
     

 

 © 2024 Apaloo Bara Komla Kpomonè, Palanga Eyouleki Tcheyi Gnadi, Bokovi Yao, Kuevidjen Dosseh, and Nomenyo 

Komla. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 

American Journal of Applied Sciences 

 

 

 

Original Research Paper 

Multiple Linear Regression to Predict Electrical Energy 

Consumption Based on Meteorological Data: Application to 

Some Sites Supplied by the CEB in Togo 
 

1,2,3Apaloo Bara Komla Kpomonè, 1,2,3Palanga Eyouleki Tcheyi Gnadi, 1,2,3Bokovi Yao,  
4Kuevidjen Dosseh and 5Nomenyo Komla 

 
1Department of Electrical Engineering, Ecole Polytechnique de Lomé (EPL), University of Lomé, Lomé, Togo 
2Department of Electrical Engineering, Engineering Sciences Research Laboratory (LARSI), University of Lomé, Lomé, Togo 
3Department of Electrical Engineering, Regional Excellence Center for Electricity Management (CERME) 
University of Lomé, Lomé, Togo 
4Department of Operations Management, Electric Community of Benin (CEB), Lomé, Togo 
5Laboratory Light, Nanomaterials and Nanotechnology - L2n CNRS UMR 7076, Troyes University of Technology, Troyes, France 

 
Article history 
Received: 06-03-2024 
Revised: 10-05-2024 
Accepted: 14-05-2024 
 

Corresponding Author:  
Apaloo Bara Komla Kpomonè 
Department of Electrical 
Engineering, Ecole 
Polytechnique de Lomé (EPL), 
University of Lomé, Lomé, 
Togo 
Email: espoirbara@gmail.com 

Abstract: The prediction model developed in this article is based on the use 

of meteorological variables to estimate the consumption of electrical energy 

at the substations of the Electric Community of Benin. The objective is to 

predict this consumption in order to adapt production to it. The posts (Lomé 

Aflao, Légbasito, and Lomé port) are the targets that were used in the study. 

The input variables are Relative Humidity (H), Direct Normal Irradiance (I), 

Precipitation (P), Temperature (T), and wind speed (V). The data collection 

period extends from 2019 to 2021. Multiple linear regression is used as the 

algorithm. Mean Absolute Error (MAE), root Mean Square Error (MSE), 

root mean square error (RMSE), and linear correlation coefficient (R2) were 

used to evaluate the performance of each model. A statistical characterization 

of each variable is carried out. It shows a good distribution of temperature, 

relative humidity, and wind speed values. This is not the case for direct 

normal irradiance, precipitation, and diffuse radiation. These latter at times 

have zero and extreme values at the same time. Furthermore, the modeling results 

show that the worst model is IPV giving MAE = 16.066; MSE = 385.847; 

RMSE = 19.643, and R2 =21.021%, and is not good for consumption 

forecasting. On the other hand, the best model is obtained by the HIPTV 

configuration thus giving MAE = 13.214; MSE = 282.199; RMSE = 16.798, 

and R2 = 77.284% showing that the parameters considered are necessary for 

its prediction. The correlation coefficient R2 exceeds 50%, the results of this 

study show that from meteorological data, it is possible to predict the power 

to be consumed in the area considered. However, as it is not very close to 1, 

the exploration of other algorithms is necessary to resume this study. 

 

Keywords: Electricity Consumption, Characterization, Meteorological 

Variables, Modeling, Multiple Linear Regression 
 

Introduction  

The electricity supply of a country is a criterion of 

economic, social, and industrial development today. 

Indeed, the availability of quantity and quality of 

electrical energy can offer new employment opportunities 

and socio-cultural emergence. In addition, investments in 

electricity production equipment lead to new innovations. 

Progress will also be seen in the areas of health, education, 

and access to new information and communication 

technologies (Pierre et al., 2023). For Bronwyn and 

Rosenberg, the permanent electrification of industries 

makes it possible to intensify production by automating it; 

which has the effect of improving business productivity 

(Hall and Roserberg, 2010; Owolabi et al., 2021). This 

electrification involves the establishment of electrical 

networks. In today's world, they are almost 

interconnected. This facilitates the flow of energy. 
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In Benin as in Togo, the supply of electrical energy is 

assumed by the Electric Community of Benin (CEB), 

(Kuevidjen, 2023; Ntagungina, 2015). However, 

electricity supply constraints can hamper the ability to 

effectively meet ever-increasing demand. Among the 
constraints commonly encountered in electricity network 

management, an insufficient quantity of energy obtained 

as supply can lead to imbalances between supply and 

demand. In the CEB network, there are two means of 

supply: Internal production and import. If the estimation 

is not done well, we see electricity shortages, power 

outages, and disruptions in almost all sectors of activity. 

We can also list a financial loss linked to the production 

of undistributed energy or a waste of available primary 

energy sources. 

Inspired by this context, it is therefore essential to 

estimate electrical energy consumption with good 

precision in order to plan production (Ali et al., 2023). 

This estimation involves machine learning for modern 

energy distribution systems (Marković et al., 2023). It uses 

artificial intelligence algorithms (Abdel-Basset et al., 2021) 

to plan production capacities in order to ensure sufficient 

availability to meet the needs of populations and industries. 

Among the algorithms commonly used in machine learning 

we can list: Random forests (Apaloo-Bara et al., 2019; Nti et al., 

2019), artificial neural networks (Younès, 2006), support 

vector machines (Apaloo-Bara, 2020), multiple linear 

regression, (Supapo et al., 2017; Zhou et al., 2016; 

Almedeij, 2016; Tuaimah and Abdul Abass, 2014; 

Samhouri et al., 2009) etc. These algorithms make it 

easier to learn from the data. They enable the analysis of 

large historical data sets in real time to predict patterns, 

trends, and relationships between different factors 

influencing electrical energy consumption (Marković et 

al., 2023; Fan et al., 2014). These factors may include 

meteorological data (temperature, ambient relative 

humidity, precipitation, solar radiation, wind speed, etc.,) 

and other more relevant parameters. 
Knowing that weather forecasts these days are very 

precise with new technologies, the objective of this study 

is to use multiple linear regression to predict electrical 

energy consumption in Togo. The goal is to rely on data 

collected by the CEB from 2019-2021 and to use certain 

meteorological variables (relative humidity, direct normal 

irradiance, precipitation, temperature, and wind speed) to 

design models. We will draw inspiration from certain 

performance evaluation criteria commonly used in the 

literature (Apaloo-Bara et al., 2019; Pierre et al., 2023; 

Djandja et al., 2019); such as Mean Absolute Error 
(MAE), root Mean Square Error (MSE), Root Mean 

Square Error (RMSE) and coefficient of determination R² 

to confirm or refute the validity of the models. 

