
 

 

© 2022 María Inés Baquero, Marylin Cruz, Viviana Duque, Alberto Velez, Vanessa Lopez, Christian Vinueza and Gabriela 

Giacoboni. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 

American Journal of Animal and Veterinary Sciences 

 

 

 

Original Research Paper 

Tetracycline Resistance Profile in Darwin Finches in the 

Galapagos Islands 
 

1María Inés Baquero, 2Marylin Cruz, 3Viviana Duque, 4Alberto Velez, 
5Vanessa Lopez, 6Christian Vinueza and 7Gabriela Giacoboni 

 
1Department of Bacteriology, Universidad Central del Ecuador, Ecuador 
2Agencia de Regulación Para la Bioseguridad y Cuarentena Para Galapagos (ABG), Ecuador 
3Department of Surveillance and Quality, Agencia de Regulación Para la Bioseguridad y Cuarentena Para 

Galapagos (ABG), Ecuador 
4Department of Quality Control, Agencia de Regulación Para la Bioseguridad y Cuarentena Para Galapagos (ABG), Ecuador 
5Department of Bacteriology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Ecuador 
6Foodborne Disease and Antimicrobial Resistance Unit (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, 

Universidad Central del Ecuador, Ecuador 
7Department of Microbiology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina 

 
Article history 

Received: 16-07-2022 

Revised: 19-10-2022 

Accepted: 20-10-2022 

 

Corresponding Author:  

Maria Inés Baquero 

Department of Bacteriology, 

Universidad Central del 

Ecuador, Ecuador 

Email: mibaquero@uce.edu.ec 

Abstract: Antimicrobial Resistance (AMR), which is the ability of 

microorganisms to withstand attack by antimicrobial drugs, has a worldwide 

impact. Thus, it is important to identify resistance mechanisms circulating in 

the environment. Among antimicrobials widely used in human and 

veterinary health, tetracycline is ideal due to its safety and has been 

categorized by the WHO as a critically important antimicrobial. Based on the 

fact that wild animals are bioindicators of environmental contamination and 

that wild birds are considered sentinels of AMR in the ecosystem, in the 

present study, we studied AMR patterns in Darwin finches (Geospiza spp.) 

in the Galapagos Islands, Ecuador. To this end, a total of 384 cloacal swabs 

from Darwin finches were collected from three zones of Santa Cruz Island 

(an urban, an agricultural, and a protected zone). Phenotypic antibiotic 

resistance was analyzed by the Kirby-Bauer disk diffusion method in 

Escherichia coli (n = 136) and Enterococcus spp. (n = 332) isolates. PCR 

was performed for the detection of the tetA gene in E. coli strains and of the 

tetM gene in Enterococcus isolates. Resistance for at least one of nine and one 

of eight antimicrobials was observed in 62.5% (85/136) and 28.6% (95/332) of 

E. coli and Enterococcus isolates, respectively. A high percentage of 

phenotypic resistance to tetracycline was identified for both bacteria. The tetA 

and tetM genes were identified in 83.7% (36/43) of E. coli strains and 75.4% 

(49/65) of Enterococcus spp. isolates, respectively. The highest percentages of 

AMR were observed in the agricultural zone. We also found the presence of 

multi-drug-resistant strains. These results show that Darwin finches might be 

proposed as sentinels of AMR in the Galapagos Islands. 
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Introduction  

Antimicrobial Resistance (AMR), which is the 

ability of microorganisms to withstand attack by 

antimicrobial drugs, is a global health problem related to 

several factors, including bacterial genetics and the 

human, veterinary and agricultural usage of antibiotics 

(Marston et al., 2016). Among important antimicrobials, 

tetracycline, which is a broad-spectrum antimicrobial that 

acts against Gram-positive and Gram-negative bacteria 

(Marosevic et al., 2017), has been categorized as highly 

critical (WHO, 2018). Since this microbial is considered 

ideal due to its safety (Grossman, 2016), it is widely used 

in human and veterinary medicinal practices (Thaker et al., 

2010). However, some bacteria can develop resistance 

against tetracycline. The main mechanisms of tetracycline 

resistance are the activation of efflux pumps and 

ribosomal protection (Rossolini et al., 2017). Efflux 
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pumps are codified by 23 different genes, among which 

tetA is the most common one, whereas ribosomal 

protection involves 11 genes, among which tetM is 

frequently detected (Sigirci et al., 2019). 

