American Journal of Animal and Veterinary Sciences 8 (2): 98-103, 2013 ISSN: 1557-4555 © 2013 G.U. Zaman *et al.*, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajavssp.2013.98.103 Published Online 8 (2) 2013 (http://www.thescipub.com/ajavs.toc)

Molecular Characterization of Assam Hill Goat

Galib Uz Zaman, Naba Nahardeka, Subimal Laskar, Ali Mohomad Ferdoci and Arun Jyoti Chetri

Department of Animal Genetics and Breeding, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati-781022, Assam, India

Received 2013-05-02, Revised 2013-06-12; Accepted 2013-07-13

ABSTRACT

A total of 23 polymorphic microsatellite markers were used to evaluate genetic diversity and population structure in Assam Hill Goat (AHG). All the loci studied were polymorphic in nature. The number of observed alleles (N_a) detected ranged from 2 to 10 with an overall mean of 4.9 ± 2.220 . A total of 114 alleles were observed across all the loci. The effective number of alleles (N_e) ranged from 1.035 to 7.127 with a mean of 2.68 ± 1.590 . The allele frequency ranged from 0.013 to 0.982. The overall mean observed (H_o) and expected (H_e) heterozygosity were 0.43 and 0.48 respectively and this population was in Hardy-Weinberg equilibrium at most of the loci studied. The overall mean of within-population inbreeding estimate (F_{IS}) was 0.085. The population was stable with respect to size and was non-bottlenecked. The observed normal L-shaped curve indicated no mode shift in the population.

Keywords: Assam Hill Goat, Heterozygosity, PIC, Microsatellites

1. INTRODUCTION

Genetic diversity is necessary for the long-term survival of the species and populations because it provides the raw material for adoption and evolution, especially when environmental conditions have changed (Rajora and Mosseler, 2001). The genetic markers are playing important role in measuring genetic diversity. These have been used to find out evolutionary relationship within and between species, genera or higher taxonomic categories (Paterson *et al.*, 1991). Goat is one of the significant food sources, because it can convert feed dry matter into milk as efficiently as other ruminants. The goat population in North East India was approximately 3.51% of the total India population (Feroze *et al.*, 2010).

The Assam Hill goat (AHG) is an important meat type animal with high prolificacy from the North Eastern

region of India. Most common colours of this goat is white, however, brown, black and mixed colour are not uncommon (**Fig. 1**). They are distributed in the hilly terrain of North Cachar hill, Karbi Anglong districts of Assam and also in the adjoining hilly tract of Meghalaya state.

The Network Project on Animal Genetic Resources-Core laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India has undertaken molecular characterization of livestock through microsatellite markers. Onto date no studies are conducted in AHG population from North East India using microsatellites.

In view of this the present study has been planned to investigate genetic variation and population structure within AHG population using 23 polymorphic microsatellite markers.

Corresponding Author: Galib Uz Zaman, Department of Animal Genetics and Breeding, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati-781022, Assam, India Tel: 91-9435046150

Galib Uz Zaman et al. / American Journal of Animal and Veterinary Sciences 8 (2): 98-103, 2013

Fig. 1. Figure showing a typical Assam Hill goat (Doe)

Fig. 2. Figure showing the breeding tract of Assam Hill Goat (AHG) and major sampling sites (Kindness to Google earth map)

2. MATERIALS AND METHODS

2.1. Sample Collection and DNA Isolation

A total of 40 blood samples of AHG were collected randomly from genetically unrelated individuals from their native breeding tract (**Fig. 2**).

Blood was collected as eptically into BD vacutainers (6 mL) containing K2 EDTA (10.8 mg) and samples were transported to the laboratory on ice and were stored at 4° C until use. Genomic DNA was extracted from the blood samples using standard phenol-chloroform method (Sambrook *et al.*, 1989) with few modifications. All extracted samples were conformed through horizontal electrophoresis on 0.8% agarose gel containing ethidium bromide. The quantification of DNA was done by Nano-drop spectrophotometer at 260 nm. The concentrated samples were diluted to reach appropriate concentrations (20-50 ng μL^{-1}) for the purpose of PCR amplification.