Characterization of the electricity consumption data and 

the aforementioned meteorological variables of the city of 

Lomé will be carried out for this purpose. 

The result of this study will help the CEB to detect the 

impact of the variables used in this study on the 

consumption of electrical energy in Lomé, Togo, in order 

to extend it to all areas placed under its coverage. Also 

through the results obtained, the company will have a 
sophisticated means of forecasting the electrical energy 

needs necessary to make available to customers. 

Materials 

The values of the power consumed in Lomé are 

recorded at the LOME AFLAO, LEGBASSITO, and 

LOME PORT substations daily at an interval of 1 h and 
then stored in an Excel file whose appearance is presented 

in Fig. 1. In this table, the power recording can be found 

on the aforementioned sites. The values are collected per 

day and at each hour of the day then collected per month. 

Thus, we can find the values of the powers consumed on 

the sites considered in Megawatt and the accumulation 

can be distinguished in the last column. 

The meteorological data are, for their part, collected 

on the fr.tutiempo.net sites and on the open-meteo.com 

site on the same days and times as those of the powers 

recorded as shown in Fig. 2. On this site, there is the 

ability to get records of all-weather parameters from any 
location on earth for free. The biggest advantage lies in 

the fact that we can even obtain this data in an Excel file 

by entering the georeferenced coordinates of the location. 

This made it easier to carry out and achieve the 

effectiveness of the work presented in this article. Figure 3 

outlines the arrangement of data for modeling. 

This figure contains weather in dates and times, 

Temperature (T) in degrees Celsius (°C), Relative 

Humidity in percentage (RH%), wind speed (V) in meters 

per second (m/s), Direct Normal Irradiance (DNI) of the 

sun in Watts per square meter (W/m²) and Precipitation 
(P) in millimeters (mm) in Lomé. 

 

 
 
Fig. 1: Overview of the electricity consumption record sheet in 

Lomé from 2019-2020 
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Table 1: Production fleet for the CEB network  

Type of plant Instantaneous installed power in MW Production power Available in MW 

Lomé thermal power plant headquarters (SULZER) 16 12.0 
Lomé B thermal power plant (CTLB) 12 11.9 
Kara Thermal Power Plant 16 4.0 
Sokodé Thermal Power Plant 4 1,5 
Kpimé hydraulic power plant 1,6 1,5 
Nangbéto Hydraulic Power Plant 75 75 
Contour global thermal power plant 99,6 100 

 

 
 
Fig. 2: Weather data collection page 
 

 
 
Fig. 3:  Appearance of the weather data sheet in Lomé from 

2019-2021 

 

The electricity consumption data samples used in our 

study are collected from databases provided by the Benin 

Electric Community (CEB). They contain relevant 

information on electrical energy consumption, as well as 

weather data in Lomé, Togo. Initially, data is taken on a 

daily basis to facilitate overall analysis and visualization 

of longer-term trends. However, in order to obtain more 

detailed information and explore short-term variations, 

we further decomposed the daily-level aggregated data 

into hourly data. Togo's independent electricity supply 

sources are grouped in Table 1 (Kuevidjen, 2023, 

Ntagungina, 2015). Apart from these sources, to cover the 

energy needs, there are supplies coming from other 

countries in the sub-region. 

Through Table 1, we can understand that only the 

central global contour is more felt. This is why we are able 

to operate it at 100 MW instead of 99.6 MW installed. 

Unlike in other cases, the aging of others is well seen. This 
concerns in particular the Kara Thermal Power Plant 

which is only used 25% for production; 37.5% for 

Centrale Thermal Sokodé and 75% for Centrale Thermal de 

Lomé headquarters (SULZER). Regarding the hydraulic 

power plants of Nangbéto) used to produce 100% of its 

power, Kpimé used 93.75% and the Lomé B thermal power 

plant which produces 11.9 MW instead of 12 MW installed, 

the problem is not really alarming. The difficulty lies in the 

types of power plants they are dealing with. Given all this, 

in the CEB network, it is necessary to forecast 

consumption in order to define the energy capacity to be 
produced per plant. This will avoid waste or overloads 

that could lead to load shedding. 

Methods 

The quality of a prediction model is closely linked to 

the choice of the algorithm used and the different 

performance evaluation metrics. As an algorithm for our 

study, we opted for the use of multiple linear regression. 
It is a machine-learning technique that makes it possible 

to model the linear relationship between a target variable 

and a set of explanatory variables. It is widely used to 

predict continuous values and is well suited to cases 

where the relationship between variables can be 

approximated by a regression line. Multiple linear 

regression takes into account the evolution of 

independent variables relative to dependent variables in a 

synchronized manner (Almedeij, 2016). Equation (1), 

expresses the linear relationship between the dependent 

variable and the independent variables: 
 

1 2 2 ...p k KP X X         (1) 

 
where: 

pP  = The power to predict which is the dependent 

variable 

1,..., kX X  = The different independent variables used 

1,..., k   = Constitute the regression coefficients 

corresponding to the variables 1,..., kX X  

   = Random error 
 

Indeed, multiple linear regression is used to predict the 
values of a dependent variable from explanatory or 
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independent variables. Multiple linear regressions are used to 

find the most satisfactory linear relationship and predict the 

dependent value that produces the smallest standard error. 

