Research Article

Antibacterial Activity of Tali Bamboo (Gigantochloa apus) Leaf Extract to Inhibit Escherichia coli and Salmonella typhimurium

¹Sinta Agustina, ²Komang Gede Wiryawan and ²Sri Suharti

Article history
Received: 24-01-2025
Revised: 26-03-2025
Accepted: 07-05-2025

Corresponding Author: Komang Gede Wiryawan Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Indonesia Email: kgwiryawan61@gmail.com Abstract: Bamboo leaves contain phytochemical compounds that have the potential to act as antimicrobial agents in inhibiting pathogenic bacteria. This study aimed to evaluate the potential of tali bamboo (Gigantochloa apus) leaves extracted with different solvents to inhibit the growth of Escherichia coli and Salmonella typhimurium. The tali bamboo leaves were extracted using ethanol and methanol with a ratio of 1:10 between tali bamboo leaf and solvent. The antibacterial activity of bamboo leaf was carried out using the agar diffusion method at varying concentrations (0% -0.08%), with cotrimoxazole was used as the positive control. Phytochemical analysis confirmed the presence of tannins, steroids, saponins, and flavonoids in bamboo tali leaf extract. The inhibition zone test showed that methanol extract of G. apus did not inhibit the growth of E. coli and S. typhimurium, whereas ethanol extract had weak antibacterial activity (clearing zone < 5 mm) with a minimum inhibitory concentration of 0.2% for E. coli and 0.3% for S. typhimurium. Based on the results, it can be concluded that ethanol extract of G. apus has the potential as a natural antibacterial agent against pathogenic bacteria.

Keywords: Antibacterial Activity, Bamboo Leaves, MIC, MBC, Phytochemical Compound

Introduction

Diarrhea is a disease that can cause disadvantages and mortality, especially for young ruminants. Schinwald et al. (2022) stated that calf mortality caused by diarrhea can reach up to 57%. It also agreed with Jessop et al. (2024) that diarrhea caused morbidity and mortality in calves. Diarrhea will cause dehydration so the electrolytes in ruminants are unbalanced and in the extreme condition, it will cause mortality (Caffarena et al., 2021). Diarrhea also reduces livestock productivity, such as decreased body weight and milk production, resulting in economic losses for farmers (Abdou et al., 2021). This disease was caused by infection from pathogenic bacteria such as E. coli and Salmonella spp. (Caffarena et al., 2021; Gomez et al., 2022). Chigerwe and Heller (2018) stated that another bacteria that can cause diarrhea in ruminants is S. typhimurium. El-Seedy et al. (2016) also noted that the type of Salmonella most found in feces samples from diarrhea calves was S. typhimurium, which reached 30.4%. This pathogenic bacterial infection can come from given feed and water contamination of livestock (El-Seedy et al., 2016). Pathogenic bacterial contamination can also be caused by

contact with the mother's udder, bedding material, milk processing tools or feces in the pen (Bekuma and Galmessa, 2018; Deddefo *et al.*, 2023). Salmonella spp. damages the digestive tract epithelium and causes inflammation resulting in malabsorption of water, electrolytes, and other nutrients (Jessop *et al.*, 2024). Diarrheal calves will suffer from dehydration, acidosis, hypovolemia, decreased feed consumption, and difficulty standing (Shehta *et al.*, 2022).

Antibiotics are generally used to manage diseases caused by pathogenic bacteria including diarrhea. The study conducted by Eibl *et al.* (2021) revealed that diarrhea calves, especially newborn livestock, were medicated using antibiotics in several countries. Antibiotics that were often used for diarrhea in livestock were amoxicillin, ceftiofur, ampicillin, nitazoxanide, florfenicol, danofloxacin, marbofloxacin, and so on (Bernal-Cordoba *et al.*, 2023). However, the application of antibiotics was limited because they can cause Antimicrobial Resistance (AMR). In Indonesia, restrictions on the use of antibiotics were contained in Minister of Agriculture Regulation (2017) Number 14, which prohibited the use of antibiotics to increase

¹Research Center for Animal Husbandry, National Research and Innovation Agency, Indonesia

²Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Indonesia

livestock growth or production. Still, antibiotics used on sick livestock are permitted. However, it must comply with the rules and guidelines for using the correct dose and duration to ensure the safety of livestock products (such as meat, eggs and milk) for consumers. Overuse or misuse of antibiotics will cause bacterial resistance because pathogenic bacteria could mutate the structure of antibiotics DNA target, limiting the uptake of antibiotics through porin channels, inactivating antibiotics, and eliminating antibiotic substances using transporter families and efflux pumping mechanisms (Reygaert, 2018; Devi et al., 2024). This was also in line with Devi et al. (2024), who stated that the application of antibiotics in livestock significantly contributed to the spread of resistant bacteria. Therefore, to minimize the use of antibiotics, it was necessary to look for natural ingredients that have antibacterial capabilities to treat livestock with diarrhea.

