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Abstract: In this study, based on the predicted secondary structures of 

proteins, we propose a new approach to predict protein structural classes 

(α,β,α/β,α+β) for three widely used low-homology data sets. Fist, we 

obtain two time siries from the chaos game representation of each predicted 

secondary structure; second, based on two time series, we construct 

visibility and horizontal visibility network, respectively and generate a set 

of features using 17 network features; finaly, we predict each protein 

structure class using support vector machine and Fisher’s linear 

discriminant algorithm, respectively. In order to evaluate our method, the 

leave one out cross-validating test is employed on three data sets. Results 

show that our approach has been provided as a effective tool for the 

prediction of low-homology protein structural classes. 
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Introduction 

The roles of proteins are varied and complex. Levitt and 

Chothia (1976) first propose the protein structural 

classes. In their pioneering work, four structural classes 

of protein, namely all-α, all-β, α/β and α +β can be 

obtained. The all-α and all-β classes represent structures 

that consist of mainly α-helices and β-strands, 

respectively. The α/β and α +β classes contain both α-

helices and β-strands which are mainly interspersed and 

segregated, respectively (Murzin et al., 1995). 

A knowledge of protein structure class is very 
important in both theoretical and experimental studies in 
protein science. The information of structure classes has 
been employed to improve the prediction accuracy of the 
protein secondary structure (Gromiha and Selvaraj, 
1998), to reduce the search space of various possible 
conformations of the tertiary structure (Carlacci et al., 
1991; Bahar et al., 1997). However, for newly-found 
proteins, the structural class prediction method of 
automated and accurate are urgently needed. Therefore, 
the problem of protein structural class prediction is very 
important towards the protein structure prediction 
problem. Despite the significance of this problem, when 

the sequence similarity rate is low, finding the most 
precise computational method to solve this problem still 
remains an unsolved problem. 

To predict the protein structural class, the current 

classification methods mainly focus on two aspects: 

Feature extraction and classification algorithms. The 

method of feature extraction contains several aspects. Such 

as physicochemical based information (Dehzangi et al., 

2013a; Sharma et al., 2013), structural based information 

(Yang et al., 2009; 2010; Zhang et al., 2013; Liu and Jia, 

2010; Zhang et al., 2011; Ding et al., 2012; Han et al., 

2014; Dehzangi et al., 2013b; 2014; Wang et al., 2014). 

Yu et al. (2017) use Chous pseudo amino acid 

composition and wavelet denoising to prediction 

structural class. From 2014 to now, several papers 

(Dehzangi et al., 2014; Wang et al., 2014; Jones, 1999; 

Faraggi et al., 2012) show that the protein secondary 

structure is significanc to predict protein structural 

classes. Firstly the features are extracted, secondly all 

kinds of algorithms can be used to implement the 

classification prediction, such as Fisher’s linear 

discriminant algorithm (Yang et al., 2009), Support Vector 

Machine (SVM) (Cai et al., 2003) and so on. 
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In this study, based on the predicted protein 

secondary structure, we attempt to predict the protein 

structural classes of the three low-homology data sets. 

Fist, we obtain two time siries from the chaos game 

representation of each predicted secondary structure, 

based on two time series, we generate a set of features 

using 17 network features of visibility or horizontal 

visibility network. The structure class for each protein is 

predicted with support vector machine and Fisher’s 

linear discriminant algorithm, respectively. In order to 

evaluate our approach, the leave one out cross-validating 

test is employed on three data sets. The result shows that 

network features are valid features. 

Materials and Methods 

Data Sets 

To evaluate our proposed approach, we employe 

three benchmarks with low sequence identity including 

25PDB(the homology-range between 22 and 45%) 

(Yang et al., 2009), 1189 (less than 40% sequence 

similarities) (Yang et al., 2009) and 640 (with 25% 

sequence identity) (Yang et al., 2010), respectively. The 

data sets in this study and the number of proteins 

belonging to four structural classes are shown in Table 1. 