Table 1. Details of microsatellite markers								
	C 1 1						Size range (bp)	
	Accession	**Ch.	*Repeat				*in source	in present
Locus	Number	No	motif	Primer sequences $(5^{\circ} \rightarrow 3^{\circ})$	Dye	T _a (°C)	reference	study
ILSTS008	L23483	14	(CA) ₁₂	F-GAATCATGGATTTTCTGGGG	FAM	58	167-195	168-178
			()	R-TAGCAGTGAGTGAGGTTGGC				
ETH225	Z14043	14	(CA) ₁₈	F-GATCACCTTGCCACTATTTCCT	VIC	58	146-160	145-147
				R-ACATGACAGCCAAGCTGCTACT				
OarHH64	212 ^a	4	Ann	F-CGTTCCCTCACTATGGAAAGTTATATATGC	PET	60	120-138	121-131
				R-CACTCTATTGTAAGAATTTGAATGAGAGC				
ILSTS044	L37259	Ann	(GT) ₂₀	F-AGTCACCCAAAAGTAACTGG	NED	54	145-177	153-171
				R-ACATGTTGTATTCCAAGTGC				
ILSTS059	L37266	13	$(CA)_4(GT)_2$	F-GCTGAACAATGTGATAGTTCAGG	FAM	54	105-135	106-120
				R-GGGACAATACTGTCTTAGATGCTGC				
OarAE129	L11051	5	Ann	F-AATCCAGTGTGTGAAAGACTAATCCAG	FAM	54	130-178	149-167
				RGTAGATCAAGATATAGAATATTTTTCAACACC		-		
ILSTS002	L23479	Ann	$(CA)_{17}$	F-TCTATACACATGTGCTGTGC	VIC	50	113-135	114-124
H GTGACE	1 2 7 2 (0	24	(0.1)	R-CITAGGGGTGTATTCCAAGTGC	DET	(0)	105 125	116 110
ILS18065	L3/269	24	$(CA)_{22}$	F-GUIGCAAAGAGIIGAACACC	PEI	60	105-135	116-118
O D (D 20	1120002	A	$(\mathbf{C}\mathbf{A})$		NED	(0	120 140	114 116
OarJMP29	030893	Ann	$(CA)_{21}$		NED	60	120-140	114-110
II STSO10	1 22402	4	(TC)		EAM	60	142 162	146 150
11515019	L23492	Ann	$(10)_{10}$		ГAM	00	142-102	140-138
II STS033	1 37213	12	(CA)	F TATTAGAGTGGCTCAGTGCC	DET	60	151 187	156 178
11.515055	L3/213	12	$(CA)_{12}$	R-ATGCAGACAGTTTTAGAGGG	111	00	151-187	150-178
II STS005	I 23481	10	$(nn)_{n}$	F-GGA AGC AATGA AATCTATAGCC	VIC	58	174-190	175-187
12010000	125401	10	(111)39	R-TGTTCTGTGAGTTTGTAAGC	vic	50	174 190	175 107
ILSTS058	Ann	Ann	Ann	F [·] GCCTTACTACCATTTCCAGC	PET	54	136-188	136-188
12010000				R: CATCCTGACTTTGGCTGTGG		0.	100 100	100 100
ILSTS087	L37279	Ann	(CA) ₁₄	F-AGCAGACATGATGACTCAGC	NED	54	142-164	139-159
			(-)14	R-CTGCCTCTTTTCTTGAGAGC				
ILSTS030	L37212	2	(CA) ₁₃	F-CTGCAGTTCTGCATATGTGG	FAM	60	159-179	161-173
			()	R-CTTAGACAACAGGGGTTTGG				
ILSTS034	L37254	5	(GT) ₂₉	F-AAGGGTCTAATGCCACTGGC	VIC	58	153-185	157-161
				R-GACCTGGTTTAGCAGAGAGC				
ILSTS029	L37252	3	(CA)19	F-TGTTTGATGGAACACAGCC	PET	60	148-191	153-177
				R-TGGATTTAGACCAGGGTTGG				
ILSTS049	L37261	11	$(CA)_{26}$	F-CAATTTTCTTGTCTCTCCCC	NED	58	160-184	161-171
				R-GCTGAATCTTGTCAAACAGG				
OarVH72	L12548	7	Ann	F-GGCCTCTCAAGGGGCAAGAGCAGG	VIC	54	108-144	119-121
				R-CTCTAGAGGATCTGGAATGCAAAGCTC				
OarFCB48	M82875	17	$(CT)_{10}$	F-GAGTTAGTACAAGGATGACAAGAGGCAC	VIC	54	149-181	146-164
o	* * • • • • • •	_		R-GACTCTAGAGGATCGCAAAGAACCAG	DET	~ .		0.6.00
OarHH35	L12554	7	Ann	F-AATTGCATTCAGTATCTTTAAACATCTGGC	PET	54	92-112	96-98
0. 500204	101525			K-AIGAAAATATAAAGAGAATGAACCACACACGG	TAN/	5.4	110 170	104 170
OarFCB304	L01535	Ann	$(CT)_{11}(CT)_{15}$		гАМ	54	119-1/9	124-172
OMUCI	2208	4	A		NED	50	170.200	194 200
UNITEI	228	Ann	Ailli		NED	38	1/9-209	184-200
				K-OCAATOCITICTAAATICTUAUUAA				