Bamboo leaves have the potential as an antimicrobial agent. Sola et al. (2023) showed that bamboo leaves were able to inhibit the growth of Streptococcus pneumoniae, Staphylococcus aureus, and Klebsiella pneumoniae. The addition of extract bamboo leaves type Bambusa vulgaris can also inhibit the growth of Staphylococcus aureus and Escherichia coli (Musyimi et al., 2023). Bamboo leaves contain secondary metabolite compounds such as flavonoids, saponins, glycosides, tannins, and terpenoids, which can inhibit the growth of pathogenic bacteria (Musyimi et al., 2023). Bamboo leaves also contain 27 other secondary metabolite compounds, including alkaloids, flavonoids, steroids, phenolic acids, fatty acid derivatives, and isoprenoids (Govindan et al., 2018). One of the bamboo leaves that have the potential as a source of metabolite compounds in Indonesia is the Tali bamboo (Gigantochloa apus) leaves because tali bamboo is a type of bamboo that grows widely in Indonesia (Rahmawati et al., 2019). Bubonja-Sonje et al. (2020) stated that the metabolite compound content of each plant was different, and it would affect their antibacterial activity. Therefore, the metabolite compounds from tali bamboo leaves need to be investigated. Another thing that influences the extraction results of metabolite compounds is the type of solvent used. However, there was limited research conducted to evaluate the antibacterial activity of G. apus leaves, so this research aimed to evaluate the antibacterial potential of tali bamboo (G. apus) leaves extracted with different solvents to inhibit E. coli and S. typhimurium.

Materials and Methods

Plant Materials

The bamboo leaves used in this research are old leaves from 4 years old Tali Bamboo (*G. apus*) harvested from Bogor (West Java, Indonesia). The use of 4-year-old bamboo leaves was chosen because, at this stage, the

bamboo has reached maturity, resulting in a higher and more stable accumulation of secondary metabolite compounds (Long *et al.*, 2023; Li and Sun, 2024).

Bamboo leaf preparation began with washing the leaves to remove dirt. After that, the bamboo leaves were drained and cut into 5 cm. The bamboo leaves were placed into an oven at 60 °C for 2 days until the leaves were completely dry. The leaves were then crushed until flour formed.

Extraction Procedure

Bamboo leaf extraction was carried out using 2 solvents (96% methanol and 70% ethanol). The use of ethanol 70% was aimed to extract either water-soluble or non-water-soluble components. The ratio of bamboo leaves and solvent was 1:10, so 50 g of bamboo leaf flour and 500 mL of solvent were added to an Erlenmeyer. After that, the Erlenmeyer was incubated in a shaker water bath for 30 hours at room temperature (Kemit *et al.*, 2016). The maceration results were filtered, and then the solution was concentrated using a rotary vacuum evaporator at 40 °C for methanol extract and 55 °C for ethanol extract.

Nutrients and Bioactive Compounds of Bamboo Leaves

In this study, the nutrient content analysis of bamboo leaves was carried out using the proximate method (AOAC, 2005) to measure water content, crude protein (CP), crude fiber (CF), ether extract (EE), nitrogen-free extract (NFE) and ash. The bioactive compounds analysis was done using the method conducted by Ramli *et al.* (2020) for flavonoids, alkaloids, steroids, triterpenoids, tannins and saponins content.

Antimicrobial Activity: Inhibition Zone Test

The pathogenic bacteria used in this research were E. coli and S. typhimurium obtained from IPB Culture Collections (IPBCC). The antimicrobial screening was carried out using the agar well diffusion method (Gonelimali et al., 2018). First, 1 mL of fresh bacterial isolate and 20 ml of Mueller Hinton Agar (MHA) media were added into the petri dish. The media was homogenized and kept at room temperature until the agar solidified. After solidifying, the media was perforated using a sterile cork driller with a diameter of 6 mm. Each well of agar was added with 50 µl of bamboo leaves extract with different concentrations (0.00%, 0.02%, 0.04%, 0.06% and 0.08%). In the middle of the agar well, 50 µl of 0.02% cotrimoxazole was added as a positive control. The agar medium added with bamboo leaf extract and antibiotics was placed in the refrigerator for 3 hours to allow the extracted bamboo leaves to be absorbed properly (Magdalena and Kusnadi, 2015). The petri dish was incubated at 37 °C for 24 hours. The inhibition zone was measured by sizing the area of the

clearing zone formed around the well (Bubonja-Sonje *et al.*, 2020).

Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

The MIC value was the minimum concentration of an ingredient that can inhibit the growth of bacteria, while the MBC is the minimum concentration of an ingredient that can kill bacteria (Schrader et al., 2023). The concentrations of bamboo leaf extract used in this test were 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, and 0.9%. Determination of MIC and MBC values was carried out by making 10 test tube series, and each tube contained 11.232 µL of sterile Nutrient Broth (NB) media. The tubes with 0.0% extract were made by adding 11.232 μL of sterile NB + 0μL of extract fluid + 648 μL of sterile aquadest. In comparison, series tubes with the highest concentration used in this study (0.9%) were made by adding 11.232 μ L of sterile NB + 648 μ L extract fluid + 0 μL sterile aquadest and so on, so each series of test tubes is filled with 11.880 µL of solution. After the entire series was ready, all tubes were added with 120 µL of bacterial suspension, so the total fluid in the tube was 12 ml (12.000 μL). Each tube was homogenized using a vortex for 1-2 minutes, then incubated at 37 °C for 24 hours. The percentage of bacterial growth inhibition is calculated using the formula:

$$ext{Inhibition Percentage} = 100 - \left(N_t imes rac{100}{N_0}
ight)$$

Where:

 N_t is the Number of bacteria in the extract addition treatment (CFU/ml)

 N_{o} is the Number of bacteria in the original inoculum (CFU/ml)

Data Analysis

Antimicrobial activity results were analyzed with a descriptive method, and MBC was calculated using a simple linear regression analysis. The MBC value was obtained based on the regression equation y = 0.403x - 39.286 for *E. coli* and y = 1.06x - 105.04 for *S. typhimurium* with y =extract concentrations and x =% of inhibition.