Secondary Structure Prediction 

First, we can predict each amino acid in a protein 

sequence into one of the three secondary structural 

elements, C (coil), E (strand) and H (helix). For instance, 

the amino acid sequence of protein 1A1W as follows: 

MDPFLVLLHSVSSSLSSSELTELKYLCLGRVGKRKL

ERVQSGLDLFSMLLEQNDLEPGHTELLRELLASLR

RHDLLRRVDDFELEHHHHHH. In this study, if we 

submit this amino acid sequence to the web server of 

PSIPRED (http: //globin.bio.warwick.ac.uk/psipred. or 

http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, 1999), the 

predicted secondary structure to be returned will be 

CCHHHHHHHHHHHHCCHHHHHHHHHHHHHHCC

CHHHHHCCCHHHHHHHHHHCCCCCCCCHHHHH

HHHHHHCHHHHHHHHHHHHHHHCCCCC. 

Chaos Game Representation of Predicted Secondary 

Fiser et al. (1994) firstly propose the concept of 

Chaos Game Representation (CGR) of protein structures. 

Yang and co-workers proposed CGR of predicted protein 

secondary structure sequence (Yang et al., 2010) to 

predict protein structure class. 

In this study, based on the method of Yang et al. 
(2010), the CGR of four proteins secondary structure 
sequence as shown in Fig. 1. The blue points represent 

the CGR points， the blue edge represents the sides of 
equilateral triangles. corresponding to the order in the 
predicted secondary structure, the order of the blue points 
is saved, but not shown in the figure. We can see that the 

plotted points tend to be distributed around the sides HC 
and EC, respectively, for proteins in the α and β classes. 
However, the points lie around both sides HC and EC 
without preference for proteins in the mixture classes. 

Each secondary structure sequence generates a 
distinct (x, y)-coordinate sequence of the plotted points. 
Hence we model a CGR plot as two time series, one 
composed of the x-coordinates，namely x-time series 
and the other of the y-coordinates, namely y-time series, 
as shown in Fig. 2. 

Recent research showed that the theory of complex 
network was an effective approach to analyze time series 
(Lacasa et al., 2008; Luque et al., 2009; Liu et al., 2014). 
In this study, we hope to reveal some information in the 
above time series from the perspective of the visibility 
network (Lacasa et al., 2008) and the horizontal 
visibility network (Luque et al., 2009). 

Visibility Network (VN): Let { }
1,2, ,i i N

x
= ⋯

 be a time 

series of length N. We can obtain a visibility graph from 

the mapping of a time series of n data into a network of n 

nodes (where each datum is associated to a specific node 

and where temporal order is preserved in the node 

labelling) according to the following visibility criterion: 

Two arbitrary data (ti, xi) and (tj, xj) in the time series have 

visibility and consequently become two nodes in the 

associated graph, if any other data (tn, xn) such that tj < tn < 

ti fulfills (Lacasa et al., 2008):  
 

( ) n i

n i j i

j i

t t
x x x x

t t

−

< + −

−

 

 
Some basic properties of the mapping include 

undirectedness, connectedness (the visibility graph is 
always connected by definition) and invariance under 
affine transformations. 

Horizontal Visibility Network (HVN): Let { }
1,2, ,i i N

x
= ⋯

 

be a time series of length N. The algorithm assigns each 

datum of the series to a node in the network. Two nodes i 

and j in the network are connected if one can draw a 

horizontal line in the time series joining xi and xj that 

does not intersect any intermediate data height. Hence, i 

and j are two connected nodes if the following 

geometrical criterion is fulfilled within the time series 

(Luque et al., 2009): 
 

,

i j n
x x x>  

 
For all n such that i < n < j. As a result, given each 

time series, its HVN is unweighed, undirected and 
connected (each node sees at least its nearest neighbors 
(left-hand side and right-hand side). 

Network features: Here, we briefly introduce the 
considered features, namely network characteristics, 
that we extract from the visibility network and the 
horizontal visibility network. The network can be 
represented by graph. 
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Table 1: The number of proteins belonging to four structural classes in the datasets 

Data set all-α all-β α/β α + β Total 

25PDB 443 443 346 441 1673 
1189 223 294 334 241 1092 
640 138 154 177 171 640 
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Fig. 1: The CGRs of predicted secondary structure for proteins from four different structural classes. The PDB IDs for four different 

proteins are 1A1W (α), 1A1X (β), 1ABA (α/β), and 169LA (α + β) (Yang et al., 2010) 
 
 

 
 

 

Fig. 2: Eight time series that represent the four CGRs in Fig. 1. Each panel in Fig. 1 gives rise to two time series (x- and y-

coordinates, respectively). As a result, we obtain eight time series for four CGRs 
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Let G = (V, E), N = |V|, M = |E| be an unweighed and 

undirected graph, where N and M are the number of 

nodes and the number of edges, respectively. Let A be 

the adjacency matrix of the graph G. 