In such a model, each independent variable is weighted so 

that the value of the regression coefficients maximizes the 
influence of each variable in the final equation. It is 

possible to manipulate several independent variables from 

multiple linear regressions, but only one dependent 

variable, (Tso and Yau, 2007). 

After multiple linear regression modeling, it is 

necessary to evaluate the models obtained. In most cases, 

performance evaluation criteria are used. For this study, 

the evaluation criteria considered are The Mean Absolute 

Error (MAE), the Mean Square Error (MSE), the square 

root of the Mean Square Error (RMSE), and the correlation 

coefficient (R² ). They are calculated respectively from the 
formulas (2-5), (Apaloo-Bara, 2020; Pierre et al., 2023): 
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where:  

ipp  = The predicted power 

imp  = The measured power 

pmp = The predicted average power 

mmp = The average power measured 

N  = The number of points sampled 
 

Results  

The work carried out in this study began with the 

characterization of input and output parameters based on 

statistical variables such as mean, median, standard 

deviation, minimum, maximum, skewness coefficient, 

and kurtosis. Tables from 2-8 group together the results 

obtained through the characterization. 
 
Table 2: Summary of temperature characterization results 

Balance sheet dates Mean Median STD Min Max Skewness Kurtosis 

2019-01-31  29.11000 29.20 0.504709 28.2 29.9 -0.523510 -0.61896995 
2019-02-28  29.56786 29.60 0.576743 28.6 30.5 -0.199600 -1.15729255 
2019-03-31  29.41290 29.70 0.952450 26.4 30.7 -1.253500 1.94555400 
2019-04-30  29.55000 29.70 0.887752 27.7 30.8 -0.684540 -0.61566372 
2019-05-31  28.16774 28.20 0.799745 26.4 29.6 -0.533330 0.08740416 
2019-06-30  26.82667 26.90 0.864205 24.4 28.1 -0.742390 0.83785252 
2019-07-31  26.28710 26.20 0.484934 25.7 27.3 0.727142 -0.35422028 
2019-08-31  26.13871 26.10 0.364854 25.5 26.9 0.226282 -0.39955202 
2019-09-30  26.48667 26.40 0.566132 25.4 27.7 0.164085 -0.24613912 
2019-10-31  26.64839 26.70 0.686960 25.1 27.7 -0.529300 -0.42662047 
2019-11-30  28.12000 28.60 1.275877 24.9 29.6 -1.331370 1.09437002 
2019-12-31  28.94516 29.00 0.679136 26.8 30.3 -1.170260 2.65188326 
2020-01-31  28.11613 28.90 1.389028 25.3 29.7 -0.789280 -0.84147383 
2020-02-29  29.66552 29.80 0.666159 27.6 30.6 -1.039560 1.71712022 
2020-03-31  29.34839 29.40 0.947935 26.8 30.6 -1.053230 1.28933939 
2020-04-30  29.00000 29.30 1.156988 25.8 30.7 -0.928910 0.60890704 
2020-05-31  28.49677 28.60 1.135924 25.4 29.9 -0.673700 0.18034087 
2020-06-30  27.21667 27.30 0.977359 24.7 29.1 -0.375160 0.70426482 
2020-07-31  25.93548 25.90 0.450591 24.9 26.9 -0.085210 0.17028190 
2020-08-31  25.54839 25.60 0.444875 24.8 26.3 -0.089190 -1.07578763 
2020-09-30  26.20333 26.35 0.575046 24.5 27.1 -1.137570 1.36460065 
2020-10-31  27.26129 27.30 0.732884 25.2 28.6 -0.820000 0.99098179 
2020-11-30  28.66333 28.60 0.446815 27.8 29.6 0.006354 -0.35203061 
2020-12-31  28.80000 28.80 0.447958 27.1 29.3 -1.802810 5.65064963 
2021-01-31  28.78387 28.80 0.643996 26.9 29.7 -0.892100 1.30811343 
2021-02-28  29.33571 29.45 0.790787 27.1 30.7 -1.481370 3.20909085 
2021-03-31  29.32581 29.60 1.071438 26.7 31.3 -0.729880 0.35156986 
2021-04-30  29.30333 29.70 0.829825 26.8 30.1 -1.412900 1.61913014 
2021-05-31  28.70000 28.90 0.869099 26.1 29.8 -1.304010 1.67771974 
2021-06-30  27.44333 27.15 1.225781 24.3 29.6 -0.172270 0.08468080 
2021-07-31  26.26129 26.20 0.570776 25.4 27.6 0.393744 -0.50059553 
2021-08-31  26.32581 26.30 0.425807 25.3 27.2 -0.082910 0.12923703 
2021-09-30  26.49333 26.50 0.687290 25.3 27.7 -0.154770 -0.77153805 
2021-10-31  27.50968 27.80 0.775609 26.0 28.8 -0.260640 -0.98470383 
2021-11-30  28.25333 28.50 1.018022 25.1 29.7 -1.249010 1.74502692 
2021-12-31  28.80000 29.10 0.859457 25.5 29.7 -2.205110 6.26046459 
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Table 3: Summary of wind speed characterization 

Balance sheet dates  Mean Median STD Min Max Skewness Kurtosis 

2019-01-31  13.78065 13.50 3.412958 7.4 19.4 -0.113250 -1.448850 
2019-02-28  14.09643 13.30 3.841728 9.8 23.0 0.909457 -0.006880 
2019-03-31  14.88710 15.60 3.012833 8.7 19.3 -0.245390 -1.146650 
2019-04-30  15.63000 15.30 3.698849 7.4 23.0 -0.144610 0.019781 
2019-05-31  11.19355 11.30 1.977698 7.8 14.8 0.048925 -0.912900 
2019-06-30  14.63000 14.90 3.163493 6.7 19.8 -0.579180 0.578952 
2019-07-31  17.85161 17.40 2.025483 14.8 22.4 0.461659 -0.457440 
2019-08-31  20.57097 19.80 2.672601 15.4 25.7 0.247003 -0.849220 
2019-09-30  15.49000 15.65 2.954640 9.8 21.5 0.026980 -0.829090 