Results and Discussion

Nutrient Content of Bamboo Leaves

The nutrient content of tali bamboo (*G. apus*) leaves in this research is presented in Table 1. The data showed that bamboo leaves contain a high moisture level (43.39%), a moderate protein level (14.81%), and a low ether extract (4.07%). These findings suggest that tali bamboo leaves have the potential to be a valuable feed resource. Singhal (2023) said that 27 types of bamboo leaves have crude protein in the range from 9-19% and crude fiber range from 18 to 34% and Andriarimalala *et*

al. (2019) showed that 9 types of bamboo leaves used in their research had nutrient content DM 44.50-61.90%, crude protein 7.71 – 15.40%, crude fiber 26.30-32.60%, and ash 6.68-18.50%. The results in Table 1 showed that the crude fiber content of tali bamboo leaves (45.26%) was higher than Singhal (2023) and Andriarimalala et al. (2019). This was caused by the old bamboo leaves used in this study. The fiber content in plants was influenced by harvested age (Khalil et al., 2015). Other factors that influenced the nutrient content in plants were climate, soil properties, and heavy metal content in the soil (Khalil et al., 2015).

Table 1: Nutrient content of tali bamboo leaf

Nutrient	Value (% DM)
Ether Extract	4.07
Crude Protein	14.81
Crude Fiber	45.26
Ash	15.50
NFE	20.36

Note: All values are expressed on a dry matter basis (100% DM).

DM = Dry Matter; NFE = Nitrogen Free Extract

 $NFE = 100 - (Crude\ Protein + Ether\ Extract + Crude\ Fiber + Ash)$

Phytochemical Compounds

The phytochemical results of extract ethanol tali bamboo leaf were presented in Table 2. The result showed that ethanol extracts of tali bamboo contain a high concentration of tannins, and a medium concentration of flavonoids, saponins and steroids. The result also showed the extract ethanol did not contain alkaloids and triterpenoids. The research conducted by Pujiarti et al. (2020) showed that extract ethanol and hot water of Dendrocalamus asper and Gigantochloa verticillata bamboo leaves contained flavonoids and tannins but did not contain saponins and alkaloids. In contrast, the results of Maya et al. (2023) showed that extract methanol of Bambusa tulda and Dendrocalamus strictus leaves contained terpenoids, flavonoids, saponins, phenols, alkaloids, glycosides, and steroids. Differences in the type of bamboo and solvent used caused this. The Solvent was a factor that determines the extraction process and influences the amount and types of secondary metabolite compounds extracted from plants (Khan et al., 2022). Kamarudin et al. (2021) also said that the quality and quantity of secondary metabolite compounds extracted from plants were influenced by the extraction method, the type and polarity of the solvent, and the chemical structure of the extracted target compounds. Plants phytochemical compounds were also influenced by several factors, such as geographical location and climatic conditions, temperature, humidity and rainfall (Hayat et al., 2020). Table 2 also showed that tannin was the most abundant phytochemical compound extracted using ethanol solvent. This was in line with Hayat et al. (2020) that plants extracted using ethanol

produce tannins higher than flavonoids and polyphenols. Because ethanol was a polar solvent, tannins with higher polarity than flavonoids can be easily extracted. Tannin was a secondary metabolite compound that had high polarity and a hydroxyl group (Chang *et al.*, 2019; Maharani *et al.*, 2020; Ruiz-Aquino *et al.*, 2023) so it is easy to make hydrogen bonds with ethanol (McRae *et al.*, 2015).

Table 2: Phytochemical compounds of tali bamboo leaf ethanol extract

Chemical Compounds	Result	
Flavonoids	++	
Alkaloids	-	
Tannins	+++	
Saponins	++	
Steroids	++	
Triterpenoids	-	

Note: - = Absent; + = Low concentration; ++ = Moderate concentration; +++ = High concentration

Table 2 also showed that tannin was the most abundant phytochemical compound extracted using ethanol solvent. This was in line with Hayat *et al.* (2020) that plants extracted using ethanol produce tannins higher than flavonoids and polyphenols. Because ethanol was a polar solvent, tannins with higher polarity than flavonoids can be easily extracted. Tannin was a secondary metabolite compound that had high polarity and a hydroxyl group (Chang *et al.*, 2019; Maharani *et al.*, 2020; Ruiz-Aquino *et al.*, 2023) so it is easy to make hydrogen bonds with ethanol (McRae *et al.*, 2015).

Antimicrobial Activity: Inhibition Zone Test

The ability of tali bamboo leaf extract against the growth of pathogenic bacteria such as E. coli and S. typhimurium is presented in Table 3. Davis and Stout (1971) stated that the antimicrobial activity is categorized as very strong when the inhibition zone is more than 20 mm, 10-20 mm strong, 5-10 mm medium, and less than 5 mm are low. The result showed that the ethanol extract of tali bamboo had low antimicrobial activity, and methanol extract did not have antimicrobial activity. Meanwhile, cotrimoxazole (antibiotics) had very high antimicrobial activity for E. coli and high activity for S. typhimurium. This study showed lower results than Indriatie et al. (2019), which showed that administration of 5.00 mg/ml G. apus leaf extract formed a 3.94 mm clearing zone in inhibiting the growth of E. coli. It was caused by the use of 70% ethanol in this study, whereas Indriatie et al. (2019) used ethanol 96%. Hikmawanti et al. (2021) stated that differences in the concentration of ethanol used will affect the amount of metabolite compounds extracted. The use of 70% ethanol in this study aimed to extract both water-soluble and non watersoluble compounds from bamboo leaves. However, the results showed that 70% ethanol produced a smaller clearing zone compared to 96% ethanol. This may be due

to the dominance of non-water-soluble phytochemical compounds in bamboo leaves, making 96% ethanol more effective as an extraction solvent for bamboo leaves.