The number of nodes (N) is an important feature of 

network. 

Average degree ( )K : The degree of any vertex i is 

given by 
1

N

i ij

j

K A

=

=∑ . The average degree of the network 

can be written as (Chang et al., 2008) 
1

i

i

K K
N

= ∑ . 

Characteristic path length (L): It is calculated as: 

 

( ) 1 1

1 1

1
ij ij

j i i j iP

L d d
N N N

> = = +

= =

−

∑ ∑ ∑  

 

where, Np represents the number of pairs of nodes of the 

network and dij is the shortest path (Floyd, 1962) 

between nodes i and j (Chang et al., 2008). The 

characteristic path length L is the average of the shortest 

path lengths. 

Diameter (D): The diameter D is defined as the 

largest value of all the shortest path lengths in a 

network. Diameter is a measure of the compactness in a 

network and is computed by (Emerson and Gothandam, 

2012): D = Max{dij}, ∀ i-j pairs of shortest paths. 

Clustering coefficient of the network (C): The 

clustering coefficient of any node i is the ratio between 

the total number of links actually connecting its 

neighbors and the total number of all possible links 

between these neighbors. It is given by 
( )1 / 2

i

i

i i

e
C

k k
=

−

, 

where ei is the actual number of edges between the 

neighbors of node j. The clustering coefficient of the 

network is the average of Ci overall nodes. It is 

calculated as (Chang et al., 2008): 
1

i

i

C C
N

= ∑ . 

Pearson correlation coefficient (r): To understand 

whether our unweighed undirected networks are of 

assortive or disassortive type, we calculate the Pearson 

correlation coefficient r of the degrees at either ends of 

an edge. For this, we use the expression suggested by 

Newman (2002):  

 

( )

( ) ( )

2

-1 1

2

1 2 2 1

0.5

0.5 0.5

i i i i

i i

i i i i

i i

M j k M j k

r

M j k M j k

−

− −

 
− + 
 =

 
+ − + 

 

∑ ∑

∑ ∑

 

 

Here, ji and ki are the degrees of the nodes at the two 

ends of the i-th edge, with i = 1,2,…,M. 

Average closeness centrality (ACC): Network 

centrality measures were developed by Freeman (1978; 

Beauchamp, 1965; Sabidussi, 1966). Basically “closeness 

centrality” of node i is calculated as: 

 

( ) ( )
,

1
ij

j V j i

CC i N d

∈ ≠

= − ∑  

 

The closeness value is therefore the inverse of the 

average distance between node i and the other nodes. 

The average closeness centrality is calculated as: 

 

( )
i

ACC CC i N=∑  

 

Energy (E): The energy (Gutman and Zhou, 2006) of 

the graph is defined as 
1

| |
n

i

i

E λ

=

=∑ , where λi is the ith 

eigenvalue of the adjacency matrix A. 

Laplacian Energy (LE): Let us define the Laplacian 

matrix as L = D − A, where D is a diagonal matrix 

containing the vertex degrees. The Laplacian energy, LE 

(Gutman and Zhou, 2006), is defined as: 

 

1

2
n

i

i

m
LE

n
µ

=

= −∑  

 

where, µ is the i-th eigenvalue of the Lappacian. 

In this subsection, given a secondary structure 

sequence, we can convert a protein into two series: x 

time series and ytime series. Each time series can 

construct corresponding visibility and horizontal 

visibility network, respectively. Nine network features 

can be obtained from a network. The features are the 

number of nodes (N), average degree (K), characteristic 

path length (L), network diameter (D), clustering 

coefficient of network (C), Pearson correlation 

coefficient (r), average closeness centrality (ACC), 

Energy (E) and Laplacian Energy (LE). Different time 

series for the same protein, under the same constructing 

of network, the number of nodes is the same. Hence we 

can obtain 1+8×2 = 17 features in total for each protein. 

So, each protein is described as a real-valued vector of 

17 features. 

Feature Space of Proteins 

As mentioned above, In this study, suppose we use n 

features to represent a protein sample. Thus, the i-th 

protein sample P
i
 should be a real-valued vector in a n-D 

(dimensional) space, i.e.:  

 

1 2

T
i i i i

n
P p p p =  ⋯  (1) 
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Here i

j
p  is the j-th (j = 1,2,…n) feature of the P

i
 and can 

be derived by following the setps. 