Studies in wildlife have allowed the understanding of 

the role of mobile genetic elements in AMR dissemination 

(Alonso et al., 2021) and identifying those related to 

AMR. In particular, wild birds have been proposed as 

sentinels of AMR dissemination in diverse environments 

(Bonnedahl and Järhult, 2014). In this context, isolated 

environments such as the Galapagos Islands, which are 

located approximately 1000 Km from Ecuador’s 

continental coast (UNESCO, 2022), can be useful to 

evaluate the anthropogenic impact on the spread of AMR 

(Nieto-Claudin et al., 2021). Among the passerine 

endemic birds that inhabit the Galapagos Islands, Darwin 

finches have been widely studied as a model of adaptive 

radiation (Hau and Wikelski, 2001), which is a 

phenomenon related to the fact that these birds adjust the 

morphology of their beaks in association with their 

nutritional habits (Michel et al., 2018). Eighteen species 

of finches, most of which belong to the group of ground 

or tree finches (Geospiza spp.), have been described on 

the islands (Hau and Wikelski, 2001). Ground finches 

feed especially on seeds but can be opportunistic in terms 

of their diet (Knutie et al., 2019). 

To identify AMR patterns circulating in the Galapagos 

Islands, this study aimed to analyze sentinel AMR strains 

of Escherichia coli and Enterococcus spp. isolated from 

Darwin finches in three zones of Santa Cruz Island with 

different anthropogenic impacts: An urban, an 

agricultural, and a protected zone.  

Materials and Methods 

Sample Collection 

A total of 384 Darwin ground finches (Geospiza spp.), 

were caught using mist nets from the urban (n = 128), 

agricultural (n = 128), and protected zones (n = 128), 

between March and August 2019. Cloacal swabs were 

collected from each bird. All cloacal swab samples were 

placed in 700 µL of brain heart infusion broth (BHI broth 

BBL™) at 37°C for 24 h in the laboratory of the Agency 

for the Regulation and Control of Biosafety and 

Quarantine for the Galapagos (ABG) at Santa Cruz Island. 

Samples were preserved in BHI with 20% of glycerol and 

transported to the laboratory of the School of Veterinary 

Medicine of the Universidad Central del Ecuador in Quito 

city, Ecuador, for further analysis. 

Isolation and Identification of Enterococcus spp. 

and Escherichia Coli 

For isolation of Enterococcus spp., samples were 

incubated in 10 mL BHI medium at 37°C for 24 h and one 

loopful was streaked in BBL CHRO Magar Orientation 

agar (Becton Dickinson, Heidelberg, Germany). For E. 

coli, one loopful was streaked in Levine eosine methylene 

blue agar (Becton Dickinson, Heidelberg, Germany). At 

least one colony phenotypically compatible with 

Enterococcus spp. was picked from the medium and isolated 

for further biochemical identification with bile esculin 

(Becton Dickinson, USA), pyrrolidinyl arylamidase (PYR-

A-ENT, Britania, CABA, Argentina), leucine 

aminopeptidase (Britania, CABA Argentina) and sodium 

chloride 6.5% assays (Lopardo, 2016). At least one colony 

compatible with E. coli in Levine agar was identified using a 

biochemical battery (Triple Sugar, Iron Agar (BBL), Sulfide 

Indole Motility medium (BBL), Simmons Citrate Agar 

(BBL), Lysine Iron Agar (BBL) and urease broth (BBL). 

Identification of Enterococcus and E. coli isolates was 

further confirmed by MALDI TOF MS analysis.  