Table 3: Antibacterial activity of tali bamboo (G. apus) leaf extract

Solvent	Concentration	Diameter of inhibition zone (mm)		
Solvent	(% w/v)	E. coli	S. typhimurium	
Ethanol	0.00	-	-	
	0.02	-	-	
	0.04	0.46 ± 0.37	0.92 ± 0.03	
	0.06	0.63 ± 0.32	1.13 ± 0.57	
	0.08	2.89 ± 1.12	2.13 ± 0.85	
Methanol	0.00	-	-	
	0.02	-	-	
	0.04	-	-	
	0.06	-	-	
	0.08	-	-	
Cotrimoxazole	0.02	25.82 ± 1.05	16.85 ± 2.31	

Note: - = No inhibition zone (0.00 mm)

The study conducted by Borges et al. (2020) showed that mimosa (Acacia dealbata) leaves extracted using the solid-liquid method with ethanol solvent produced higher antibacterial activity than methanol. Borges et al. (2020) also showed that extracting methanol from mimosa leaves does not have an inhibition zone (clearing zone = 0.00 mm) against E. coli as obtained in this study. The difference in this antibacterial activity was due to differences in the ability of solvents to extract plants bioactive compounds. Ethanol has a constant dielectric value of 24 and can dissolve polar and some non-polar compounds, so the extracted compounds were more diverse (Pupitasari et al., 2023). The antibacterial activity of plant extracts was the combined effect of various active compounds, not just a single compound (Vaou et al., 2022).

MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration)

MIC and MBC values of ethanol extract for E. coli and S. typhimurium were presented in Table 4. The data showed that 0.2% ethanol extract of tali bamboo could decrease 96.12% the population of E. coli and 0.3% ethanol extract decreased 91.49% the population of S. typhimurium. Fitrial et al. (2008) said that a substance had antimicrobial activity if it could reduce the bacterial population by more than 90% and had bactericidal activity if it could inhibit bacterial growth by up to 100%. Table 4 showed that the MIC value of ethanol extract of tali bamboo leaves was 0.2% for E. coli and 0.3% for S. typhimurium. Regression calculations show that the MBC value of tali bamboo to kill 100% E. coli was 1.04% and 0.96% for S. typhimurium. The MIC and MBC values also showed that G. apus bamboo leaves have antibacterial abilities. This was because bamboo leaves contain phytochemical compounds such as tannins, steroids, saponins, and flavonoids, as presented in Table 2.

Table 4: MIC and MBC result of extract ethanol tali bamboo leaves

Bacteria	Concentration (% w/v)	% of inhibition	Inhibition Log
E. coli	0.0	0.00	0.00
	0.1	87.99	0.92
	0.2*	96.12	1.97
	0.3	96.42	2.00
	0.4	96.66	2.03
	0.5	97.06	2.09
	0.6	99.09	2.59
	0.7	99.10	2.60
	0.8	99.26	2.69
	0.9	99.70	3.10
S. typhimurium	0.0	0.00	0.00
	0.1	12.02	0.06
	0.2	83.10	0.77
	0.3*	91.49	1.07
	0.4	95.87	1.38
	0.5	98.44	1.81
	0.6	99.65	2.45
	0.7	99.80	2.70
	0.8	99.81	2.72
	0.9	99.93	3.14

Note: * = MIC ethanol extract of tali bamboo leaf; - = No inhibition; MIC = Minimum Inhibitory Concentration; MBC = Minimum Bactericidal Concentration.

Tannin is a metabolite compound that can inhibit the growth of pathogenic bacteria, both gram-positive and gram-negative bacteria (Farha et al., 2020; Villanueva et al., 2022). Tannins can inhibit pathogenic bacteria because they inhibit cell wall formation, disrupt the NorA efflux pump, disrupt cell permeability and disrupt metabolism in cells (Farha et al., 2020; Kaczmarek, 2020; Belhaoues et al., 2020) while the mechanism of action from flavonoids in inhibiting bacterial growth through inhibiting energy formation and electron transfer, inhibiting DNA and protein synthesis, inhibiting the performance of the Sortase A (SorA) enzyme, disrupting cell respiration, disrupting the efflux pump process and disrupting bacterial cell membrane phospholipids (Tan et al., 2020; Yuan et al., 2021; Zhang et al., 2023; Rodriguez et al., 2023). The antibacterial properties of saponins occur through the mechanism of disrupting bacterial cell permeability, inhibiting biofilm formation, interfering with protein formation and enzyme performance, disrupting the bacterial cell respiration system, and lying bacterial cells (Dong et al., 2020; Eylands et al., 2021; Cankaya and Somuncuoglu, 2021). The addition of steroid compounds will also disrupt the permeability of bacterial cells, causing cell lysis, and forming complex compounds with bacterial extracellular proteins (Widowati et al., 2021; Armansyah et al., 2022).