2019-10-31  11.89032 11.10 3.500415 5.9 19.1 0.366428 -0.718270 
2019-11-30  9.96000 10.80 3.021372 2.6 14.6 -0.895150 0.605856 
2019-12-31  10.03548 9.10 2.346281 6.1 16.5 0.651897 0.169617 
2020-01-31  10.30968 10.00 2.509629 6.3 16.1 0.730603 -0.037480 
2020-02-29  12.30000 11.50 3.170061 8.1 18.7 0.383448 -1.206840 
2020-03-31  16.99355 17.40 3.498089 9.3 24.6 -0.201410 0.162340 
2020-04-30  14.82333 15.10 3.783329 8.5 20.9 0.180901 -1.135920 
2020-05-31  12.29032 12.60 3.118371 7.6 18.7 0.217885 -0.935010 

2020-06-30  13.90333 13.60 3.360571 6.3 20.0 -0.046860 -0.088410 
2020-07-31  17.94839 17.80 2.549624 11.5 22.0 -0.318220 -0.238670 
2020-08-31  19.05161 18.70 2.987180 13.1 25.6 0.244498 -0.377830 
2020-09-30  17.09667 17.90 3.038544 9.8 22.6 -0.594360 -0.160670 
2020-10-31  12.95161 13.10 2.507438 7.4 18.1 -0.159340 -0.101330 
2020-11-30  11.20667 11.05 2.049715 7.2 14.6 -0.071320 -0.962750 
2020-12-31  12.42903 12.80 2.042579 8.7 15.6 -0.383120 -1.063260 
2021-01-31  13.35484 14.10 2.645353 7.4 17.8 -0.747200 -0.100500 

2021-02-28  13.67500 13.60 2.213364 9.8 19.1 0.296481 0.194178 
2021-03-31  15.79032 15.90 3.548836 9.3 22.6 0.022538 -0.796160 
2021-04-30  13.98667 13.70 2.598373 9.6 18.9 0.118016 -0.842920 
2021-05-31  14.42258 14.80 3.023983 8.5 18.7 -0.378980 -0.916740 
2021-06-30  11.90333 11.60 2.636152 6.9 18.1 0.422736 0.019480 
2021-07-31  16.40323 16.90 2.275739 11.1 20.2 -0.414310 -0.426870 
2021-08-31  16.46129 16.10 2.064571 11.1 20.4 -0.414920 0.489518 
2021-09-30  12.64000 12.50 2.556344 8.1 17.0 0.003337 -0.629440 

2021-10-31  11.97097 12.20 2.582272 6.7 16.9 -0.037390 -0.381230 
2021-11-30  10.76667 11.00 2.207563 7.2 17.2 0.543132 0.933195 
2021-12-31  10.83871 11.70 2.131772 5.7 15.2 -0.399330 -0.284110 
 
Table 4: Summary table of relative humidity characterization 

Balance sheet dates Mean Median STD Min Max Skewness Kurtosis 

2019-01-31  75.03226 78.0 8.553689 51 85 -1.573550 1.550249 
2019-02-28  78.78571 78.5 2.833100 73 85 0.097509 -0.191790 
2019-03-31  79.80645 80.0 2.600248 75 86 0.470208 -0.031000 

2019-04-30  79.53333 79.0 2.459792 76 85 0.433679 -0.429650 
2019-05-31  83.09677 83.0 3.477114 76 91 0.299766 0.035096 
2019-06-30  85.80000 86.0 3.284236 79 94 0.302371 0.395848 
2019-07-31  85.41935 86.0 1.962553 82 89 -0.182210 -0.582940 
2019-08-31  83.29032 84.0 2.132191 79 87 0.056803 -0.598520 
2019-09-30  86.00000 86.0 2.197177 81 91 -0.083600 0.019023 
2019-10-31  86.03226 860.0 3.229901 80 92 -0.024630 -0.697630 
2019-11-30  82.63333 81.0 4.131321 79 92 1.456055 0.824818 

2019-12-31  76.16129 78.0 6.408831 57 91 -1.191120 2.968723 
2020-01-31  69.22581 77.0 14.655400 36 82 -1.119290 -0.148300 
2020-02-29  70.58621 77.0 11.681850 41 81 -1.330000 0.573354 
2020-03-31  77.19355 77.0 2.468729 71 82 -0.436670 0.434859 
2020-04-30  78.83333 78.0 3.085934 75 88 1.842081 3.682626 
2020-05-31  81.38710 81.0 3.574702 76 91 0.886930 0.561859 
2020-06-30  83.16667 83.0 3.163186 75 90 -0.387810 0.611675 
2020-07-31  83.32258 83.0 2.286002 79 88 0.057395 -0.389070 

2020-08-31  81.48387 82.0 2.743124 76 88 0.210255 0.077033 
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Table 4: Continue 

2020-09-30  83.40000 83.0 2.283373 79 88 0.064054 -0.002490 

2020-10-31  82.45161 82.0 2.778953 77 88 0.254463 -0.399660 
2020-11-30  78.13333 78.5 1.925032 73 81 -0.761620 0.539208 

2020-12-31  78.54839 78.0 2.218689 72 82 -1.145360 2.055646 

2021-01-31  78.06452 78.0 3.424767 67 88 -0.500400 4.822558 

2021-02-28  77.50000 77.0 3.085210 71 83 -0.150760 0.117514 
2021-03-31  76.29032 76.0 2.253790 72 83 0.863758 1.421414 

2021-04-30  77.93333 78.0 2.362543 73 83 0.152364 -0.259870 

2021-05-31  78.48387 78.0 2.249014 74 85 0.661600 1.741831 

2021-06-30  80.36667 80.5 4.004164 75 91 0.715929 0.283848 
2021-07-31  83.25806 83.0 2.516184 77 89 -0.178000 0.435973 