Before prediction, each of the n features in Equation 

(1) should be normalized by: 

 

( )
( )

/

1,2, , ; 1,2,

i i

j j j j
p p

i m j n

µ σ⇐ −

= =⋯ ⋯

 (2) 

 
where, m is the number of the total proteins in the data 

set, ( ) ( )
2

1

1

m
i

j j j

i

p mσ µ

=

= − −∑  and ∑
=

=

m

i

i

jj
mp

1

µ  

are the standard and mean deviation of the j-th feature 

over the m protein samples. The normalized values 

obtained by Equation (2) will have a zero mean value 

over the m protein samples (Huang et al., 2010). 

Support Vector Machine 

Vapnik (1995) introduced a machine learning method 

of Support Vector Machine (SVM). In our study, we 

choose Gaussian kernel function. The kernel width 

parameter γ and the regularization parameter c are 

optimized using a grid search strategy within a limited 

range, where γ = 2
i
, i = −15,−14,−13,…,4,5 and c = 2

i
, i = 

−5,−4,−3,…,14,15. We find the optimal SVM parameters 

c and using 10-folding cross validation on the training set 

for each turn in the leave-one-out cross validation process. 

The publicly available LIBSVM software (Chang and 

Lin, 2001) is used to implement the SVM classifier in our 

paper. The software toolbox can be freely downloaded 

from http://www.csie.ntu.edu.tw/cjlin/libsvm. Version 

3.22 released on December 22, 2016. 

Fisher's Discriminant Algorithm 

Fisher’s discriminant algorithm (Duda et al., 2001) is 

used to find a classifier in the parameter space for a 

training set. A training set H = {x1 x2 … xn} contains 

training vectors from two classes. There are n1 training 

vectors from one class forming a subset H1 and n2 

training vectors from another class forming a subset H2. 

Hence, H = H1 ∪ H2 and n1 + n2 = n. Suppose that each 

xi is a m-dimension vector. Then, a parameter vector ω 

= (ω1 ω2 … ωm)
T
 is estimated such that it allows as 

many training vectors as possible to be accurately 

predicted. Specifically: 

 

( )( )

1 2

1
, 1,2

, 1,2

i j

i j

j i

x Hj

T

j i j i j

x H

m x j
n

S x m x m j

S S S
ω

∈

∈

= =

= − − =

= +

∑

∑   

Then the parameter vector ω is estimated as 

( )-1

1 2
S m m
ω

−  (Duda et al., 2001). By Fisher’s 

discriminant rule, x is assigned to the class of H1 if 

( ) ( )1

1 2 1 2

1
0

2

T

dist m m S x m m
ω

−
 

= − − + > 
 

 and to the class of 

H2 otherwise (Duda et al., 2001). 

The above algorithm is designed for a two-class 

problem. In this study, we transform a four-class 

problem of protein structural classes prediction into 

six two-class problems, namely, α-vs-β, α -vs-α/β, α-

vs-α + β, β-vs-α/β, β-vs-α + β and α/β-vs- α + β 

(Yang et al., 2010). 

Performance Evaluation 

The jackknife test (leave-one-out test) (Chou, 1995) 

is employed in our study. 

The individual sensitivity Sn, the individual 

specificity Sp and the overall accuracy OA over the entire 

data set, as well as Matthew’s correlation coefficient 

MCC (Xu et al., 2013) are used to evaluate performance. 

Results and Discussion 

Prediction Performances of our Method 

The prediction approach is examined with three 

benchmark data sets in low similarity by leave-one-out 

test and report the Sensitivity, Specificity and MCC for 

each structural class, as well as the OA. 

By constructing of visibility network, a protein is 

described as a real-valued vector of 17 features. The 

results are shown in Table 2. From Table 2, we can see 

that the overall accuracies for the three data sets are 

close to or above 80%. Specifically, when SVM is used 

to implement the classification prediction, the overall 

accuracies of 82.07, 79.03 and 80% are achieved for the 

data sets 25PDB, 1189 and 640, respectively; when 

Fisher’s linear discriminant algorithm is used to 

implement the classification prediction, the overall 

accuracies of 80.69, 79.40 and 80% are achieved for the 

data sets 25PDB, 1189 and 640, respectively. If 

comparing the four protein structural classes to each 

other, the predictions of proteins in the α classes are 

always the best (with accuracies higher than 90% for 

all the data sets. 