The results in Table 4 showed that the MIC value of ethanol extract tali bamboo leaves to inhibit the growth of *S. typhimurium* (0.3%) was higher than *E. coli* (0.2%). This was caused by that *E. coli* has faster growth than *S.*

typhimurium so it reaches the log phase more quickly. Bacteria will be more sensitive to antibacterial compounds in the log phase than in the stationary phase (Tamer and Toprak, 2017; Shree et al., 2023). In the log phase, bacterial cell wall phospholipids were lower compared to the stationary phase (Laydevant et al., 2021). This increases the potential for phytochemical compounds to enter pathogenic bacterial cells and causes cell lysis. The results also showed that the MIC value of E. coli was lower than S. typhimurium, but on the contrary, it has a higher MBC value than S. typhimurium. This showed that the growth of E. coli was easily inhibited but more challenging to destroy compared to S. typhimurium. E. coli has several self-defense systems against antibacterial compounds by forming biofilms and releasing metabolite compounds using an efflux pump (Soto, 2013; Gaurav et al., 2023). Biofilm formation will protect bacterial cells from antimicrobial compounds (Kalia et al., 2023).

Conclusion

In conclusion, ethanol was a more suitable solvent for extracting metabolite compounds from tali bamboo (*G. apus*) leaves than methanol. Tali bamboo (*G. apus*) leaves extracted with ethanol can be used as a natural antibacterial because they have bacteriostatic and bactericidal properties, which inhibit and kill *E. coli* and *S. typhimurium*. The MIC values of *G. apus* extract were 0.2% and 0.3% for *E. coli* and *S. typhimurium*, respectively, with MBC values were 1.04% and 0.96%.

To optimize research outcomes, future studies should explore more effective extraction methods to enhance bioactive compound yield. Additionally, broader antibacterial testing against gram-positive and gramnegative bacteria is necessary to comprehensively evaluate the effectiveness of bamboo leaf extract. Further phytochemical analysis using techniques like HPLC or GC-MS is also recommended to identify active compounds in greater detail.

Acknowledgment

The authors would like to express their sincere gratitude to the Faculty of Animal Science, IPB University, for providing the facilities and support throughout the research process.

Conflict of Interest

The authors have declared no conflict of interest.

Funding Information

The authors have not received any financial support.

Authors' Contributions

Sinta Agustina: Design of the research conceptualization, collection and interpretation of data and write the original draft.

- **Komang G Wiryawan:** Led the design of the research conceptualization, supervision and evaluation of the research data and content, and reviewed the manuscript.
- **Sri Suharti:** Design of the research conceptualization, supervision and reviewed the manuscript.

Ethics

The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues are involved.

References

- Abdou, N. M. I., Majeed, Q. A. H., El-Azazy, O. M. E., Tahrani, L. M. A., Al-Azemi, M. S., & Alajmi, A. (2021). Risk factors of diarrhea in small ruminants in Kuwait. *Iranian Journal of Veterinary Research* 22(2), 146–149.
 - https://doi.org/10.22099/ijvr.2021.38092.5546
- Abdul Khalil, H. P. S., Hossain, Md. S., Rosamah, E., Azli, N. A., Saddon, N., Davoudpoura, Y., Islam, Md. N., & Dungani, R. (2015). The role of soil properties and it's interaction towards quality plant fiber: A review. *Renewable and Sustainable Energy Reviews*, 43, 1006–1015. https://doi.org/10.1016/j.rser.2014.11.099
- Andriarimalala, J. H., Kpomasse, C. C., Salgado, P., Ralisoa, N., & Durai, J. (2019). Nutritional potential of bamboo leaves for feeding dairy cattle. *Pesquisa Agropecuária Tropical*, 49, e54370. https://doi.org/10.1590/1983-40632019v4954370
- AOAC. (2005). Official Methods of Analysis of AOAC International. In W. Horwitz (Ed.), 17th Edition. AOAC International, Gaithersburg.
- Armansyah, T., Siregar, T. N., Suhartono, S., & Sutriana, A. (2022). Phytochemicals, characterization and antimicrobial tests of red betel leaves on three solvent fractions as candidates for endometritis phytotherapy in Aceh cattle, Indonesia. *Biodiversitas Journal of Biological Diversity*, 23(4). https://doi.org/10.13057/biodiv/d230446
- Bekuma, A., & Galmessa, U. (2018). Review on Hygienic Milk Products Practice and Occurrence of Mastitis in Cow's Milk. *Agricultural Research & Technology: Open Access Journal*, 18(2). https://doi.org/10.19080/artoaj.2018.18.556053
- Belhaoues, S., Amri, S., & Bensouilah, M. (2020). Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. South African Journal of Botany, 131, 200–205. https://doi.org/10.1016/j.sajb.2020.02.018
- Bernal-Córdoba, C., Branco-Lopes, R., Latorre-Segura, L., de Barros-Abreu, M., Fausak, E. D., & Silvadel-Ríío, N. (2022). Use of antimicrobials in the treatment of calf diarrhea: a systematic review. *Animal Health Research Reviews*, *23*(2), 101–112. https://doi.org/10.1017/s1466252322000032

