, 
amplitude image and intensity image at the same time 
and the rectification of each image was performed 
automatically by the camera. This means that we could 
match the depth image with the RGB image by matching 
the intensity image with the RGB image. 

After the feature matching process, we matched the 
feature points of the grayscale image with the intensity 
image. In this experiment, the NDLT algorithm as 
previously described was used to match the grayscale 
image (transformed by RGB image) with the intensity 
image. Since the grayscale image was transformed by the 
RGB image captured from the RGB camera and the 
intensity image could be matched with the depth image 
automatically, we achieved image registration between 
the RGB camera and TOF camera.  
 
Table 3: Result of feature points matching 

Algorithm MSE CEF NM1 Time 

SURF 0.0073 0.9528 0.7904 1.86927s 

 

 
 

Fig. 6: Result of feature points matching 
 

   
 (a) (b) 
 
Fig. 7: SURF feature point matching and NDLT; (a) Result of matching of SURF feature points; (b) Result of matching of the RGB 

image and the depth image by NDLT 
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As shown in Fig. 7, this algorithm solved the problem 

of failed matches caused by the different resolutions of 

images captured from two cameras. It was able to verify 

the target object position in two cameras.  

Localization and Maturity Classification of 

Tree Peony Fruit  

Localization of Fruit 

Image Segmentation 

Image segmentation is the basis of the recognition 

and localization of peony fruit. In this study, the depth 

information of objects (the distance to the camera) was 

represented by different colors in the depth image, 

shown as a pseudo-color image, as shown in Fig. 8. 

Thus, the differences in location of peony fruits, stems 

and leaves could be shown in different colors in the 

depth image. The depth image was transformed into a 

grayscale image in three RGB color channels, as 

illustrated in Fig. 8. The difference between the area of 

oil peony fruit and the background was obvious in the G 

channel image, which was used to achieve image 

segmentation in this research. 

To segment the fruit and background area, a 

grayscale threshold value needed to be defined. In this 

study, the range of the grayscale value of the fruit area of 

the G channel image was 100-180 and the other values 

represented the background area, as observed by 

numerous experiments. To achieve image segmentation, 

the threshold value was defined using Equation (9) and 

the result of the segmentation is shown in Fig. 9: 

 

 
 255 100,180

,
0

G
g x y

other

 
 


 (9) 

 

There were some noise and residue in the image after 

fixed threshold segmentation (Fig. 9), which was caused 

by the leaves and other barriers next to the fruits. 

Therefore, a morphological image processing based on a 

two-value graph shape operation was used to remove 

these barriers and the noise of the image to recognize the 

oil tree fruits accurately. The main stages of the process 

are described as follows. 

Dilation: 
 

  |
z

A B z B A    (10) 

 
Erosion: 

 

  | c

z
A B z B A    (11) 

 

In Equations (10) and (11), A is the image and B is 

the structure element. The result of the fixed threshold 

segmentation is illustrated in Fig. 10. 

MLP Algorithm 

To classify the maturity of tree peony fruit, a 

classifier of peony fruits based on the Multi-Layer 

Perceptron (MLP) neural networks algorithm 

(Mühlenbein, 1990; Kim and Adali, 2002; Rossi and 

Conan-Guze, 2005) was used in this study, as shown in 

Fig. 11. The activation function of neural networks is 

described by Equation (12): 
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(12) 

 

where the dimension of [] represents the group of 

maturity classification, for which the value is 3, 

representing the number of possible classifications. 

Setting X as the input sample and Y as the output sample, 

Yj can be described by Equation (13) while Wij is the 

weight function from element i to element j: 
 

 1
.

n

j ij ii
Y f W X


    (13) 

 

 
 (a) (b) (c) 

 
Fig. 8: Grayscale images in three RGB channels of the depth image; (a) R channel image; (b) G channel image; (c) B channel image 
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Fig. 9: Result of the fixed threshold segmentation 

 

 
 

Fig. 10: Fixed threshold segmentation 

 

Output Layer

Hidden Layers

Input Layer
 

 
Fig. 11: Multi-Layer Perceptron (MLP) neural networks 
 

The study process from the input layer to hidden 

layer is shown as follows, while  is the learning rate: 
 

   1 .ij ij j iW n W n X       (14) 

 
The function of the output node is shown in Equation 

(15), while T represents the expectation output sample: 
 

   1
.

n

j i i ij ii
T Y f W X


     (15) 

 

The output layer includes two 0-1 neurons to 

recognize the target as an oil tree peony fruit or not. 

Fruit Recognition 

To recognize the area of an oil tree peony fruit, the 

geometry features of the target area were input into 

the MLP classifier. There were five features extracted 

from the images after segmentation in this study, 

including roundness and four normalization center 

moments. 

