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Abstract: Fuorescence, FTIR and UV-Vis absorption spectroscopy were 
used to explore the binding between chicoric acid and Bovine Serum 
Albumin (BSA). Binding characteristics at various levels of temperature 
have been calculated. The results indicated that chicoric acid statically 
quenched the intrinsic fluorescence of BSA. The binding constants (Ka) 
were 4.14×105 L mol−1 at 273K and 4.29×106 L mol−1 at 298 k. The 
numbers of binding sites between chicoric acid and BSA were both 
approximately equal to 1 at the two temperatures. Furthermore, the binding 
distance between chicoric acid and BSA was 2.69 nm which was calculated 
according to the Förster’s resonance energy transfer. Thermodynamic 
parameters suggested that BSA bind chicoric acid spontaneously mainly via 

hydrophobic interaction. Results demonstrated that the conformation and 
microenvironment of BSA were changed after binding with chicoric acid. 
Moreover, chicoric acid showed stronger binding with tryptophan (Trp) 
residue than with tyrosine (Tyr) residue. Our results can provide scientific 
basis for studying availability and distribution of chicoric acid. 
 
Keywords: Chicoric Acid Bovine Serum Albumin, Spectroscopy, 
Interaction, Conformation 

 
Introduction 

Phenolic acids widely occur in plant leaves, roots and 
especially fruits, are aromatic acid compounds and 
secondary plant metabolites (Herrmann and Nagel, 
1989). Hydroxybenzoic and hydroxycinnamic acids are 
two groups of phenolic acids that widely distribute in 
plants (Ghasemzadeh and Ghasemzadeh, 2011). Much 
attention has been paid to these natural phenolic acids 
because of their functional activities in intervening 
diabetes, inflammatory and cancer as well as anti-
oxidative and anti-microbial properties (Chao et al., 
2009; Cueva et al., 2010; Hsu et al., 2000; Maurya et al., 
2010; Nayaka et al., 2010). Moreover, previous reports 
revealed that the binding between some phenolic acids 
and biomolecules such as DNA and proteins played a 
certain role in their biological properties (Labieniec and 
Gabryelak, 2005). 

Chicoric acid (Fig. 1) is a member of phenolic acids 
and found in many edible plants such as Echinacea 

purpurea, dandelion, basil, iceberg lettuce, chicory, cat’s 
Whisker (Baur et al., 2004; Innocenti et al., 2005; Lee and 
Scagel, 2009; Liu et al., 2006; Olah et al., 2003; 

Schütz et al., 2005). Many literatures have reported that 
chicoric acid possesses anti-oxidative, antivirus and 
anti-diabetic activities (Dalby-Brown et al., 2005; 
Robinson et al., 1996; Tousch et al., 2008). Moreover, 
previous study also revealed that chicoric acid possessed 
a stimulatory effect on phagocytes (Bone, 1997). 
Recently, the binding study of chicoric acid with HIV-1 
integrase has been carried out (Healy et al., 2009). 

Binding studies of small molecules to proteins are 
very important in their disposition and efficacy because 
protein binding can influence the effective solubility, 
distribution and biological half-life of small molecules in 

vivo as well as interaction between small molecules and 
other endogenous or exogenous compounds. Therefore, it 
is of great necessity for explaining the pharmacodynamics 
and pharmacokinetics of small molecules to investigate 
the binding between them and proteins (Cui et al., 2008; 
Qin et al., 2007). Serum albumins, lipoproteins and al-
glycoprotein are proteins commonly participated in 
protein binding (Abdi et al., 2012). Among them, the 
most abundant blood proteins are serum albumins 
which  play  an  important  role  in balancing the 
oncotic pressure and pH of blood (Carter and Ho, 1994). 
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Fig. 1. Molecule structure of chivoric acid 
 
The most prominent characteristic of serum albumins is 
that they can act as the depot proteins and transporters 
for numerous endogenous and exogenous small 
molecules (Huang et al., 2004). BSA was used 
frequently in previous studies because of its advantages 
such as highly stability, cheap and homology with 
Human Serum Albumin (HSA) in structure (Carter et al., 
1994; Naik et al., 2010). BSA contains two tryptophan 
(Trp) residues including Trp-134 and Trp-212 which 
possess intrinsic fluorescence. In the first domain Trp-
134 is located on the surface of the molecule and in the 
second domain Trp-212 is located within a hydrophobic 
binding pocket of the protein (He and Carter, 1992; 
Hamdanim et al., 2009). The conformation of BSA would 
be changed upon interacting with small molecules. 