2021-08-31  83.12903 83.0 2.704834 79 89 0.243032 -0.378990 

2021-09-30  84.46667 84.0 2.713101 80 90 0.399777 -0.243130 

2021-10-31  82.61290 82.0 2.603554 79 89 0.553117 -0.162310 
2021-11-30  79.53333 79.0 2.596195 74 87 0.782669 1.761844 
2021-12-31  73.35484 77.0 10.011820 47 89 -1.595410 1.688207 

 
Table 5: Summary table of the characterization of normal direct irradiance 

Balance sheet dates Mean Median STD Min Max Skewness Kurtosis 

2019-01-31  254.0128 0.00 310.4290 0 865.0 0.635900 -1.316340 

2019-02-28  213.3369 0.10 269.7804 0 809.4 0.766283 -1.022440 

2019-03-31  218.1824 0.00 267.4669 0 828.5 0.688987 -1.119520 

2019-04-30  220.0640 0.00 264.8683 0 854.5 0.674427 -1.121260 

2019-05-31  180.4823 0.20 233.4953 0 759.4 0.888611 -0.743960 

2019-06-30  145.3542 2.55 197.3861 0 698.4 1.084914 -0.162560 

2019-07-31  152.7613 8.15 197.0403 0 690.0 0.913119 -0.606660 

2019-08-31  153.5790 0.55 205.5602 0 725.5 1.015147 -0.351500 

2019-09-30  156.0526 0.00 209.4597 0 816.5 1.136929 0.103788 

2019-10-31  193.0379 0.00 247.3889 0 835.5 0.892411 -0.676370 

2019-11-30  217.0742 0.00 265.0880 0 852.4 0.725874 -1.064320 

2019-12-31  238.4649 0.00 291.9373 0 835.7 0.645876 -1.276210 

2020-01-31  233.6739 0.00 285.3307 0 815.3 0.672362 -1.189020 

2020-02-29  215.0167 0.00 267.3921 0 806.3 0.731624 -1.085680 

2020-03-31  237.7216 0.10 281.9705 0 811.0 0.578233 -1.316750 

2020-04-30  214.9389 0.00 265.5526 0 859.3 0.755055 -0.997050 

2020-05-31  170.0972 0.65 227.5742 0 843.9 1.134570 0.072566 

2020-06-30  148.1640 4.80 199.7221 0 729.3 1.094688 -0.131640 

2020-07-31  152.8212 6.75 206.5040 0 779.7 1.066969 -0.214680 

2020-08-31  181.2781 2.65 223.4359 0 768.9 0.751092 -0.957730 

2020-09-30  139.2063 0.00 190.2462 0 777.5 1.152644 0.074000 

2020-10-31  138.2720 0.00 209.2276 0 828.5 1.372255 0.642153 

2020-11-30  215.7482 0.00 272.6932 0 879.1 0.784947 -1.008570 

2020-12-31  237.0375 0.00 291.0261 0 853.5 0.674483 -1.195230 

2021-01-31  275.3446 0.00 330.1855 0 887.9 0.578198 -1.401890 

2021-02-28  262.6942 0.15 315.9834 0 860.5 0.596758 -1.346990 

2021-03-31  224.8831 0.00 281.2791 0 859.0 0.778903 -0.912680 

2021-04-30  232.6107 0.00 284.7164 0 873.9 0.735752 -1.029750 

2021-05-31  206.3210 4.40 256.4345 0 870.3 0.836647 -0.738170 

2021-06-30  132.9010 1.65 192.9614 0 759.9 1.328333 0.630933 

2021-07-31  120.1509 5.60 172.2667 0 672.7 1.304456 0.461802 

2021-08-31  179.8876 2.25 224.9285 0 902.9 0.882152 -0.435710 

2021-09-30  159.6008 0.00 218.1735 0 858.2 1.174100 0.165677 

2021-10-31  190.7276 0.15 249.8582 0 838.3 0.957431 -0.574120 

2021-11-30  222.0557 0.00 265.8036 0 818.2 0.657077 -1.182720 

2021-12-31  227.1272 0.00 277.2345 0 841.3 0.649717 -1.245800 
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Table 6: Summary table of the characterization of diffuse radiation 

Balance sheet dates Mean Median STD Min Max Skewness Kurtosis 

2019-01-31  175.15320 1.5 244.8471 0 748 1.02816720 -0.5525378 
2019-02-28  154.59230 0.0 224.1194 0 785 1.19598998 -0.0157365 
2019-03-31  164.81050 1.5 232.5850 0 823 1.16553619 -0.0389528 
2019-04-30  164.93890 0.0 231.3323 0 825 1.16577273 -0.0051193 
2019-05-31  130.90590 0.0 196.6962 0 777 1.36949960 0.5937998 
2019-06-30  104.14310 0.0 162.4238 0 659 1.55282912 1.3917962 
2019-07-31  111.25940 0.0 166.3127 0 660 1.40399391 0.8476925 

2019-08-31  114.01750 0.0 172.8049 0 766 1.46456733 1.0963753 
2019-09-30  117.03330 0.0 181.8976 0 827 1.60607705 1.7021324 
2019-10-31  141.87500 0.0 211.0167 0 800 1.32908362 0.4805571 
2019-11-30  148.94030 0.0 212.3827 0 763 1.17804685 -0.0211257 
2019-12-31  160.54970 1.5 224.9501 0 717 1.06524231 -0.4113400 
2020-01-31  160.01480 0.5 225.3180 0 726 1.09709948 -0.3207844 
2020-02-29  157.46260 2.0 225.2834 0 755 1.14900974 -0.1758388 
2020-03-31  179.21640 2.0 245.5837 0 824 1.05382651 -0.3895509 

2020-04-30  161.77920 0.0 231.8557 0 854 1.21463182 0.0983050 
2020-05-31  123.55380 1.0 191.3568 0 823 1.62616088 1.7724382 
2020-06-30  106.85140 0.0 165.9880 0 691 1.56151790 1.3894992 
2020-07-31  111.47180 0.0 172.8531 0 728 1.52871048 1.2814925 
2020-08-31  134.44220 0.5 189.3303 0 768 1.20955102 0.1946996 
2020-09-30  103.59310 0.0 163.1012 0 747 1.63362209 1.8201454 
2020-10-31  100.80650 0.0 174.1793 0 773 1.80332525 2.2923587 
2020-11-30  149.15420 0.0 218.7537 0 814 1.22924497 0.0846043 
2020-12-31  158.27150 1.0 222.3688 0 734 1.09665970 -0.2980292 