The mathematical expression of roundness is 

expressed by Equation (16), in which  is the mean 

deviation and d is the mean distance: 

 

1
,e

d


   (16) 

 

 
2

2 || || / ,iP P d F      (17) 

 

 || || / .id P P F    (18) 

 

In Equations (17) and (18), P is the center of the 

area Pi is the pixel point and F is the perimeter of the 

area outline. 

The four normalization center moments used in this 

study are described as: 
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The results of the features extraction of some training 

samples are shown in Table 4. 

These five geometry features of each area segmented 

from the images of the training samples were input into the 

MLP to recognize the area as background (0) or fruit (1). 

Localization of Fruits 

In order to guide the mechanical arm to harvest the 

target fruit, it is necessary to locate the fruits after 

recognition in the images. The centroid coordinates of 

the contour line of fruits are the target coordinates in 

this study. As the RGB images had been matched with 

depth images, the fruit recognition in RGB images 

could be achieved by image registration. The process 

of localization is shown in Fig. 12 and the results are 

shown in Fig. 13. 

Fruit Maturity Classification 

The RGB images contain complete color and texture 

information of the oil tree peony fruits, which can be 

used to classify the maturity of the fruits. The maturity 

of peony fruits can be divided into three levels: Green 

ripeness, yellow ripeness and dead ripeness, as 

illustrated in Fig. 14. 

As shown in Fig. 14, the main discrepancy between 

green ripeness and yellow ripeness is the color feature of 

the fruits and the difference of texture feature between 

yellow ripeness and dead ripeness is obvious. 

Therefore, in the natural environment, color and texture 

features can be used to classify the maturity of the oil 

tree fruits. In this study, to achieve the classification, a 

classifier was set up based on an MLP, described in 

Section 3.1.2 and the input layer contained color 

feature and texture feature. This process is shown in 

Fig. 15. To improve the accuracy and efficiency of the 

classification model, 60 images of three kinds of peony 

fruit were captured as the training samples to be used 

for model training, as shown in Fig. 16.  

Experiment 

An experiment was conducted by using 90 groups of 

images captured by the vision system in a natural scene 

of oil tree fruits as the testing samples to test the 

accuracy of the algorithm. Each group contained four 

images which have been matched by the algorithm 

described above.  

 

Table 4: Results of features extraction of some training samples 

 Roundness (e) 1 2 3 4 

Fruit 1 0.785628 0.00873776 -6.52e-10 -2.41e-06 1.69e-07 

Fruit 2 0.785628 0.00874776 -6.52e-10 -2.41e-06 1.69e-07 

Fruit 3 0.762452 0.0096116 -4.98e-09 -7.51e-06 6.04e-07 

Background 1 0.783294 0.00896887 -1.31e-08 -1.18e-05 8.81e-07 

Background 2 0.673865 0.00633478 -2.10e-09 -3.67e-06 1.68e-07 

Background 3 0.683868 0.00927532 -1.20e-07 -3.42e-05 2.57e-06 

Background 4 0.828427 0.00548697 0 0 0 

 

depth Image RGB Image

Image segmentation

MLP classifier

Fruit recognition

Image 

registration

Fruit localization

 
 

Fig. 12: Process of fruit localization 
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 (a) (b) (c) 

 

 
(d) 

 
Fig. 13: Results of the localization of oil tree peony fruits. (a) RGB image; (b) result of image segmentation; (c) contour line of 

fruits; (d)centroid point of fruit 

 

 
 (a) (b) (c) 

 
Fig. 14: Different levels of oil tree peony fruit; (a) Green ripeness; (b) yellow ripeness; (c) dead ripeness 

 

Input images

Color features 

extraction

Texture features 

extraction

MLP classification 

model
Training

Fruits maturity 

classification

 
 

Fig. 15: Algorithm for tree peony fruits maturity classification 

 

The first step was recognition of the fruits. Depth 

images of each group were input into the MLP classifier 

to recognize the peony fruits and the total number of 

peony fruits in the 90 groups of images was 173. The 

result of fruits recognition is illustrated in Table 5. As 

can be seen, in the 90 groups of images, there are 173 

peony fruits in total. The system recognized 162 fruits, 

in which contains 5 mistaken recognition. Therefore, 157 

fruits were correctly recognized and 11 fruits were 

missing in this experiment. The total fruit recognition 

rate was 85.74%. This result shows the vision system 

achieved high accuracy recognition and can meet the 

needs of the actual operation. 

The centroid coordinates were calculated after fruits 

recognition and some of the results are shown in Table 6. 