Galib Uz Zaman et al. / American Journal of Animal and Veterinary Sciences 8 (2): 98-103, 2013

**, Chromosome number; ^a, Gene bank accession number of Arkdb data base (http://www.thearkdb.org); *, Kumar et al., 2009; Ta, Annealing temperature

2.2. Microsatellite Analysis

All the 23 microsatellite markers were selected from the list recommended by International Society for Animal Genetics (ISAG) and FAO's (DAD-IS) for Caprine, based on their level of polymorphism, allele size range and reliability of allele calling. The forward primer of each marker was fluorescently labeled with either FAM, NED, PET or VIC dye. All microsatellite markers were first checked under single locus amplification conditions to evaluate their performance in the multiplex and accordingly multiplex panels were prepared. Details of markers used in the present study are shown in **Table 1**.

Multiplex PCR has been used for multicolor fluorescence genotyping. Based on the guide lines of (Henegariu *et al.*, 1997) the initial parameters of

multiplex PCR were set up. The basic PCR solution (15 μ L) containing 20-50 ng of template DNA; 1.5 mM MgCl₂; 5 picomoles each of forward and reverse primers; 1 unit of taq DNA polymerase and 200 mM dNTPs was prepared. Amplification was carried out with initial denaturation at 95°C for 2 min followed by 30 cycles of denaturation (95°C for 30 sec), annealing (54 to 60°C for 30 sec) and extension (72°C for 45 sec). PCR conducted on an Applied Biosystems (Model #: 9902) VeritiTM 96-well thermal cycler.

After conformation of magnified PCR products on 2% agarose gel, genotyping was carried out on automated DNA Sequencer (ABI PRISM 3130 XL). The resulting data were analyzed using standard software Gene MapperTM version 4.0 (Applied Biosystems Inc., California, USA) to generate genotype calls for each locus by using GS 500 (-250) LIZ as size standard.

2.3. Information Analysis

POPGENE version 1.31 (Yeh *et al.*, 1999) was used to calculate the allele frequencies, effective number of alleles (N_e), observed (H_o) and expected (H_e) heterozygosity, F-statistics, Shanon's information index (I) and to test of Hardy-Weingberg Equilibrium (HWE). Nei's formula (Nei, 1978) was used to calculate Polymorphic Information Content (PIC). The BOTTLENECK version 1.2.03 (Cornuet and Luikart, 1996) analysis was performed to know whether this goat population exhibits a significant number of loci with excess of heterozygosity.

3. RESULTS

The various parameters of genetic differentiation in AHG, such as allele number, effective number of allele, PIC, observed and expected heterozygosity, withinpopulation inbreeding estimate (F_{IS}) and Shanon's information index are furnished in **Table 2**.