- Borges, A., José, H., Homem, V., & Simões, M. (2020). Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. *Antibiotics*, 9(2), 48.
- https://doi.org/10.3390/antibiotics9020048
 Bubonja-Šonje, M., Knežević, S., & Abram, M. (2020).
 Challenges to antimicrobial susceptibility testing of plant-derived polyphenolic compounds. *Archives of Industrial Hygiene and Toxicology*, 71(4), 300–311. https://doi.org/10.2478/aiht-2020-71-3396
- Reygaert, W. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. *AIMS Microbiology*, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482
- Caffarena, R. D., Casaux, M. L., Schild, C. O., Fraga, M., Castells, M., Colina, R., Maya, L., Corbellini, L. G., Riet-Correa, F., & Giannitti, F. (2021). Causes of neonatal calf diarrhea and mortality in pasture-based dairy herds in Uruguay: a farmmatched case-control study. *Brazilian Journal of Microbiology*, 52(2), 977–988. https://doi.org/10.1007/s42770-021-00440-3
- Chang, Z., Zhang, Q., Liang, W., Zhou, K., Jian, P., She, G., & Zhang, L. (2019). A Comprehensive Review of the Structure Elucidation of Tannins from *Terminalia* Linn. *Evidence-Based Complementary and Alternative Medicine*, 2019, 1–26. https://doi.org/10.1155/2019/8623909
- Chigerwe, M., & Heller, M. C. (2018). Diagnosis and Treatment of Infectious Enteritis in Adult Ruminants. *Veterinary Clinics of North America:* Food Animal Practice, 34(1), 119–131. https://doi.org/10.1016/j.cvfa.2017.10.004
- Davis, W. W., & Stout, T. R. (1971). Disc Plate Method of Microbiological Antibiotic Assay. *Applied Microbiology*, 22(4), 659–665. https://doi.org/10.1128/am.22.4.659-665.1971
- Deddefo, A., Mamo, G., Asfaw, M., & Amenu, K. (2023). Factors affecting the microbiological quality and contamination of farm bulk milk by Staphylococcus aureus in dairy farms in Asella, Ethiopia. *BMC Microbiology*, 23(1), 65. https://doi.org/10.1186/s12866-022-02746-0
- Devi, N. S., Mythili, R., Cherian, T., Dineshkumar, R., Sivaraman, G. K., Jayakumar, R., Prathaban, M., Duraimurugan, M., Chandrasekar, V., & Peijnenburg, W. J. G. M. (2024). Overview of antimicrobial resistance and mechanisms: The relative status of the past and current. *The Microbe*, 3, 100083.
 - https://doi.org/10.1016/j.microb.2024.100083
- Dong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z., & Xue, P. (2020). Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. *Industrial Crops and Products*, 149, 112350. https://doi.org/10.1016/j.indcrop.2020.112350

- Eibl, C., Bexiga, R., Viora, L., Guyot, H., Félix, J., Wilms, J., Tichy, A., & Hund, A. (2021). The Antibiotic Treatment of Calf Diarrhea in Four European Countries: A Survey. *Antibiotics*, *10*(8), 910. https://doi.org/10.3390/antibiotics10080910
- El-Seedy, F. R., Abed, A. H., Yanni, H. A., & Abd El-Rahman, S. A. A. (2016). Prevalence of Salmonella and E. coli in neonatal diarrheic calves. *Beni-Suef University Journal of Basic and Applied Sciences*, 5(1), 45–51.

https://doi.org/10.1016/j.bjbas.2015.11.010

- Ermi Hikmawanti, N. P., Fatmawati, S., & Asri, A. W. (2021). The Effect of Ethanol Concentrations as The Extraction Solvent on Antioxidant Activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts. *IOP Conference Series: Earth and Environmental Science*, 755(1), 012060. https://doi.org/10.1088/1755-1315/755/1/012060
- Eylands, N. J., Evans, M. R., & Shaw, A. M. (2021). Antimicrobial Mitigation via Saponin Intervention on *Escherichia coli* and Growth and Development of Hydroponic Lettuce. *HortTechnology*, *31*(2), 174–180.

https://doi.org/10.21273/horttech04749-20

- Farha, A. K., Yang, Q.-Q., Kim, G., Li, H.-B., Zhu, F., Liu, H.-Y., Gan, R.-Y., & Corke, H. (2020). Tannins as an alternative to antibiotics. *Food Bioscience*, *38*, 100751. https://doi.org/10.1016/j.fbio.2020.100751
- Fitrial, Y., Astawan, M., Soekarto, S. S., Wiryawan, K. G., Wrediyati, T., & Kairina, R. (2008). Aktivitas antibakteri ekstrak biji teratai (*Nymphaea pubescens* Willo) terhadap bakteri patogen penyebab diare. *J. Teknol. Dan Industri Pangan*, *XIX*(2), 158–164.
- Gaurav, A., Bakht, P., Saini, M., Pandey, S., & Pathania, R. (2023). Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. *Microbiology*, *169*(5). https://doi.org/10.1099/mic.0.001333
- Gomez, D. E., Li, L., Goetz, H., MacNicol, J., Gamsjaeger, L., & Renaud, D. L. (2022). Calf Diarrhea Is Associated With a Shift From Obligated to Facultative Anaerobes and Expansion of Lactate-Producing Bacteria. Frontiers in Veterinary Science, 9.

https://doi.org/10.3389/fvets.2022.846383

- Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. *Frontiers in Microbiology*, *9*. https://doi.org/10.3389/fmicb.2018.01639
- Govindan, B., Johnson, A. J., Viswanathan, G., Ramaswamy, V., Koshy, K. C., & Baby, S. (2019). Secondary metabolites from the unique bamboo, *Melocanna bacciferaNatural Product Research*, 33(1), 122–125.

https://doi.org/10.1080/14786419.2018.1434647

- Hayat, J., Akodad, M., Moumen, A., Baghour, M., Skalli, A., Ezrari, S., & Belmalha, S. (2020). Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. *Heliyon*, *6*(11), e05609. https://doi.org/10.1016/j.heliyon.2020.e05609
- Indriatie, R., Mudaliana, S., & Masruri. (2019).