Antibiotic Resistance Analysis 

Phenotypic antibiotic resistance was analyzed by the 

Kirby-Bauer disk diffusion method (Hudzicki, 2009). For 

Enterococcus spp., eight classes of antibiotics were included: 

Ampicillin (10 µg), gentamicin (120 µg), chloramphenicol 

(30 µg), tetracycline (30 µg), vancomycin (30 µg), 

streptomycin (300 µg), teicoplanin (30 µg) and ciprofloxacin 

(5 µg), whereas for E. coli the antibiotics tested were: 

Ampicillin (10 µg), ciprofloxacin (5 µg), cefoxitine (30 µg), 

cefotaxime (30 µg), cefepime (30 µg), gentamicin (10 µg), 

chloramphenicol (30 µg), tetracycline (30 µg) and 

trimethoprim/sulfamethoxazole (1.25/23.75 µg).  

The results were interpreted following the guidelines 

of the Clinical and Laboratory Standards Institute (CLSI, 

2019). Tetracycline phenotypic resistant isolates were 

further considered for tet gene analyses. 

DNA Extraction and PCR for the Detection of the 

tetA and tetM Genes  

DNA from the Enterococcus spp. and E. coli isolates 

was extracted by the boiling method (Millar et al., 2000). 

Both tetA and tetM PCR reactions included nuclease-free 

water and a final concentration of Buffer 1X, 0.2 mm 

dNTPs, 1.5 mm MgCl2, and 0.025 U/µL Taq polymerase 

(GoTaq®DNA Polymerase, Promega). All primers were 

used at a concentration of 0.1 pM/µL.  

Specific primers for tetA were tetA-F 5´-

TTTCGGCGAGGATCGCTTTCACTG-3´ and tetA-R 5´-

ATCCACCTGCCTGGACAACAT TGC -3´ (product size 

of 283 bp), whereas for the identification of the tetM gene, 

the primer sequences were TETM3 5´- 

GAACTCGAACAAGAGGAAAGC -3´ and 5´- 

ATGGAAGCCCAGAAAGGAT-3´ (amplicon length of 

740 bp) (Cochetti et al., 2005). PCR conditions were the ones 

described elsewhere (Cochetti et al., 2005; Pantozzi, 2018). 

Amplicons were visualized by electrophoresis in 1.5% 

agarose gel and stained with SYBR safe (Invitrogen™).  
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Statistical Analysis 

The association between AMR and the zone of sample 

collection was analyzed by the Chi-square test for 

differences among proportions, considering a p-value 

(<0.05) with a 95% confidence interval.  

Results 

Isolation and Identification of Enterococcus spp. 

and Escherichia Coli 

A total of 136 E. coli and 332 Enterococcus spp. 

isolates were recovered from Darwin finches. Isolate 

distribution was associated with the sampling zone 

(p<0.0001). E. coli was isolated in a higher percentage in 

the agricultural zone at 47% (64/136), followed by the 

protected zone at 34% (46/136) and the urban zone at 19% 

(26/136). On the other hand, Enterococcus spp. was 

isolated more often in the urban zone with 41% (135/332), 

followed by the agricultural zone with 34% (114/332) and 

the protected zone with 25% (83/332).  

AMR Profiles in E. Coli and Enterococcus spp. Isolates 

AMR in E. coli was tested for nine antimicrobials, 

whereas that in Enterococcus spp. isolates were tested for 

eight antimicrobials (WHO/AGISAR, 2017). Resistance 

to at least one antimicrobial was observed in 62.5% 

(85/136) of E. coli strains. Resistance to ampicillin was 

identified in 50% of the isolates, to tetracycline in 31.6%, 

trimethoprim/sulfamethoxazole in 18.4%, 

chloramphenicol in 14.7%, to cefoxitin in 11.1%, to 

ciprofloxacin in 6.6%, to cefotaxime in 0.7% and 

cefepime in 0.7%. No resistance was identified for 

gentamicin. A total of 51 (37.5%) E. coli strains were 

susceptible to all the antimicrobials tested. Results 

showed no significant association between ampicillin 

resistance and the sampling zone. Differently, resistance 

to tetracycline, which was the second antimicrobial with 

a higher percentage, was significantly observed in the 

agricultural zone of the island (p<0.0001). E. coli isolates 

showed 23 resistance patterns, presenting resistance from 

one to eight antimicrobials (Table 1). Resistance pattern 

21 (30.6%) was the most frequent one, followed by 

patterns 22 (10.6%), 15 (9.4%), and 7 (7.1%). Also, 26 E. 