2021-01-31  188.00940 3.5 259.7329 0 797 1.01065023 -0.5797170 
2021-02-28  190.22320 0.0 262.7607 0 805 1.02199626 -0.5316008 
2021-03-31  169.22580 0.5 243.7144 0 853 1.26125197 0.2742345 
2021-04-30  173.61810 0.0 247.2905 0 868 1.20999855 0.0774992 
2021-05-31  149.53360 1.0 216.1904 0 856 1.32529708 0.5938147 
2021-06-30  95.08611 0.0 158.6560 0 701 1.81138385 2.5009610 
2021-07-31  85.88575 0.0 140.1914 0 632 1.75017966 2.1291651 
2021-08-31  132.67340 0.0 187.2811 0 874 1.31357134 0.8450685 

2021-09-30  120.32360 0.0 190.6189 0 866 1.63317710 1.7077809 
2021-10-31  137.51210 0.5 209.3624 0 799 1.41007656 0.7065357 
2021-11-30  150.96810 1.0 211.0158 0 776 1.13165816 -0.1014435 
2021-12-31  152.32660 2.5 213.5093 0 723 1.08455731 -0.3424213 
 
Table 7: Summary table of the characterization of precipitation 

Balance sheet dates Mean Median STD Min Max Skewness Kurtosis 

2019-01-31  0 0.041369 0 0.4 7.743548 63.81766 0 
2019-02-28  0 0.333206 0 5.8 11.735270 169.98810 0 
2019-03-31  0 0.386407 0 6.1 10.895640 140.28640 0 

2019-04-30  0 0.391306 0 5.1 7.840350 71.29707 0 
2019-05-31  0 0.599079 0 6.7 5.017173 31.86830 0 
2019-06-30  0 0.771966 0 9.2 6.584076 54.08686 0 
2019-07-31  0 0.400116 0 4.1 5.765703 39.68671 0 
2019-08-31  0 0.499050 0 7.7 8.825944 104.54260 0 
2019-09-30  0 0.635463 0 5.1 4.458013 22.72155 0 
2019-10-31  0 0.837937 0 11.1 7.368133 69.23888 0 
2019-11-30  0 0.387570 0 5.1 8.151805 80.82236 0 

2019-12-31  0 0.252082 0 3.0 7.988550 72.57779 0 
2020-01-31  0 0.158156 0 3.3 14.194420 261.52920 0 
2020-02-29  0 0.465374 0 8.6 11.388660 176.17310 0 
2020-03-31  0 0.247256 0 3.0 7.940753 75.69181 0 
2020-04-30  0 0.539613 0 8.7 9.109414 112.33570 0 
2020-05-31  0 0.625779 0 6.0 5.412855 35.46822 0 
2020-06-30  0 0.670699 0 9.3 7.650188 81.04109 0 
2020-07-31  0 0.866064 0 12.0 8.260138 82.56415 0 

2020-08-31  0 0.270378 0 3.2 7.230364 63.43301 0 
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Table 7: Continue 