 Microbial resistant of building plants of Gigantochloa apus. IOP Conference Series:

 Materials Science and Engineering, 546(4), 042013.

https://doi.org/10.1088/1757-899x/546/4/042013

- Jessop, E., Li, L., Renaud, D. L., Verbrugghe, A., Macnicol, J., Gamsjäger, L., & Gomez, D. E. (2024). Neonatal Calf Diarrhea and Gastrointestinal Microbiota: Etiologic Agents and Microbiota Manipulation for Treatment and Prevention of Diarrhea. Veterinary Sciences, 11(3), 108. https://doi.org/10.3390/vetsci11030108
- Kaczmarek, B. (2020). Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. *Materials*, *13*(14), 3224. https://doi.org/10.3390/ma13143224
- Kalia, V. C., Patel, S. K. S., & Lee, J.-K. (2023). Bacterial biofilm inhibitors: An overview. *Ecotoxicology and Environmental Safety*, 264, 115389.

https://doi.org/10.1016/j.ecoenv.2023.115389

Kamarudin, N. A., Muhamad, N., Hakimah Nik Salleh, N. N., & Tan, S. C. (2021). Impact of Solvent Selection on Phytochemical Content, Recovery of Tannin and Antioxidant Activity of Quercus Infectoria Galls. *Pharmacognosy Journal*, 13(5), 1195–1204.

https://doi.org/10.5530/pj.2021.13.153

- Khan, M., Khan, M., Al-hamoud, K., Adil, S. F., Shaik, M. R., & Alkhathlan, H. Z. (2022). Comprehensive Phytochemical Analysis of Various Solvent Extracts of Artemisia judaica and Their Potential Anticancer and Antimicrobial Activities. *Life*, *12*(11), 1885. https://doi.org/10.3390/life12111885
- Kemit, N., Widarta, I. W. R., & Nocianitri, K. A. (2016). Pengaruh jenis pelarut dan waktu maserasi terhadap kandungan senyawa flavonoid dan aktivitas antioksidan ekstrak daun alpukat (*Persea americana* Mill). *Jurnal Ilmu dan Teknologi Pangan*, 5(2), 130-141.
- Laydevant, F., Mahabadi, M., Llido, P., Bourgouin, J.-P., Caron, L., Arnold, A. A., Marcotte, I., & Warschawski, D. E. (2022). Growth-phase dependence of bacterial membrane lipid profile and labeling for in-cell solid-state NMR applications. *Biochimica et Biophysica Acta (BBA) Biomembranes*, 1864(2), 183819.

https://doi.org/10.1016/j.bbamem.2021.183819

- Li, X., & Sun, H. (2024). Bamboo Breeding Strategies in the Context of "Bamboo as a Substitute for Plastic Initiative." *Forests*, *15*(7), 1180. https://doi.org/10.3390/f15071180
- Long, L., Minghui, Y., Wenjing, Y., Yulong, D., & Shuyan, L. (2023). Research advance in growth and development of bamboo organs. *Industrial Crops and Products*, 205, 117428. https://doi.org/10.1016/j.indcrop.2023.117428
- Magdalena, N. V., & Kusnadi, J. (2015). Antibacterial from Gambier Leaves Crude Extract (Uncaria gambir var Cubadak) Microwave-Assisted Extraction Method against Bacterial Pathogens. *JPA*, *3*(1), 124–135.
- Maya, K.C.B., Gauchan, D.P., Khanal, S.N., & Lamichhane, J. (2023). Phytochemical screening, antioxidant and antibacterial activity of bamboo leaf collected from agroecosystem of the Central Siwalik region, Nepal. *Vegetos*, *37*(6), 2600–2606. https://doi.org/10.1007/s42535-023-00761-8
- Maharani, F., Hartati, I., & Paramita, V. (2022). Review on Tannic Acid: Potensial Sources, Isolation Methods, Aplication and Bibliometric Analysis. *Research In Chemical Engineering (RiCE)*, *1*(2), 46–52. https://doi.org/10.30595/rice.v1i2.33
- McRae, J. M., Ziora, Z. M., Kassara, S., Cooper, M. A., & Smith, P. A. (2015). Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(l-proline) in Model Wine. *Journal of Agricultural and Food Chemistry*, 63(17), 4345–4352.
 - https://doi.org/10.1021/acs.jafc.5b00758
- Minister of Agriculture Regulation (2017). No. 14/PERMENTAN/PK.350/5/2017 about Classification of Veterinary Drugs.
- Musyimi, D. M., Khasabulli Buyela, D., Mbilu Kiema, F., & Chebii, T. K. (2023). Phytochemical Compounds and Antimicrobial Activity of Extracts of Bamboo Against Staphylococcus aureus and *Escherichia coli. Archives of Ecotoxicology*, *5*(2), 45–51. https://doi.org/10.36547/ae.2023.5.2.45-51
- Pujiarti, R., Suryani, S., Sunarta, S., Lukmandaru, G., & Purba, B. A. V. (2020). Extractive Contents and DPPH-Scavenging Activities of Bamboo Leaf Extracts from Gigantochloa atter, Dendrocalamus asper, and Gigantochloa verticillata. *Taiwan Journal of Forest Science*, 35(1), 1–12.
- Pupitasari, F. A., Kartikasari, N. B., Mutiyastika, S., Purnamasari, R., Lusiana, N., & Agustina, E. (2023). Effect of Different Solvents in the Extraction Process of Kelor (Moringa oleifera. Leaves on Bioactive Resources and Phenolic Acid Content. ICOSHPRO, 167–178.
- Rahmawati, R., Baharuddin, B., & Putranto, B. (2019).