coli isolates showed a Multi-Resistant (MDR) pattern. 
For Enterococcus spp., resistance to at least one 

antimicrobial was recorded in 28.6% (n = 95) of the isolates. 
High resistance rates to tetracycline (19.6%) were found, 
followed by streptomycin (6.9%) and ciprofloxacin (5.7%). 
Lower AMR resistance rates were recorded for vancomycin 
(2.4%), ampicillin, chloramphenicol (1.8%), gentamicin, and 
teicoplanin (1.2%). Tetracycline resistance was observed in 
a higher proportion in the agricultural zone (p<0.0001). 
Enterococcus spp. isolates showed 14 resistance patterns, 
presenting resistance from one to four antimicrobials 
(Table 2). Resistance pattern 12 was the most frequent one 
(43.2%), followed by patterns 14 (9.5%), 8 (10.5%), and 13 
(9.5%). Moreover, seven Enterococcus spp. isolates 
presented MDR phenotypes. 

 

Table 1: Antimicrobial resistance patterns in E. coli 

Pattern Resistance Pattern N° of Antimicrobials N° of E. coli strains 

  1 A+F+C+FE+T+SXT+CI+CL 8 1 

  2 A+F+T+SXT+CL 5 1 

  3 A+F+T+SXT+CI 5 1 

  4 A+T+SXT+CI+CL 5 1 

  5 A+F+T+CL 4 2 

  6 A+T+SXT+CIP 4 3 

  7 A+T+SXT+CL 4 6 

  8 A+T+CIP+CL 4 1 

  9 T+SXT+CI+CL 4 1 

10 A+F+T 3 2 

11 A+T+SXT 3 2 

12 A+T+CL 3 1 

13 A+SXT+CI 3 1 

14 T+SXT+CL 3 3 

15 A+F 2 8 

16 A+T 2 7 

17 A+SXT 2 3 

18 A+CI 2 1 

19 A+CL 2 1 

20 T+SXT 2 2 

21 A 1 26 

22 T 1 9 

23 CI 1 2 

A: Ampicillin; F: Cefoxitin; C: Cefotaxime; Fe: Cefepime; T: Tetracycline; SXT: Trimethoprim/sulfamethoxazole; CI: Ciprofloxacin; 

CL: Chloramphenicol 
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Table 2: Antimicrobial resistance patterns in Enterococcus spp. 

Pattern Resistance pattern N° of Antimicrobials N° of Enterococcus spp. strains 

  1 A+T+VA+TC 4 3 

  2 T+S+CI 3 2 

  3 CL+T+CI 3 1 

  4 CL+T+S 3 1 

  5 CL+T 2 4 

  6 S+CI 2 1 

  7 T+CI 2 3 

  8 T+S 2 10 

  9 VA+TC 2 1 

10 A 1 3 

11 CN 1 4 

12 T 1 41 

13 S 1 9 

14 CI 1 12 

A: Ampicillin; T: Tetracycline; VA: Vancomycin; TC: Teicoplanin; S: Streptomycin; CI: Ciprofloxacin; CL: Chloramphenicol 

 

 
 
Fig. 1: Identification of the tetA gene in E. coli and the tetM 

gene in Enterococcus spp. in isolates with phenotypic 

tetracycline resistance, collected from Santa Cruz Island. 

 

Detection of Tetracycline Resistance Genes 

The tetA gene was identified in 83.7% (n = 36) of the 

E. coli isolates phenotypically resistant to tetracycline. 

The proportion of tetA gene-positive isolates was higher 

in the agricultural zone (p<0.0001) than in the urban and 

protected zones (Fig. 1).  