All the 23 loci investigated were polymorphic in nature. The number of observed alleles (N_a) detected ranged from 2 (ETH225, ILSTS065, OarJMP29 and ILSTS34) to 10 (OarFCB304), with an overall mean of 4.90±2.220 and a total of 114 alleles were observed at these loci in the population. However, the effective number of alleles (N_e) ranged from 1.035 to 7.127 with a mean of 2.68±1.590. Overall allele frequency ranged from 0.013 (at locus ILSTS33) to 0.982 (at locus ETH225). The PIC value ranged from 0.033 (ETH225) to 0.843 (OMHC1) with a mean of 0.44±0.263. The overall means for observed (H_o) and expected (H_e) heterozygosities were 0.43±0.285 and 0.48±0.281,

Science Publications

respectively which ranged from 0.034 (ETH225) to 0.862 (ILSTS002) and 0.033 (ETH225) to 0.859 (OMHC1) respectively. The chi-square (χ^2) test for HWE revealed that 10 out of 23 loci deviated from equilibrium. Shannon's information index (I) (Lewontin, 1995), which measures the level of diversity, was sufficiently high with a mean of 1.00±0.606. The within population inbreeding estimates (F_{1S}) observed at 10 loci were positive which ranged from 0.012 (OarHH64) to 0.771 (OARE129). Only 13 loci revealed negative F_{1S} values indicating the absence of inbreeding in these loci. The mean F_{1S} value observed at 10 loci, only 8.5% of inbreeding was recorded in AHG.

Three mutation models namely, Infinite Allele Model (IAM), Two Phase Model (TPM), Stepwise Mutation Model (SMM) were used for Bottleneck analysis (Table 3). In AHG population, under Sign test, the expected number of loci with heterozygosity excess were 8.93 (TPM) and 9.07 (SMM) which are respectively higher than the observed number of loci 6 (TPM) and 4 (SMM) with heterozygosity excess. The expected number of loci (8.67) with heterozygosity excess was not significantly (p>0.05) higher than the observed number of loci (9) with heterozygosity excess under IAM. Standard difference test (T2 statistics) in this population provided the significant gene diversity deficit under the three mutation models IAM (-0.794), TPM (-2.751) and SMM (-6.447) respectively. Under Wilcoxon rank test, probability values of 0.701 (IAM), 0.974 (TPM) and 0.999 (SMM) were non-significant. The mode shift analysis revealed L-shaped curve indicating no mode-shift in the frequency distribution of alleles. The graphical representation of mode-shift has been shown in Fig. 3.

Fig. 3. Figure showing the graphical representation of allele proportions and their contribution in Assam Hill Goat (AHG)