By constructing of horizontal visibility network, a 

protein is described as a real-valued vector of 17 

features. The results are shown in Table 3. From 

Table 3, we can see that the overall accuracies for the 

three data sets are close to or above 80%. Specifically, 

when SVM is used to implement the classification 

prediction, the overall accuracies of 82.85%, 79.21% 

and 81.25% are achieved for the data sets 25PDB, 
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1189 and 640, respectively; when Fisher’s linear 

discriminant algorithm is used to implement the 

classification prediction, the overall accuracies of 82.19, 

79.30 and 81.41% are achieved for the data sets 25PDB, 

1189 and 640, respectively. If comparing the four protein 

structural classes to each other, the predictions of 

proteins in the α classes are always the best (with 

accuracies higher than 90% for all the data sets). 
From Table 2 and 3, referring to the classes, our 

method also performs satisfactorily with prediction 
accuracies of about 80%. However, it seems very 
challenging to predict the α/β class and α + β class as 
their prediction accuracies are relatively low when 
compared with the other classes. 

Comparison with Existing Methods 

In this section, the proposed approach is further 

compared with other recently reported prediction 

approachs on the same three data sets. The results are 

shown in Table 4. 

As can be seen from Table 4, our methods obtain 

the high prediction accuracies for all-α ,and all-β 

classes among all the tested methods. But our methods 

obtain the low prediction accuracies for α/β and α + β 

classes among all tested methods. But our method 

shows that network features are useful for prediction 

of protein structure class. 

 

Table 2: 17 features (VN): The prediction quality of our method on the three data sets with SVM and Fisher algorithms 

 SVM    Fisher 

 ---------------------------------------------------------------------------- --------------------------------------------------- 

Data set Class Sens Spec MCC Sens Spec MCC 

25PDB all-α 0.9413 0.9579 0.8906 0.9300 0.9581 0.8828 

 all-β 0.8352 0.9516 0.7988 0.8420 0.9358 0.7793 

 α/β 0.7572 0.9455 0.7179 0.7688 0.9402 0.7171 

 α +β 0.7347 0.8800 0.6040 0.6780 0.8780 0.5545 

 OA 0.8207   0.8069 

1189 all- α 0.9148 0.9565 0.8574 0.9148 0.9595 0.8628 

 all-β 0.8673 0.9530 0.8274 0.8741 0.9472 0.8237 

 α/β 0.8144 0.8704 0.6726 0.7455 0.9169 0.6788 

 α +β 0.5477 0.9002 0.4685 0.6515 0.8690 0.5044 

 OA 0.7903   0.7940 

640 all- α 0.9493 0.9744 0.9173 0.9275 0.9821 0.9162 

 all-β 0.7987 0.9534 0.7720 0.8312 0.9389 0.7716 

 α/β 0.8531 0.8848 0.7164 0.8362 0.9055 0.7317 

 α +β 0.6257 0.8862 0.5241 0.6316 0.8745 0.5108 

 OA 0.8000   0.8000 

 

Table 3: About 17 features (HVN): The prediction quality of our method on the three data sets with SVM and Fisher algorithms 

 SVM    Fisher 

 --------------------------------------------------------------------------- --------------------------------------------------- 

Data set Class Sens Spec MCC Sens Spec MCC 

25PDB all-α 0.9549 0.9611 0.9055 0.9436 0.9608 0.8968 

 all-β 0.8014 0.9600 0.7869 0.8397 0.9400 0.7834 

 α/β 0.7890 0.9545 0.7595 0.8064 0.9456 0.7551 

 α +β 0.7596 0.8736 0.6145 0.6939 0.8901 0.5852 

 OA 0.8285   0.8219 

1189 all- α 0.9058 0.9485 0.8360 0.9148 0.9484 0.8424 

 all-β 0.8401 0.9611 0.8191 0.8673 0.9488 0.8207 

 α/β 0.7964 0.8848 0.6762 0.7455 0.9182 0.6806 

 α +β 0.6224 0.8904 0.5151 0.6556 0.8741 0.5160 

 OA 0.7921   0.7930 

640 all-α 0.9348 0.9631 0.8855 0.9203 0.9801 0.9070 

 all-β 0.8052 0.9612 0.7904 0.8312 0.9493 0.7887 

 α/β 0.8475 0.9113 0.7485 0.8701 0.9017 0.7531 

 α +β 0.6842 0.8838 0.5690 0.6550 0.8911 0.5556 

 OA 0.8125   0.8141 
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Table 4: Performance comparison of different methods on three data sets 