The tetM gene was detected in 75.4% (n = 49) of the 

Enterococcus spp. strains phenotypically resistant to 

tetracycline. The proportion of tetM gene-positive isolates 

was higher in the agricultural zone (p<0.05) than in the 

urban and protected zones (Fig. 1). 

Discussion 

AMR is a multifactorial problem affecting both human 

and animal health (White and Hughes, 2019). In this 

context, environmental studies of AMR are important to 

understand AMR mechanisms circulating in diverse 

ecological niches. Wild species are good sentinels of 

AMR in the environment (Ramey and Ahlstrom, 2020) 

and, particularly, wild birds are important reservoirs and 

spreaders of AMR genes (Santos et al., 2013; 

Bonnedahl and Järhult, 2014; Foti et al., 2017).  

In the present study, we identified tetracycline as an 

antimicrobial with a very high percentage of resistance in 

both E. coli and Enterococcus spp. isolates. Previous 

studies have shown that AMR could be associated with 

the use of antimicrobials in agricultural practices 

(Blanco et al., 2007). The use of antibiotics is known to 

exert selection pressure, favoring AMR in these microbial 

communities (Wall et al., 2016). Tetracycline is a broad-

spectrum antibiotic used in both humans and animals 

(Thaker et al., 2010). Due to its good safety and 

tolerability, this antimicrobial has been used widely, a fact 

reflected in the resistance pattern observed in clinical and 

veterinary medicine (Grossman, 2016).  
In addition, the presence and dissemination of AMR 

genes in the environment have been associated with the use 
of manure as fertilizer in agriculture (Lima et al., 2020). 
Since tetracycline is excreted as an active compound, the 
presence of tet genes increases after manure is used as a 
fertilizer (Guo et al., 2018; Xiong et al., 2018).  

In the present study, we found tetracycline resistance in 

31.6% of E. coli strains. High tetracycline resistance profiles 

in E. coli isolated from wild birds have also been reported by 

Guenther et al. (2010) in Germany, where 46.6% (n = 7/15) 

of the strains were resistant to this antimicrobial. Also, 

Giacopello et al. (2016); Nowaczek et al. (2021) have 

reported 48.2% (40/83) and 50% (n = 16/32) of tetracycline 

resistance respectively, in diverse wild birds from Europe. 

Similarly, Wheeler et al. (2012) reported resistance to 

tetracycline as the most frequent one in reptiles in the 

Galapagos Islands. In the present study, resistance to 

tetracycline was higher in the agricultural zone of the 

island, which may be related to its use in farming 

practices in the zone. It has to be considered that 

tetracycline is an antibiotic commonly used in livestock 

and poultry production (Michalova and Schlegelova, 2004). 
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Antimicrobials are usually absorbed in low amounts in 

the intestinal tracts of animals (Sarmah et al., 2006) and 

are consequently excreted in the environment without 

being degraded (Liu et al., 2020). Therefore, manure use 

in agriculture has been associated with the presence and 

dissemination of AMR genes in the ecosystem (Lima et al., 

2020). Livestock fecal matter may act as a deposit of 

AMR genes in the soil, promoting resistance to clinically 

important antimicrobials (Lee et al., 2017). As 

tetracycline is excreted as an active compound, the 

presence of tet genes increases after manure is used as a 

fertilizer (Guo et al., 2018; Xiong et al., 2018).  

Another important result of the present study was that 

Enterococcus spp. isolates were mostly non-susceptible 

(71.4%) to any of the antimicrobials tested in this 

investigation. Remarkably, in those resistant strains, high 

resistance rates were observed for tetracycline (19.6%). 

This result is similar to the one reported by Radimersky et al. 

(2010), who identified 20% of resistance for this 

antimicrobial in Enterococcus spp. strains isolated from 

feral pigeons in the Czech Republic. Also, Klibi et al. 

(2015) reported 19.2% of resistance to tetracycline in 

Enterococcus spp. isolated from wild birds in Tunisia.  