 Potensi Dan Pemanfaatan Bambu Tali (*Gigantochloa apus*) Di Desa Leu Kecamatan Bolo Kabupaten Bima. *Perennial*, *15*(1), 27.

 https://doi.org/10.24259/perennial.v15i1.6790

- Ramli, H. K., Yuniarti, T., Lita, N. P. S. N., & Sipahutar, Y. H. (2020). Uji Fitokimia Secara Kualitatif Pada Buah dan Ekstrak Air Buah Mangrove. *Jurnal Penyuluhan Perikanan Dan Kelautan*, *14*(1), 1–12. https://doi.org/10.33378/jppik.v14i1.198
- Rodríguez, B., Pacheco, L., Bernal, I., & Piña, M. (2023). Mechanisms of Action of Flavonoids: Antioxidant, Antibacterial and Antifungal Properties. *Ciencia, Ambiente y Clima, 6*(2), 33–66. https://doi.org/10.22206/cac.2023.v6i2.3021
- Ruiz-Aquino, F., Feria-Reyes, R., Rutiaga-Quiñones, J. G., Robledo-Taboada, L. H., & Gabriel-Parra, R. (2023). Characterization of tannin extracts derived from the bark of four tree species by HPLC and FTIR. Forest Science and Technology, 19(1), 38–46.
 - https://doi.org/10.1080/21580103.2023.2166593
- Schinwald, M., Creutzinger, K., Keunen, A., Winder, C. B., Haley, D., & Renaud, D. L. (2022). Predictors of diarrhea, mortality, and weight gain in male dairy calves. *Journal of Dairy Science*, *105*(6), 5296–5309.
 - https://doi.org/10.3168/jds.2021-21667
- Schrader, S. M., Botella, H., & Vaubourgeix, J. (2023). Reframing antimicrobial resistance as a continuous spectrum of manifestations. *Current Opinion in Microbiology*, 72, 102259. https://doi.org/10.1016/j.mib.2022.102259
- Shehta, A., El-Zahar, H., Mansour, A., Mustafa, B., & Shety, T. (2022). Clinical, hematological and some biochemical alterations during diarrhea in Friesian calves naturally infected with *E. coli* and Salmonella. *Beni-Suef University Journal of Basic and Applied Sciences*, *II*(1), 128. https://doi.org/10.1186/s43088-022-00309-w
- Shree, P., Singh, C. K., Sodhi, K. K., Surya, J. N., & Singh, D. K. (2023). Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. *Medicine in Microecology*, 16, 100084.
 - https://doi.org/10.1016/j.medmic.2023.100084
- Singhal, P. (2023). Bamboo Leaves: An Emerging Multifunctional Food. *Food and Drug Safety*, *I*(1). https://doi.org/10.55121/fds.v1i1.134
- Sola, G. S., Costa, M. R. N., Silva, T. A., Costa, M. R. L., Souza, R. R., Peters, L. P., Carvalho, C. M., & Silva, B. K. A. (2023). Antimicrobial potential of extracts from leaves and culms of an Amazonian native bamboo. *Brazilian Journal of Biology*, 83. https://doi.org/10.1590/1519-6984.277199
- Soto, S. M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. *Virulence*, *4*(3), 223–229. https://doi.org/10.4161/viru.23724
- Tamer, Y. T., & Toprak, E. (2017). On the Race to Starvation: How Do Bacteria Survive High Doses of Antibiotics? *Molecular Cell*, 68(6), 1019–1021. https://doi.org/10.1016/j.molcel.2017.12.004

- Tan, Z., Deng, J., Ye, Q., & Zhang, Z. (2022). The Antibacterial Activity of Natural-derived Flavonoids. Current Topics in Medicinal Chemistry, 22(12), 1009–1019. https://doi.org/10.2174/156802662266622022111050
- Tatli Cankaya, I. I., & Somuncuoglu, E. I. (2021).

 Potential and Prophylactic Use of Plants
 Containing Saponin-Type Compounds as
 Antibiofilm Agents against Respiratory Tract
 Infections. Evidence-Based Complementary and
 Alternative Medicine, 2021, 1–14.

 https://doi.org/10.1155/2021/6814215
- Vaou, N., Stavropoulou, E., Voidarou, C. (Chrysa), Tsakris, Z., Rozos, G., Tsigalou, C., & Bezirtzoglou, E. (2022). Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. *Antibiotics*, 11(8), 1014.
 - https://doi.org/10.3390/antibiotics11081014
- Villanueva, X., Zhen, L., Ares, J. N., Vackier, T., Langen, H., Crestini, C., & Steenackers, H. P. (2022). Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gramnegative and Gram-positive bacteria. *Frontiers in Microbiology*, *6*(13), 987164. https://doi.org/10.3389/fmicb.2022.987164

- Widowati, R., Handayani, S., & Al Fikri, A. R. (2021). Phytochemical Screening and Antibacterial Activities of Senggani (Melastoma malabathricum L.) Ethanolic Extract Leaves. *Jurnal Ilmu Pertanian Indonesia*, 26(4), 562–568. https://doi.org/10.18343/jipi.26.4.562
- Yuan, G., Guan, Y., Yi, H., Lai, S., Sun, Y., & Cao, S. (2021). Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. *Scientific Reports*, *11*(1), 10471.
 - https://doi.org/10.1038/s41598-021-90035-7
- Zhang, L., Yan, Y., Zhu, J., Xia, X., Yuan, G., Li, S., Deng, B., & Luo, X. (2023). Quinone Pool, a Key Target of Plant Flavonoids Inhibiting Gram-Positive Bacteria. *Molecules*, 28(13), 4972. https://doi.org/10.3390/molecules28134972