2020-09-30  0 0.669892 0 6.5 5.178185 32.47256000 0 

2020-10-31  0 1.727360 0 15.5 5.081458 29.65039000 0 

2020-11-30  0 0.392744 0 5.5 7.323385 70.12483000 0 

2020-12-31  0 0.228822 0 3.6 10.882060 147.44840000 0 

2021-01-31  0 0.047147 0 0.8 12.674170 183.29100000 0 

2021-02-28  0 0.108857 0 1.4 9.818283 106.44000000 0 

2021-03-31  0 0.385993 0 5.9 8.737419 95.62069000 0 

2021-04-30  0 0.417676 0 6.3 9.388481 107.91020000 0 

2021-05-31  0 0.614877 0 8.2 7.017224 62.66132000 0 

2021-06-30  0 0.768622 0 6.7 4.906655 27.57180000 0 

2021-07-31  0 0.293703 0 2.7 5.603354 34.92699000 0 

2021-08-31  0 0.084494 0 1.8 14.423650 279.16050000 0 

2021-09-30  0 0.371871 0 3.9 7.320442 61.10329000 0 

2021-10-31  0 0.993491 0 12.6 7.964209 78.47912000 0 

2021-11-30  0 0.267783 0 3.3 7.948161 79.79891000 0 

2021-12-31  152.3266 2.500000 213.5093 0.0 723.000000 1.08455731 -0.3424213 

 
Table 8: Summary table of the characterization of the consumed power 

Balance sheet dates  Mean Median STD Min Max Skewness Kurtosis 

2019-01-31  196.5019 203.86460 18.696560 156.18330 219.7917 -0.623860 -0.80881 

2019-02-28  205.5684 212.52600 16.557040 165.75210 224.2667 -1.079210 0.031642 

2019-03-31  201.8801 208.61040 19.622800 157.82290 225.2188 -0.521580 -0.94752 

2019-04-30  200.8512 205.97600 17.856180 161.55630 232.6875 -0.350160 -0.55892 

2019-05-31  185.6368 186.98540 16.533100 158.05000 218.6583 0.093658 -0.70666 

2019-06-30  164.3238 158.75630 15.622220 136.20210 189.0146 0.112502 -1.45516 

2019-07-31  164.2012 168.12710 12.659130 139.86040 181.9271 -0.514220 -0.92738 

2019-08-31  153.5124 158.90420 13.258060 126.14170 172.0375 -0.863130 -0.61801 

2019-09-30  155.8745 161.18230 10.937180 134.05420 172.2854 -0.668580 -0.88131 

2019-10-31  154.3784 156.42710 12.535450 127.25630 171.6188 -0.734740 -0.43249 

2019-11-30  169.7319 170.87080 15.387530 133.37500 191.1813 -0.644620 -0.30527 

2019-12-31  179.4753 185.96040 15.895630 150.42290 197.4292 -0.655910 -1.15133 

2020-01-31  111.2833 112.53750 17.171360 81.40833 166.8771 0.605278 2.568004 

2020-02-29  119.3022 123.50000 9.663162 101.71250 130.9792 -0.666010 -1.00783 

2020-03-31  118.9148 121.30420 10.249130 96.50417 131.1625 -0.449710 -0.95701 

2020-04-30  110.9561 111.83540 12.632290 77.66667 128.3708 -1.031010 1.090603 

2020-05-31  113.9616 113.67500 8.784519 89.08333 128.2458 -0.643940 0.758717 

2020-06-30 105.9339 108.48130 8.833575 88.10833 119.5375 -0.381730 -1.08806 

2020-07-31  101.2226 103.21250 5.848761 90.21250 109.7083 -0.514110 -1.09867 

2020-08-31  97.9961 97.57917 6.237270 87.65000 106.7500 -0.203590 -1.47527 

2020-09-30  102.0157 103.87080 6.397329 87.33750 113.3083 -0.592500 -0.41833 

2020-10-31  111,8798 113,1875 9,237277 94,55833 136,2417 0,174226 0,399535 

2020-11-30  119,9911 122,2229 7,921597 102,8208 132,2208 -0,55299 -0,6429 

2020-12-31  120,6871 122,2083 6,468197 107,1708 128,7958 -0,64176 -0,70101 

2021-01-31  122,7879 126,125 10,00985 101,5042 137,35 -0,56478 -0,75384 

2021-02-28  131,1844 133,7313 8,734357 115,0875 144,125 -0,36491 -0,91356 

2021-03-31  128,2032 126,0917 12,44503 98,80417 148,7833 -0,13184 -0,33048 

2021-04-30  127,0689 128,7083 9,201381 109,9458 139,5375 -0,42608 -1,04039 

2021-05-31  121,5095 124,5958 11,7648 94,00417 139,6125 -0,41365 -0,67265 

2021-06-30  113,5514 113,8125 11,6309 93,4625 135,9042 0,022735 -0,88337 

2021-07-31  122,2966 123,8458 9,392457 104,125 134,5875 -0,41439 -1,21032 

2021-08-31  120,4777 121,9167 7,80705 106,8125 134,5417 -0,36802 -0,94976 

2021-09-30  122,8357 124,5396 8,348134 106,3833 133,2167 -0,49126 -1,04366 

2021-10-31  122,2718 125,7083 12,89069 91,20833 138,0917 -1,01164 0,076422 

2021-11-30  123,0386 132,8458 24,83562 64,74167 151,3 -1,13644 0,43797 

2021-12-31  140,1776 138,7792 9,350538 120,5833 156,9375 -0,06073 -0,6812
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Table 9: Coding table for model variables 

Input variables used Associated codes 

Relative humidity (HR in %) H 
Direct Normal Irradiance (DNI in W/m2) I 
Precipitation (P in mm) P 
Temperature (T in °C) T 
Wind Speed (V in m/s) V 

 

 
 

Fig. 4: Graphical view of all model input variables 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
Fig. 5: Configurations of models: A-HTV; b-HIT; c-HPT, d-

ITV; e-IPT; f-HIV; g-HPV; h-PTV; i-HIP; j-IPV; k-
HITV; l-HPTV; m-IPTV; n-HIPV; o-HIPV; p-HIPTV 

  

Table 10 summarizes the results obtained by 

performance evaluation metrics per explored model. To 

make the results easier to read, modifications are made 

and summarized in Table 9. The graphical view of the 

characterization is observed in Fig. 4. Those obtained by 

configuring the models from learning are presented by the 

different graphs in Fig. 5. 

Discussion 

Analysis of the results shows a large disparity 

between the variables. It is then evident that different 

sets of variables display distinct prediction performances. 
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Table 1 shows significant values of temperature. 

Temperatures vary between 24.4°C (2019-06-30) and 

31.3°C (2021-03-31). This observation helps us to 

confirm that there must be a strong connection between 

the electrical power consumed to be predicted with it. 
On this same date, we observed that the average electrical 

power consumed is 122.2718 MW, for a minimum of 

91.20833 MW and a maximum of 138.0917 MW. The same 

observation can be made in Table 2 if we refer to the 

wind speed. It varies between 2.6 m/s observed on 2019-

11-30 and 25.7 m/s on 2019-08-31. However, in this 

table, we notice that the wind speed is not zero. 

Therefore, the three random variables (Temperature, 

wind speed, and Electrical power consumed) are linked. 

However, if we only consider these three variables as 

meteorological to study the forecast of the electrical 
power to be consumed, the answer would be trivial. The 

use of artificial intelligence requires the presence of 

complex situations to be resolved. The complexity of 

this study is found more clearly in Tables 3-6. There we 

find zero values and even very large ones for the same 

dimensions over the study period. Concerning relative 

humidity (Table 3), it is not very complicated. That is to 

say that either the minimum is zero and at the same time 

the maximum is very high (854%) as of 2020-04-30. The 

cases become more and more complicated if we take 

direct normal irradiance. Almost all averages are very 

far from the medians. Which shows a very poor 
statistical distribution (Veysseyre, 2006). As of 2021-

01-31, we find an average of 275.3446 W/m2; a median 

of 0 W/m2 as well as the minimum, with a maximum of 

887.9 W/m2. The same phenomenon is observed for 

diffuse irradiation. By observing the asymmetry and 

flattening coefficients we can conclude on the 

irregularity of the statistical distribution of the variables 

studied. In fact, skewness is a measure of asymmetry, 

which corresponds to the study of the regularity (or not) 

with which observations are distributed around the 

central value. Its normalized value is equal to 0 
(Veysseyre, 2006). They are observed correctly in all 

tables except in Table 7 which shows outliers. 