Panel	Locus	N _a	N _e	PIC	H _o	H _e	F _{IS}	HWE	Ι	
Panel 1	ILSTS008	4	1.5898	0.3383	0.3793	0.3710	-0.0224	1.185 ^{NS}	0.7092	
	ETH225	2	1.0351	0.0333	0.0345	0.0339	-0.0175	$0^{\rm NS}$	0.0871	
	OarHH64	6	3.3176	0.6472	0.6897	0.6986	0.0128	19.73 ^{NS}	1.3707	
	ILSTS044	4	1.1110	0.0983	0.1034	0.0999	-0.0357	0.056^{NS}	0.2604	
Panel 2	ILSTS059	5	2.2517	0.4860	0.4483	0.5559	0.1936	25.12**	1.0155	
	OarE129	6	4.4122	0.5803	0.1765	0.7734	0.7718	79.25**	1.6226	
	ILSTS002	6	3.7130	0.6872	0.8621	0.7307	-0.1798	79.69**	1.4740	
	ILSTS065	2	1.3554	0.2278	0.3103	0.2622	-0.1837	0.85^{NS}	0.4316	
	OarJMP29	2	1.0713	0.0644	0.0690	0.0666	-0.0357	0.018^{NS}	0.1500	
Panel 3	ILSTS 033	8	1.9300	0.4652	0.5278	0.4819	-0.0953	10.21^{NS}	1.1178	
Panel 4	ILSTS019	6	3.0036	0.6180	0.5172	0.6671	0.2246	27.32*	1.3451	
	ILSTS005	3	1.2752	0.1988	0.2414	0.2158	-0.1185	0.46^{NS}	0.4178	
	ILSTS058	6	3.0862	0.6179	0.4483	0.6760	0.3369	29.27*	1.3084	
	ILSTS087	7	3.5262	0.6790	0.8276	0.7164	-0.1552	80.16**	1.4948	
Panel 5	ILSTS030	7	5.1429	0.7792	0.7778	0.8056	0.0345	21.93 ^{NS}	1.7578	
	ILSTS034	2	1.0571	0.0526	0.0556	0.0540	-0.0286	0^{NS}	0.1269	
	ILSTS029	4	2.0313	0.4640	0.6111	0.5077	-0.2036	1.58 ^{NS}	0.9427	
	ILSTS049	5	3.5801	0.6728	0.8333	0.7207	-0.1563	14.49 ^{NS}	1.4003	
Panel 6	OarVH72	4	1.2675	0.2040	0.1429	0.2110	0.3230	69.06**	0.4791	
	HH35	2	1.2462	0.1780	0.0556	0.1975	0.7188	21.22**	0.3488	
	OarFCB48	5	3.2580	0.6330	0.4571	0.6931	0.3404	19.42*	1.2730	
	OarFCB304	10	4.3272	0.7503	0.8056	0.7689	-0.0477	35.7 ^{NS}	1.8543	
Panel 7	OMHC1	8	7.1271	0.8434	0.6207	0.8597	0.2780	65.33**	2.0129	
Mean overall loci		$4.95 \pm$	$2.68 \pm$	$0.44\pm$	$0.43 \pm$	$0.48 \pm$	0.0850		1 ±	
		2.225	1.590	0.263	0.285	0.281			0.606	

Table 2. Microsatellite analysis in Assam Hill Goat (AHG)

Doromotor

* Significant ($p \le 0.05$); **Highly significant ($p \le 0.01$); ^{NS} Not significant ($p \ge 0.05$); Na, Number of alleles; Ne, Effective number of alleles; PIC, Polymorphic information content; Ho, Observed Heterozygosity; He, Expected Heterozygosity; F_{IS}, Deficit or excess of Heterozygotes; HWE, Hardy-Weinberg equilibrium; I, Shannon's Information Index

Table 3. Bottleneck analysis in Assam Hill Goat (AHG)

	Sign rank test-N	Number of loci with het	erozygosity excess	Standardized differences test-T2	Wilcoxon test- Probability of	
Model	Expected	Observed	Probability	values (probability)	heterozygosity excess	
IAM	8.67	9	0.53699	-0.794 (0.21351)	0.70171	
TPM	8.93	6	0.10894	-2.751 (0.00297)	0.97467	
SMM	9.07	4	0.01015	-6.447 (0.00000)	0.99958	

IAM-Infinite allele model; TPM-Two phase model; SMM-Stepwise mutation model

4. DISCUSSION

The present study revealed that the most of the studied loci were highly informative, indicating high polymorphism. Thus these markers strongly signified genetic diversity investigations of AHG. The number and sizes of microsatellite alleles observed in this study fall within the range mentioned in the Secondary Guidelines for Development of National Farm Animal Genetic Resource Management Plans of FAO. The mean number of alleles observed (4.90) in the present investigation was less than the mean number of alleles reported in Ganjam (6.29) goat (Sharma *et al.*, 2009) and Gohilwari (10.12) goat (Kumar *et al.*, 2009).

The PIC value in the present investigation ranged from 0.033 to 0.843 which is in close agreement with the reports of (Sharma *et al.*, 2009) in Ganjam goat and (Kumar *et al.*, 2009) in Gohilwari goat. The low observed heterozygosity 0.034 (ETH225) was observed in the present study may be due to the presence of more homozygote individual in the samples analyzed. Though few loci exhibited lower heterozygosity values, most of the loci showed relatively higher expected heterozygosity, which reflects the existence of differentiation in the

population (Karthickeyan *et al.*, 2008). The chi-square (χ^2) test revealed that 13 microsatellite loci in the AHG population are in equilibrium. These results established that the samples were drawn from the large random mating population (Karthickeyan *et al.*, 2008).