UV-Vis absorption and fluorescence spectroscopy 
were used to investigate the interactions between serum 
albumins and small molecules for their outstanding 
sensitivity, selectivity, reproducibility, convenience and 
theoretical foundation (Zhang et al., 2012). FTIR 
spectroscopy is reliable method to illustrate the 
conformational changes of proteins after binding with 
small molecules (Darwish et al., 2010). Recently, several 
researches on the binding between phenolic acid and 
serum albumins have been undertaken using spectroscopic 
technology (Kang et al., 2004; Labieniec and Gabryelak, 
2006; Meng et al., 2012; Rawel et al., 2005; Soares et al., 
2007). However, no report of chicoric acid-serum albumins 
interaction has been found so far. Therefore, this research 
was carried out to explore the interaction between chicoric 
acid and BSA under simulated physiological conditions 
using fuorescence, FTIR and UV-Vis absorption 
spectroscopy. The mechanism of interaction between 
chicoric acid and BSA including quenching mechanism, 
binding parameters, binding distance, thermodynamic 
parameters and conformational change were explored. 

Materials and Methods 

Chemicals and Reagents 

Chicoric Acid and BSA was obtained from Sigma 
Chemical Co. (St. Louis, MO, USA). All other reagents 

used in this study were of analytical purity. Water used 
throughout the experiments was ultrapure. 

Instrumentations 

Hitachi F-4500s pectrofluorimeter (Tokyo, Japan) 
with a 1.0 cm quartz cell and a 150 W xenon lamp was 
employed in this study to record fluorescence spectra. 
Excitation wavelength was set at 285 nm. The widths of 
excitation slit and emission slit were both 10 nm. The 
UV-Vis absorption spectra were measured by Shimadzu 
UV-2550 s pectrophotometer (Kyoto, Japan) in the 
wavelength range 250-350 nm. FTIR spectra were 
measured using Thermo-Nicolet Avatar330 FTIR 
spectrometer (Rochester, NY, USA) using KBr pellets. 
The weight of samples was measured by Sartorius 
BP211D analytical balance with a precision of 0.1 mg 
(Göttingen, Germany). PHS-3Cdigital pHmeter 
(Shanghai, China) was used to detect pH values. 

Preparation of Stock Solutions 

To keep the ionic strength of solution NaCl (0.10 M) 
was used in Tris-HCl buffer (0.10M, pH 7.4). All BSA 
solutions were prepared in Tris-HCl buffer solution and 
kept at 0-4°C before used. The stock solution of chicoric 
acid was prepared in methanol. 

Fluorescence Studies 

Equal volumes of chicoric acid solutions with various 
concentrations were added to protein solutions, 
respectively. All solutions were mixed thoroughly. The 
final concentrations of chicoric acid were 0, 2, 3, 4, 5, 6, 7, 
8, 9 and 10 µM. Then the mixtures of chicoric acid and 
BSA were equilibrated at 273 or 298 K for 20 min. The 
fluorescence emissions spectra were recorded in the range 
of 300-450 nm and the binding constants of chicoric acid-
BSA systems were calculated in the base of fluorescence 
data. The synchronous fluorescence spectra of BSA with 
or without chicoric acid were recorded with the excitation 
and emission wavelength intervals (△λ) at 15 and 60 nm, 
respectively. All the experiments were carried out in 
triplicate and the measurement error was less than 1%. 

Absorption Studies 

The UV-Vis spectra were collected by Shimadzu UV-
2550 spectrophotometer in the region of 200-450 nm at 
298K. The final concentrations of chicoric acid were 0, 2, 
3, 4 and 5µM, respectively. While that of BSA was 1 µM.  

FTIR Spectroscopic Measurements 

The FTIR spectra of Tris-HCl buffer, BSA in the 
absence and presence of chicoric acid were collected in 
the spectral region 1000-2000 cm−1, respectively. Then the 
FTIR spectra of the sample solution were obtained by 
subtracting that of Tris-HCl buffer which taken as blank. 
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Results and Discussion 

Binding Characteristics 

Molecular interaction is one of the causes to decrease 
the fluorescence intensity of a fluorophore 
(Vijayabharathi et al., 2012). Therefore, the interactions 
between small molecules and proteins were revealed 
through detecting fluorescence quenching. In this study, 
the fluorescence spectra of BSA (λex = 285 nm) mixed 
with chicoric acid were obtained at 273 and 298 K. 
Figure 2 shown that chicoric acid decreased the 
fluorescence intensity of BSA and there was a positive 
correction between concentrations of chicoric acid and 
fluorescence intensity of BSA. These results indicated that 
the interaction between chicoric acid and BSA occured 
and the non-fluorescent complex chicoric acid-BSA 
formed. Moreover, the emission maximum (λem) of BSA 
slight red-shifted in the present of chicoric acid, indicating 
that Trp chromophore in BSA was located in a more 
hydrophilic environment because of the interaction of 
chicoric acid with BSA. This result was further confirmed 
by synchronous fluorescence spectra described below. 