Empirical kurtosis, theoretically equal to 3, is a 

measure of kurtosis of the distribution, compared to the 

kurtosis of a normal distribution. It was not found in 

any of the summary tables of the variables during the 

characterizations. Thus, there arises the need to use 

algorithms in order to purify the study and predict the 

prediction error rate from the metrics. 

Through the metrics used in this study, the 

observations become clearer. We find that the parameters 

considered for the prediction are suitable because Table 10 

exhibits average absolute errors that are not exorbitant. 

Indeed, the MAE (mean absolute error) measures the 

average differences between the predicted values and the 

actual values (Amusa et al., 2019). The closer the MAE 

value is to 0, the better. The lowest values are the best. For 

our case study, the highest is 16.066 for the IPV 

configuration and the lowest (13.214) is obtained for the 

(HIPTV) configuration. Mean squared error, or MSE, is a 

popular error measure for regression problems. It is also 

an important loss function for algorithms tuned or 

optimized using the least squares framing of a regression 

problem. The MSE is calculated as the average of the 

squared differences between the predicted and expected 

target values in a data set. Which shows their very values 

in the results. The RMSE metric on the other hand is the 

measurement of the breakdown of these residuals. In other 

words, it indicates the concentration of data around the 

line of best fit. Figures 5 graphically show their 

observations. In Table 10, they vary between 19.643 for 

the IPV configuration where the correlation coefficient 

(21.021%) is very low, and 13.137 for the HPV 

configuration. Furthermore, we will base ourselves on the 

correlation coefficient which studies the intensity of the 

link which can exist between these random variables. The 

connection sought is an affine relation. The lowest as 

obtained by the IPV configuration shows that the direct 

normal irradiance, precipitation, and temperature 

combined are not suitable to correctly predict the power 

to consume. As its greatest value (77.284%) is obtained 

through the configuration bringing together all the 

parameters, we conclude that they are all suitable, by 

combining them, for the prediction of electrical energy 

consumption. Thus, the best result retained for forecasting 

electrical energy consumption for some CEB sites in Togo 

is MAE = 13.214; MSE = 282.199; RMSE = 16.798, and 

R² = 77.284%. As the R² is not equal to 1, work must 

continue through other algorithms to find, with better 

precision, the means of predicting the consumption of 

electrical power in the CEB networks. 

 
Table 10: Summary of modeling results by configuration 

 Results of performance evaluation metrics 

Model ----------------------------------------------------------------- 

configurations MAE MSE RMSE R² (%) 

HVT 13.787 305.394 17.475 63.225 

HIT 13.527 294.162 17.151 62.253 

HPT  13.812 306.748 17.514 67.221 

ITV  13.488 293.251 17.124 73.256 

IPT  13.495 292.556 17.104 68.257 

HIV  15.400 365.936 19.129 31.071 

HPV  15.463 366.224 13.137 32.070 

PTV 13.994 312.910 17.689 64.206 

HIP  15.391 365.671 19.122 29.072 

IPV 16.066 385.847 19.643 21.021 

HITV  13.463 290.824 17.053 71.262 

HPVT 13.712 301.705 17.369 60.234 

IPTV 13.389 289.011 17.000 70.266 

HIPV 15.325 362.596 19.041 41.080 

HIPT 13.389 289.011 17.000 73.266 

HIPTV 13.214 282.199 16.798 77.284 
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Conclusion 

This article presents the results of forecasting 

consumption in an electrical network by implementing 

models in order to plan the supply of electrical energy. 

Given the almost precise nature of weather forecasts, 

some codified ones were taken into account for the 

study. These are relative Humidity (H), direct normal 

Irradiation (I), Precipitation (P), Temperature (T), and 

wind speed (V). The values of electrical power used (in 

MW), collected at certain CEB transformation stations 

(Lomé Aflao, Légbasito, and port of Lomé) for the 

Lomé site, were used as a basis for carrying out this 

study. A statistical characterization of each exploited 

variable is carried out. Parameters such as mean, 

median, standard deviation, minimum, maximum, 

kurtosis coefficient, and skewness coefficient are 

calculated in order to observe their distribution. The 

characterization results show a good distribution of 

temperature, relative humidity, and wind speed values. 

These results are confirmed by their median values 

which are very close to the means. This is not the case for 

direct normal irradiation, precipitation, and diffuse 

radiation. For the latter, we find zero values momentarily 

and also very high values. This is the same observation 

for the key statistical parameters (Skewness and 

Kurtosis) which have values that are not close to the 

normalized one. In reality, we must find asymmetry 

coefficients close to 0 against kurtosis coefficients which 

are around 3. Unfortunately, this is not the case. Which led 

us to deduce the state of their distribution. 

Considering the distribution of variables, we used 

multiple linear regression as an algorithm to predict the 

power to consume. The results of the models are subject 

to certain performance evaluation criteria most used in the 

literature. These are: Absolute error of means (MAE) 

which measures the average differences between 

predicted values and actual values, mean squared error 

(MSE), a popular error measure for regression problems, 

the square root of the root mean square error (RMSE) 

which measures the decomposition of these residuals and 

the correlation coefficient (R2) which studies the intensity 

of the link which may exist between the predicted values 

and those which were used in the study. The modeling 

results show that some configurations are better than 

others. The most unfavorable is the IPV configuration 

giving MAE = 16.066; MSE = 385.847; RMSE = 19.643 

and R2 = 21.021% because its correlation is closer to 0 

instead of 1. Also, its MSE is very high. On the other 

hand, for this modeling, the best result is obtained by the 

HIPTV configuration thus bringing together all the 

parameters considered for the study of the model. It 

gives: MAE = 13.214; MSE = 282.199; RMSE = 16.798 

and R2 = 77.284%. This will allow monitoring of costs to 

increase or decrease production and on the contrary to 

have on short-term consumption in order to supply 

accordingly. In fact, for a model to be efficient, there must 

be a strong correlation between the actual values and those 

predicted and to obtain it, it must be very close to 100%. 

For this, it is now necessary to explore other algorithms 

given that the models studied do not give very satisfactory 

correlation coefficients. Taking into account more 

sensitive data would also position the company on the 

evolution of consumption. 
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