In this table, (x, y, z) is the calculated centroid 

coordinates of each fruit recognized by the system and 

thee value represents the error between calculated 

coordinates and actual coordinates. The z-coordinate 

shows the depth information of the peony fruits. In 

general, the average localization error is 3.53, which is 

accuracy for harvesting operation. 
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 (a) (b) (c) 
 

Fig. 16: Samples of different maturity levels of peony fruits; (a) Green ripeness; (b) yellow ripeness; (c) dead ripeness 
 
Table 5: Recognition result of oil tree fruits 

Image number Fruits number Recognition number Mistake number Missing number Fruit recognition rate 

90 173 162 5  11 85.74% 
 
Table 6: Example of centroid coordinates of recognized peony fruits 

Number (x, y, z) e Number (x, y, z) e 

1 (52, 141, 52.91) 3.04 11 (134, 124, 40.54) 3.84 

2 (94, 75, 58.72) 4.21 12 (169, 85, 45.87) 2.89 

3 (105, 147, 52.98) 3.19 13 (131, 82, 43.94) 2.54 

4 (150, 81, 5919) 3.64 14 (51, 127, 38.53) 3.10 

5 (65, 94, 51.23) 3.39 15 (145, 47, 39.43) 3.87 

6 (110, 143, 47.93) 3.24 16 (122, 141, 48.13) 2.65 

7 (68, 120, 37.70) 3.22 17 (38, 133, 35.84) 4.78 

8 (82, 140, 44.23) 4.89 18 (69, 56, 39.12) 4.29 

9 (110, 60, 49.92) 3.22 19 (184, 122, 4068) 3.75 

10 (30, 79, 41.13) 3.64 20 (78, 119, 50.44) 3.14 
 
Table 7: Result of the experiment of maturity classification of tree peony fruits. 

 Sample Green Result Yellow Dead Recognition Total  

Maturity number ripeness ripeness ripeness rate recognition rate 

Green ripeness 62 57 5 0 91.94%  

Yellow ripeness 55 8 47 0 85.45% 91.68% 

Dead ripeness 40 0 0 40 100%  
 

In the experiment, 157 peony fruits were recognized 

by using depth images, which were matched with RGB 

images. Therefore, the fruit areas in the RGB images 

were recognized and could be used to classify the 

maturity of peony fruits by the MLP classifier.  

The result of maturity classification of these fruits is 
described in Table 7. As can be seen, for fruits in green 
ripeness, 57 of 62 fruits were classified correctly with 
the recognition rate was 91.94%; for fruits in yellow 
ripeness, 47 of 55 fruits were classified correctly with 
the recognition rate was 85.45%; for fruits in dead 
ripeness, all of the 40 fruits were classified correctly. In 
general, this system achieved a high recognition rate, 
91.68% in total, which verified the feasibility and 
accuracy of classification algorithm of this study. 

Discussion 

Concerning Images Registration 

In section 2, we described an image registration 

algorithm and set up a multi-source vision system based 

on RGB and TOF cameras. The algorithm included 

several stages. SURF was used to detect and extract 

feature points of intensity and grayscale images. Then, a 

matching method was described using the nearest-

neighbor algorithm, Hessian matrix trace accelerates and 

RANSAC algorithm, which was used to match the 

feature points. When feature points matching were 

achieved, it was feasible to match the grayscale images 

with the intensity images using the NDLT algorithm, 

which achieved the matching of RGB and TOF cameras.  

The experiment showed that the algorithm can realize 

high-efficiency and precise image registration applied 

using the vision system we set up. It achieved the 

matching of RGB and TOF cameras, which can extract 

the color and position information of the tree peony 

fruits, which is the precondition for performing fruits 

recognition and maturity classification. 

Concerning Fruit Localization and Maturity 

Classification 

In section 3, we set up an MLP classifier to recognize 

and locate peony fruits as well as an MLP maturity 

classifier to classify the maturity of peony fruits. The G 
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channel images of depth images were used to segment 

the peony fruits and background input into the MLP 

classifier, which could recognize the fruits. Then, by the 

image registration, we located the fruits in the RGB 

images. These fruits were classified into three maturity 

levels using a maturity classifier based on MLP to decide 

whether the fruits were ready to be harvested. 

The experiment showed that the algorithm achieved a 

high fruit recognition rate and maturity recognition rate and 

is feasible to apply to robotic tree peony fruits harvesting. 

Comparison with Related Works 

The most important novelty and contribution of the 
work is to set up the multi-source vision system to 
combine the advantages of RGB camera and TOF 
camera and overcome each other's disadvantages.  