Dynamic and static quenching are two main 
mechanisms of fluorescence quenching and different in 
dependence on temperature and viscosity. Stern-Volmer 
equation (Lakowicz and Weber, 1973) (Equation 1) was 
usually used to analyze the quenching mechanism in the 
previous studies: 
 

[ ] [ ]0 0/ 1 1sV qF F K Q K Qτ= + = +  (1) 

 
Where: 
F0 and F  = The fluorescence emission intensities with 

and without quencher, respectively 
Ksv  = The Stern-Volmerquenching constant 
Kq = The quenching rate constant 
[Q] = The concentration of quencher 
τ0 = The average lifetime of the molecules 

without quencher and its value is about 10−8s 
 

Figure 3 showed the Stern-Volmer plots for BSA 
fluorescence quenched bychicoric acid. Satisfactory 
linearity of the Stern-Volmer equations was obtained in 
the investigated concentrations of chicoric acid. Table 1 
listed the values of Ksv and Kq. The results suggested that 
with temperatures rising the values of Ksv decreased, 
indicating that static quenching was the probable 
machenism of fluorescence quenching between chicoric 
acid and BSA. Moreover, the quenching rate constants 
(Kq) of BSA were determined to be 9.835×1012 and 
7.454×1012L mol−1s−1, respectively, which were far 
greater than the maximum diffusion collision quenching 
rate constant (2.0×1010 mol−1 Ls−1), further demonstrating 
that the dominant mechanism was static quenching in the 
fluorescence quenching process of BSA by chicoric acid. 

Binding Constants and Binding Sites 

The double-logarithm equation (Bandyopadhyay et al., 
2012) (Equation 2) was used to caculate the binding 
constant (Ka) and the number of binding sites (n) in static 
quenching interaction: 
 

[ ]0lg lg lga

F F
K n Q

F

 −
= + 

 
 (2) 

 
Figure 4 demonstrated plots of lg(F0-F)/F versus 

lg[Q] for chicoric acid-BSA. The values of Ka and n can 
be obtained from the intercept and the slope, 
respectively. The calculated Ka and n at different levels 
of temperature were summarized in Table 2. The values 
of n at 273 and 298 K were both equal to 1, suggesting 
single class of binding site in BSA for chicoric acid. 

Thermodynamic Parameters and Binding Force 

Generally, the non-covalent interaction of small 
molecules and proteins cover hydrogen-bonding forces, 
vander Waals forces, hydrophobic interactions and 
electrostatic interactions. The major evidences for 
determining the binding mode of small molecule-protein 
are thermodynamic parameters such as free energy change 
(∆G), enthalpy change(∆H) and entropy change (∆S). The 
parameters above can be estimated from Equation 3 and 4: 
 

2

1 1 2

1 1 1a

a

K
In H

K R T T

 
= − ∆ 

 
 (3) 

 
ln

a
G H T S RT K∆ = ∆ − ∆ = −  (4) 

 
Where: 
Ka1 and Ka2 = Binding constants at temperature T1 and 

T2, respectively 
R  = The gas constant 
 

The interaction researches were implymented at 273 
and 298 K. Table 3 listed the thermodynamic parameters 
for the binding of chicoric acid and BSA. The value of 
∆G was negative indicating the binding process of 
chicoric acid and BSA was spontaneous. The values of 
∆H and ∆S were positive implied that the interaction 
between chicoric acid and BSA was mainly an 
endothermic and entropy-driven reaction. Meanwhile, 
the main force between chicoric acid and BSA was 
hydrophobic force (Zhang et al., 2012). 