In the present study, 19.1% of E. coli isolates 

presented an MDR profile. This result is in agreement 

with those of a study on seagulls in Alaska, where 22% of 

E. coli isolates were MDR (Atterby et al., 2016). Also, in 

Italy, Gambino et al. (2021) reported that 23% of E. coli 

strains from wild birds were MDR.  

As in this investigation, other studies have reported 

Enterococcus spp. MDR strains were isolated from wild 

birds (Silva et al., 2018; Stępień-Pyśniak et al., 2019). 

Although the percentage was low (2.1%), these 

observations show that wild birds may be reservoirs of 

MDR bacterial strains, a fact that might be related to an 

anthropogenic impact mediated by contact with human or 

agricultural wastes (Skarżyńska et al., 2021).  

E. coli strains with a phenotypic tetracycline resistance 

pattern were analyzed for the tetA gene. In general, 

tetracycline resistance in the family Enterobacteriaceae is 

given by the acquisition of efflux pump-coding genes, 

particularly tetA, which has been reported in other studies 

(Sigirci et al., 2019; Handrova and Kmet, 2019). In the 

present study, we identified this gene in 83.7% of E. coli 

strains isolated from Darwin finches. In agreement with this, 

Santos et al. (2013) identified the tetA gene in 60% (3/5) of 

tetracycline phenotypic resistant E. coli isolates in wild birds 

from the Azores archipelago. Also, Radhouani et al. (2012) 

reported the tetA gene in 59.3% (n = 16/27) of common 

buzzards in Portugal. The high proportion of this gene could 

be influenced by the transference of genetic resistance 

determinants through mobile elements such as conjugative 

transposons (Schell, 2019).  

In the present study, we also determined the tetM gene in 

75.4% of Enterococcus spp. strains from finches. The tetM 

gene is associated with ribosomal protection and it is usually 

identified in these bacteria (Frazzon et al., 2010). A high 

percentage of this gene has been reported in Enterococcus 

spp. strains isolated from wild birds (Radimersky et al., 

2010; Santos et al., 2013; Yahia et al., 2018; Stępień-

Pyśniak et al., 2019). In agreement with our results, in 

fecal samples from giant tortoises (Chelonoidis spp.) from 

Santa Cruz Island, determined 97.2% of tet genes, 

35.5% of which corresponded to tetM genes. 

Nevertheless, these researchers did not associate the 

gene with the bacterial genus.  

AMR in Galapagos finches may be related to an 

anthropogenic impact especially related to agricultural 

practices on the island. Wild birds act as reservoirs and 

disseminators of AMR. This research shows their 

importance to better understanding resistance mechanisms 

circulating in this specific niche, as well as to gain insights 

into the impact of human practices in the Galapagos Islands. 

Conclusion 

To our knowledge, this is the first AMR study carried 

out on finches from the Galapagos Islands. Finches, like 

other wild birds, might be proposed as sentinels of AMR 

in the archipelago. In this study, we observed a high AMR 

percentage towards tetracycline in E. coli and Enterococcus 

isolates, especially in the agricultural zone of Santa Cruz 

Island. It is known that the antimicrobials usually used as 

therapeutic and prophylactic agents in production animals 

are absorbed only in low amounts by the gut of animals. 

Moreover, tetracycline is mostly evacuated as an active 

compound within excreta. In this way, livestock manure, 

which is widely used as fertilizer in agriculture, may act as 

an important reservoir of AMR genes in the soil of the 

agricultural zone, due to anthropogenic practices exerted on 

the island. Also, AMR bacteria have been found in high 

levels in manure from animals with no history of antibiotic 

use due to the bacteria intrinsically resistant to antimicrobials 

harbored in their intestinal tracts. In our study, we were able 

to determine circulating MDR bacteria as well as AMR 

profiles in E. coli and Enterococcus spp. isolates. 

However, further studies should be carried out to 

clarify the AMR patterns circulating in the Galapagos 

islands, as well as to better understand the role of 

anthropogenic variables in the development of AMR. 
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