  Prediction accuracy (%) 

  -------------------------------------------------------------------------------------------------- 

Data set Method all-α all-β α/β α +β OA 

25PDB Yang et al. (2009) 0.5800 0.6500 0.6990 0.6510 0.6420 

 Yang et al. (2010) 0.9280 0.8330 0.8580 0.7010 0.8290 

 Zhang et al. (2013) 0.9570 0.8080 0.8240 0.7550 0.8370 

 Liu and Jia (2010) 0.9260 0.8130 0.8150 0.7600 0.8290 

 Zhang et al. (2011) 0.9500 0.8560 0.8150 0.7320 0.8390 

 Ding et al. (2012) 0.9503 0.8126 0.8324 0.7755 0.8434 

 Han et al. (2014) 0.9460 0.8760 0.8410 0.7820 0.8630 

 Dehzangi et al. (2014) 0.9680 0.9370 0.9010 0.8700 0.9220 

 Wang et al. (2014) 0.9500 0.9140 0.7750 0.8870 0.8880 

 This paper VN (SVM) 0.9413 0.8352 0.7572 0.7347 0.8207 

 This paper VN (Fisher) 0.9300 0.8420 0.7688 0.6780 0.8069 

 This paper HVN (SVM) 0.9549 0.8014 0.7890 0.7596 0.8285 

 This paper HVN (Fisher) 0.9436 0.8397 0.8064 0.6939 0.8219 

1189 Yang et al. (2009) 0.6050 0.6770 0.7100 0.6140 0.6580 

 Yang et al. (2010) 0.8920 0.8670 0.8260 0.6560 0.8130 

 Zhang et al. (2013) 0.9240 0.8440 0.8440 0.7340 0.8360 

 Liu and Jia (2010) 

 Zhang et al. (2011) 0.9240 0.8740 0.8200 0.7100 0.8320 

 Ding et al. (2012) 0.9372 0.8401 0.8353 0.6639 0.8196 

 Han et al. (2014) 0.9100 0.8880 0.8740 0.6930 0.8450 

 Dehzangi et al. (2014) 0.9820 0.9150 0.8380 0.7220 0.8630 

 Wang et al. (2014) 0.9640 0.9290 0.8200 0.7840 0.8710 

 This paper VN (SVM) 0.9148 0.8673 0.8144 0.5477 0.7903 

 This paper VN (Fisher) 0.9148 0.8741 0.7455 0.6515 0.7940 

 This paper HVN (SVM) 0.9058 0.8401 0.7964 0.6224 0.7921 

 This paper HVN (Fisher) 0.9148 0.8673 0.7455 0.6556 0.7930 

640 Yang et al. (2009) - - - - - 

 Yang et al. (2010) 0.8910 0.8510 0.8810 0.7140 0.8310 

 Zhang et al. (2013) - - - - - 

 Liu and Jia (2010) - - - - - 

 Zhang et al. (2011) - - - - - 

 Ding et al. (2012) 0.9493 0.7662 0.8927 0.7427 0.8344 

 Han et al. (2014) - - - - - 

 Dehzangi et al. (2014) - - - - - 

 Dehzangi et al. (2014) 0.9570 0.8960 0.8930 0.9010 0.9090 

 This paper VN (SVM) 0.9493 0.7987 0.8531 0.6257 0.8000 

 This paper VN (Fisher) 0.9275 0.8312 0.8362 0.6316 0.8000 

 This paper HVN (SVM) 0.9348 0.8052 0.8475 0.6842 0.8125 

 This paper HVN (Fisher) 0.9203 0.8312 0.8710 0.6550 0.8141 

 

Conclusion 

The problem of protein structural class prediction is 
still a challenge problem. Though some of approachs 

have shown the state-of-the-art performance, there is 
always room for improvement. In this study, we used 
matlab software to write programs. 17 network features 
are utilized to predict low-homology protein structural 
class. By comparisons with other existing approachs, 
we may attribute the high prediction accuracy. Three 

widely used data sets, 25PDB, 1189 and 640, with low 
sequence similarity, are adopted to evaluate the 
performance of our approach. Results by leave-one-out 
test show that our proposed method provides an 
effective tool for the accurate prediction of low-
homology protein structural classes.  
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