Binding Distance 

The spectral researches revealed that a complex was 
formed between chicoric acid and BSA. Additionally, 
Fig. 5 showed the fluorescence  emission  spectrum  
of BSA  and  the  absorption spectrum of chicoric acid. 
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 (a) (b) 

 
Fig. 2. The fluorescence spectra of BSA quenched by chicoric acid at 273 K (A) and 298 K (B). λex = 285 nm; BSA, 1 µM; chicoric 

acid (a-j): 0, 2, 3, 4, 5, 6, 7, 8, 9 and 10 µM, respectively 
 

 
 

Fig. 3. Stern-Volmer plots for fluorescence quenching of chicoric acid-BSA at 273K (■) and 298K (●) 
 
An overlap of the two spectra could be found. Therefore, 
the binding distance of chicoric acid and BSA can be 
obtained upon fluorescence resonance energy transfer. 
Equation 5 (Pang et al., 2012) could be used to 
determine the efficiency of energy transfer between the 
donor and acceptor (E): 
 

6
0

6 6
0 0

1
F R

E
F R r

= − =
+

 (5) 

 
Where: 
F and F0 = The fluorescence intensities of BSA with 

and without chicoric acid, respectively 

r = The binding distance of BSA and chicoric 
acid 50% of the excitation energy is shifted 
to the acceptor at the critical distance (R0) 
which can be determined by the Equation 6 
(Pang et al., 2012): 

 
6 25 2 4
0 8.8 10R K n J− −= × ∅  (6) 

 
Where: 
K2 = The spatial orientation factor of the dipole 
n = The refractive index of the medium 
φ = fluorescence quantum yield of the donor 
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Fig. 4. Double log plots of BSA with chicoric acid at 273K (■) and 298K (●) 
 

 
 
Fig. 5. The overlap of the fluorescence spectrum of BSA and the absorption spectrum of chicoric acid. BSA, 1 µM; chicoric 

acid, 10 µM; T = 298K 
 
Table 1. Stern-Volmer quenching constants for the interaction 

of chicoric acid with BSA 
Temperature  Ksv Kq 
(K) (×104 Lmol−1) (×1012 L mol−1s−1) r 
273K 9.835 9.835 0.9749 
298K 7.454 7.454 0.9589 
 
Table 2. Binding constants and binding sites for the interaction 

of chicoric acid with BSA 
Temperature  Kq 
(K) (L mol−1) n r 
273K 9.835 9.835 0.9749 
298K 7.454 7.454 0.9589 

Table 3. Thermodynamic parameters for the binding of chicoric 
acid and BSA 

Temperature  ∆G ∆S ∆H 
(K)  (kJ·mol−1)  (J·mol-1·K−1) (kJ·mol−1) 
273K  -12.75 147.33 27.47 
298K  -16.43 

 
The values of K2, φ and n have been reported for BSA 

are 2/3, 0.14 and 1.36, respectively (Zhuang et al., 2012). J, 
the overlap integral of the fluorescence emission spectrum 
of donor and absorption spectrum of the acceptor, can be 
obtained using Equation 7 (Pang et al., 2012): 
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( ) ( )
( )

4F
J

F

λ ε λ λ λ
λ λ

Σ ∆
=

Σ ∆
 (7) 

 
Where: 
F(λ) = The fluorescence intensity of fluorescent donor at 

wavelength λ 
ε(λ) = The molar absorption coefficient of the acceptor 

at wavelength λ 
 

Basing on Equation 5, 6 and 7, it could be obtained 
that J =1.07×10−14 cm3·L·mol−1, R0 = 2.52 nm, E = 0.40, 
r = 2.69 nm. The value of r is less than 8 nm, suggesting 
the shift of non-radiative energy between BSA and 
chicoric acid. Moreover, the value of r was larger than 
that of R0 also suggested that the quenching mechanism 
of chicoric acid to BSA was static (Zhuang et al., 2012). 
Base on the above, the static quenching combined with 
non-radiative energy transfer was the quenching 
mechanism for chicoric acid to BSA. 

Conformation Investigation 

Synchronous Fuorescence Spectra 

Synchronous fluorescence spectroscopy can be used to 
investigate the changes in structure and conformation of 
proteins. The shift in maximum emission wavelength 
corresponds to changes in polarity around the 
chromosphere molecules (Jayabharathi et al., 2012). 
Synchronous fluorescence spectra offer information about 
the characteristics of Tyrresidue and Trpresidue when ∆λ 
between excitation wavelength and emission wavelength is 
fixed at 15 and 60 nm, respectively (Shi et al., 2012). Figure 
6 showed that with the increasing concentration of chicoric 
acid the fluorescence intensities at ∆λ = 15 and ∆λ = 60 nm 
were both decreased gradually. The emission maximum of 
Tyr residue kept unchanged at 288 nm upon addition of 