On the one hand, for example, traditional vision 
system based on RGB cameras is easy to be affected by 
the illumination condition changes. In the study of a 
vision system for plants/weed classification (Jasiński et al., 
2018), the quality of captured image is good in the sun 
but obviously worse in shadow, this can be seen in Fig. 17. 
To improve the image quality, the study has to select the 
appropriate lighting to reduce the impact of atmospheric 
conditions. Compared with the work, the vision system 
in this study has stronger anti-interference ability due to 
the TOF camera. As described in section 3, images 
captured from TOF camera are almost unaffected by 
lighting conditions, which results in a high accuracy of 
fruit recognition and localization in the case of poor 
lighting conditions (cloudy, shadow, etc.). 

On the other hand, although the TOF camera has 

been widely used in object recognition and location, the 

images captured by TOF camera do not have the color 

information of the objects (Conde, 2020). Because of 

this deficiency, TOF camera could not be used for 

maturity classification of fruits. This study solved this 

problem by registering the images captured by TOF 

cameras with by RGB cameras. Through the images 

registration, the vision system can find the location and 

color information at the same time. 

Limitations 

We have to point out that there are several limitations 

to our vision system which could lead to some reliability 

problems. 
First of all, although we captured images from a 

natural environment, the growing environment of oil tree 
peony was too complicated. As an example, in a natural 
environment, the positions of the fruits are all around the 
plant, which can cause targets to be missed when the 
vision system is used to localize all the fruits of the 
plant. As the features used to recognize the fruits are 
extracted from depth images, the proposed method is 
sometimes unable classify the fruits and other objects 
such as leaves next to the fruits, because they have 
similar depth information. Figure 18 showing as an 
example. The fruits in the red circle are showed as the 
background after image segmentation. As can be seen, 
there two fruits in the red circle. The latter is covered by 
the former and the depth of the former is very similar to 
the leaves around them. That resulted in both the depth 
image and the segmentation result. 

Therefore, we will continue to work to improve the 
efficiency of the vision system in natural environments. 
The second limitation concerns the image registration 
algorithm. As the key stage of the multi-source vision 
system and the precondition for fruit recognition and 
maturity classification, the image registration algorithm 
used in our system may be further optimized to reduce 
the complexity and improve the efficiency of our 
method. Moreover, the accuracy of the fruit localization 
and maturity classification also should be improved by 
increasing the number of training samples. 

 

 
 (a) (b) 

 
Fig. 17: Pictures captured from the vision system in the related works; (a) is the picture captured in the sun. (b) is the picture 

captured in the shadow 
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 (a) (b) (c) 

 
Fig. 18: Example of Image segmentation failure; (a) is the RGB image. (b) is the depth image. (c) is the result of image segmentation 

 

Finally, the depth measurement errors of the TOF 

camera were not well considered in this study. In this 

study, the depth images captured by the TOF camera 

were used to detect and locate peony fruit, as described 

in section 3. Depth measurements obtained by TOF 

cameras face the occurrence of several systematic and 

non-systematic errors (Chiabrando et al., 2009). As an 

example, (Foix et al., 2011) described in their study that 

there are five types of systematic errors (depth distortion, 

integration-time-related error, built-in pixel-related 

errors, amplitude-related errors and temperature-related 

errors) and four non-systematic errors (signal-to-noise 

ratio, multiple light reception, light scattering and 

motion blurring) that should be taken into account.  

Therefore, the main content of further research is to 

reduce these systematic and non-systematic errors and 

improve the measurement accuracy. 

Conclusion 

In this study, a vision system based on TOF and RGB 

cameras was set up for fruit localization and maturity 

classification of oil tree peony, which can be applied to 

robotic tree peony pods harvester. This system can 

capture 4 kinds of images at the same time (RGB image, 

depth image, amplitude image and intensity image). The 

color information of fruit in the RGB image can be used 

for maturity classification and the location information 

extracted from the depth image and intensity image can be 

used for fruit localization. In order to match images 

captured from two cameras, an image registration method 

was carried out in this study based on the SURF algorithm 

and NDLT algorithm. Furthermore, we set up an MLP 

classifier to recognize and locate the peony fruits and an 

MLP maturity classifier to classify the maturity of the 

peony fruits. 90 Groups of tree peony fruits images were 

captured by this vision system and were used to test the 

performance of the system. The result shows that the fruit 

recognition rate of the system is 85.74% and the average 

calculated location error is 3.53. The recognition rates of 

maturity classification of 3 different ripeness stages of 

fruits are 91.94, 85.45 and 100% and the total maturity 

classification recognition rate is 91.68%. It can be 

concluded from the experiments that this system achieved 

a high accuracy of fruit localization and maturity 

classification and it is capable for a robotic tree peony 

fruit harvester. Future study would involve improving 

resolution ratio of the system, recognition rate of fruits 

with complex growth and efficiency of the system. 
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