The overall mean F_{IS} (0.085) observed in the present study indicated a 8.5% shortfall of heterozygosity in AHG population which is not significant as compared to heterozygote deficiency reported in Ganjam goat 21.7% (Sharma *et al.*, 2009); Gohilwari goat 26.4% (Kumar *et al.*, 2009); Kutchi goat 26%, Mehsana goat 14% and Sirohi goat 36% (Dixit *et al.*, 2009). The present findings of F_{IS} value supports random mating in the studied population. The main reasons for the random mating are wide range of native breeding tract and sufficient availability of breeding bucks in the population.

Bottleneck analysis revealed that the breed is nonbottelnecked where the mode-shift for the frequency distribution of alleles had a normal L-shaped curve stating that there was no recent and/or sudden reduction in the population.

5. CONCLUSION

The PIC values observed in the present study is indicative of the fact that the markers used are highly informative for characterization of AHG diversity. The significant level of variability in this population reflects that the AHG population contains a valuable genetic diversity. The population has not undergone any reduction at least in the recent past. Hence, this population could provide a valuable source of genetic material that may be used for meeting the demands of future breeding programmes.

6. ACKNOWLEDGEMENT

The researchers wish to extend their gratitude to the Indian Council of Agricultural Research, New Delhi, India for the financial assistance for molecular characterization work through the Network Projects of the National Bureau of Animal Genetic Resources, Karnal, India.

7. REFERENCES

Cornuet, J.M. and G. Luikart, 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144: 2001-2014.

- Dixit, S.P., N.K. Verma, R.A.K. Aggarwal., S. Kumar and R. Chander *et al.*, 2009. Genetic structure and differentiation of three Indian goat breeds. Asian-Aust. J. Anim. Sci.
- Feroze, S.M., V.T. Raju, R. Singh and A.K. Tripathi, 2010. Status of livestock sectorl: A micro study of North Eastern India. Ind. J. Hill Farm., 23: 43-51.
- Henegariu, O., N.A. Heerema, S.R. Dlouhy, G.H. Vance and P.H. Vogt, 1997. Multiplex PCR: Critical parameters and step-by-step protocol. Biotechniques, 23: 504-511. PMID: 9298224
- Karthickeyan, S.M.K., P. Kumarasamy, S.N. Sivaselvam, R. Saravanan and P. Thangaraju, 2008. Analysis of microsatellite markers in Ongole breed of cattle. Ind. J. Biotech., 7: 113-116.
- Kumar, S., S.P. Dixit, N.K. Verma, D.K. Singh and A. Pande *et al.*, 2009. Genetic diversity analysis of the Gohilwari breed of Indian goat (Capra hircus) using microsatellite markers. Am. J. Anim. Vet. Sci., 4: 49-57. DOI: 10.3844/ajavsp.2009.49.57
- Lewontin, R.C., 1995. The Apportionment of human diversity. Evol. Biol., 6: 381-398. DOI: 10.1007/978-1-4684-9063-3_14
- Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583-590.
- Paterson, A.H., S.D. Tanksley and M.E. Sorrells, 1991. DNA markers in plant improvement. Adv. Agron., 46: 39-90. DOI: 10.1016/S0065-2113(08)60578-7
- Rajora, O.P. and A. Mosseler, 2001. Challenges and opportunities for conservation of forest genetic resources. Euphytica, 118: 197-212. DOI: 10.1023/A.1004150525384.
- Sambrook, J., E.F. Fritsch and T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, ISBN-10: 9780879693091.
- Sharma, R., A.K. Pandey, B. Prakash, B.P. Mishra and P.K. Singh *et al.*, 2009. Genetic diversity of ganjam goat by microsatellite markers. Ind. Vet. J., 86: 275-277.
- Yeh, F.C., T. Boyle, Y. Rongcai, Z. Ye and J.M. Xian, 1999. Popgene. Version 1.31. A Microsoft Windows based freeware for population genetic analysis. University of Alberta, Edmonton.