chicoric acid, suggesting that chicoric acid had no obvious 
change on the microenvironment of the Tyr residue. 
Whereas, it was observed that the emission maximum of 
Trp residue had a weak red shift by about 1 nm from 283 
nm to 284 nm, indicating that Trp residue was close to 
chicoric acid, the hydrophobicity around the Trp residue 
decreased, however, the polarity increased (Zhuang et al., 
2012). Additionally, we calculated fluorescence quenching 
ratios (RSFQ) basing on the equation RSFQ = 1-F/F0. In this 
equation, F and F0 are the synchronous fluorescence 
intensities of BSA with and without chicoric acid, 
respectively (Meng et al., 2012). As shown in Fig. 7, the 
RSFQ for ∆λ = 15 nm were smaller than the RSFQ for ∆λ = 60 
nm, suggesting that chicoric acid was more accessible to 
Trp residue than to Tyr residue (Wang et al., 2012). 

FTIR Measurements 

Different amide bands in infrared spectra of proteins 
indicate different vibrations of the peptide moiety. Two 
amide bands related with the secondary structure of 
protein were the protein amide I band at 1600-1700 cm−1 

(mainly C=O stretching) and II band at 1500-1600 
cm−1(C–N stretching coupled with N–H bending mode). 
In this study, the binding between chicoric acid and BSA 
was demonstrated using infrared spectroscopy to obtain 
more information on mechanism of this interaction and 
conformational changes of BSA. Figure 8 showed the FTIR 
spectra of BSA and chicoric acid-BSA complex. The peak 
position of amide I and II bands shifted from 1654 to 1649 
and 1542 to 1552 cm−1, respectively. The changes of these 
peak positions indicated that in the protein structural 
subunits C=O and C–N groups were bound with chicoric 
acid and then rearranged the polypeptide carbonyl hydrogen 
bonding pattern, finally changed the secondary structure of 
BSA (Tantipolphan et al., 2007). 

 

   
(a) (b) 

 
Fig. 6. The synchronous fluorescence spectra of BSA. (A) ∆λ = 15 nm, (B) ∆λ = 60 nm; BSA, 1 µM; chicoric acid (a–j): 0, 2, 3, 4, 5, 

6, 7, 8, 9 and 10 µM, respectively; T = 298K 
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Fig. 7. Ratios of Synchronous Fluorescence Quenching (RSFQ) of BSA in the presence chicoric acid. BSA, 1 µM; chicoric acid: 0, 

2, 3, 4, 5, 6, 7, 8, 9 and 10 µM, respectively; T = 298 K. ∆λ = 15 nm (■), ∆λ = 60 nm (●) 
 

 
 
Fig. 8. FTIR spectrum of BSA and difference spectrum of BSA-chicoric acid complex. The FTIR spectrum of BSA was obtained by 

subtracting the spectrum of buffer solution from the spectrum of the protein solution; the FTIR difference spectrum of BSA-
chicoric acid complex was obtained by subtracting the spectrum of chicoric acid-free form from that of chicoric acid-BSA 
complex form; BSA, 1 µM; chicoric acid, 10 µM; T = 298K 

 
UV-Vis Absorption Studies 

For reconfirming the conformational change of BSA 
by the addition of chicoric acid, UV-Vis absorption 
spectra of BSA with varying concentrations of chicoric 
acid were obtained. In the present of chicoric acid, the 
absorption peak intensity of BSA increased as well as the 
peak red shifted from 278 to 286 nm (Fig. 9). It was 

reported that dynamic quenching did not change the 
absorption spectrum, but the formation of non-fluorescence 
ground-state complex can change it (Du et al., 2012). Thus, 
these results indicated that the interaction between 
chicoric acid and BSA caused the formation of ground 
sate complex and reconfirmed the static quenching 
mechanism of this interaction (Liu et al., 2010). 
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Fig. 9. UV-Vis absorption spectra of BSA and chicoric acid-BSA complex. BSA, 1 µM; chicoric acid, (a–e): 0, 2, 3, 4, 5 µM; T = 298K 
 
Conclusion 

In this study, the interaction of chicoric acid and BSA 
was studied using spectroscopic analysis. The results 
demonstrated that static quenching process was probable 
the quenching mechanism of BSA by chicoric acid. It was 
calculated that one binding site in BSA was accessible to 
chicoric acid. Thermodynamic parameters revealed that 
the binding reaction was spontaneous and hydrophobic 
force played a major role during the interaction. The 
distance between chicoric acid and BSA was less than 8 
nm base on the Förster’s resonance energy transfer. 
Additionally, BSA undergone conformational and 
microenvironment changes upon binding to chicoric acid 
and the binding site is mainly at Trp residue. 
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