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Abstract: This research is dedicated to the enhancement of Heating, 

Ventilation, and Air-Conditioning (HVAC) systems through an innovative 

investigation of occupant behavior within under-actuated zones. These zones 

are strategically positioned to elevate indoor air quality and comfort through 

the intelligent utilization of HVAC systems. However, accurately measuring 

the cooling loads within these zones, which are inherently influenced by the 

presence of occupants, their activities, and appliance usage, presents a 

formidable challenge. To effectively tackle this challenge, our study 

introduces a pioneering methodology that intricately links cooling load 

measurements to occupant behavior in under-actuated zones. Central to this 

methodology is the comprehensive consideration of critical factors, including 

occupant count, activity patterns, and operation of diverse appliances. Notably, 

our analysis employs a dynamic temporal lens to scrutinize time variances and 

intervals. To discern underlying behavioral patterns in under-actuated zones, 

we employed the Hartigan’s dip test, an analytical tool that captures the 

multimodal distribution of time variances. This highlights the intricate 

behavioral trends that are pivotal for optimizing HVAC strategies. Moreover, 

our analysis integrates advanced statistical techniques, such as polynomial 

regression, to evaluate cooling loads and determine the optimal time intervals. 

Through rigorous examination, we identified four zones exhibiting bimodal 

distributions and one zone characterized by a unique trimodal distribution. 

These findings not only establish appropriate time intervals for fine-tuning 

cooling loads based on occupant behavior but also yield robust correlations, 

with R-squared values exceeding 0.9. An essential facet of our study pertains 

to ethical dimensions. We meticulously addressed considerations concerning 

human subjects, ensuring unwavering integrity and adherence to the 

established ethical guidelines. 

 

Keywords: Time Variance Analysis, Internal Cooling Load, HVAC System, 

Occupant Behavior, Under-Actuated Zone 

 

Introduction  

Heating, Ventilation and Air Conditioning (HVAC) 

systems, occasionally referred to as centralized air 

conditioning, are essential for controlling the temperature 

and humidity of the air in a room (Bahramnia et al., 2019). 

These systems function by adjusting the temperature to 

meet specific set point requirements, ensuring a 

comfortable environment for the occupants 

(Papadopoulos et al., 2019). In modern building design, 

HVAC serves as both an installation and control system. 

However, certain areas within a building, known as under-

actuated zones, pose challenges, as the conditions cannot 

be easily predicted due to undefined occupants or 

unknown occupancy status (Brooks et al., 2015). Unlike 

controlled zones, where occupant activities are well defined 

and predictable, under-actuated zones lack clear patterns. 

This unpredictability emerges from factors such as undefined 

occupants, variable occupancy status, and the diverse 

purposes of these spaces. Consequently, the behavior of 

occupants in these zones is less constrained and more 

influenced by immediate needs, contributing to fluctuating 

temperature preferences and occupancy patterns.  

Understanding under-actuated zones is pivotal 
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because they introduce distinct challenges for HVAC 

control strategies. In these zones, traditional predictive 

methods may fail because of the absence of predetermined 

occupancy schedules or activities. Occupant actions in 

these areas can generate varying heat loads and their 

preferences may change abruptly. Consequently, 

devising accurate and efficient HVAC control strategies 

for under-actuated zones requires a comprehensive 

understanding of the complex interplay between 

occupant behavior and environmental dynamics. It is 

crucial to consider the presence and behaviour of 

occupants in these zones, as their activities can generate 

heat and impact the cooling load (Wang et al., 2018). 

To address these challenges, Li and Yao (2020) 

emphasized the significance of assessing occupant 

presence and behavior in HVAC zones. O'Brien et al. 

(2020) stated that the target building's actual occupant and 

compressive context-aware data are two important 

components for optimizing HVAC control. This 

optimization improves HVAC energy efficiency and 

enhances occupant comfort (O'Brien et al., 2020). 

Measuring and understanding occupant behavior in 

under-actuated zones is critical for fine-tuning HVAC 

control strategies and achieving energy savings. By 

leveraging this knowledge, building operators can ensure 

efficient energy utilization and provide occupants with a 

more pleasant indoor environment. 

Previous studies used a stochastic approach to analyze 

occupant behavior. Three commonly used methods are 

Bernoulli, Markov chain with agent-based modeling, and 

survival analysis (Feng et al., 2015). Each of these 

approaches provides distinct advantages and faces 

specific limitations that shape their applicability in 

capturing the complexity of occupant behavior. The 

Bernoulli method focuses on independent and 

memoryless conditions, where (Holmes and Hassini, 

2021) occupants make binary decisions based on fixed 

probabilities. However, it falls short of capturing the 

complexity of occupant behavior, influenced by 

external factors, past experiences, and contextual 

elements (Yan et al., 2015). This simplification may not 

fully capture the intricate interplay of factors that 

influence occupant behavior in real-world scenarios, 

particularly within the context of multifaceted building 

environments. The Bernoulli process may not be suitable 

for modeling complex systems with multiple influencing 

factors (D'Oca et al., 2019). Markov chain and agent-

based modeling assume that the probability of a situation 

depends solely on the current state, not past events 

(Uddin et al., 2021; Salimi et al., 2019). Meanwhile, these 

methods focus on occupant movement patterns and 

consider previous conditions and activities impacting 

their decisions (Hong et al., 2018; Dziedzic et al., 2020), 

they may not completely encompass the intricacies of 

behavior influenced by past experiences and external 

factors. While these models incorporate historical 

conditions and activities that impact decisions, they may 

not encompass the entire spectrum of behavior influenced 

by past experiences and external elements. Thus, while 

useful for capturing certain aspects of occupant 

movement patterns, they may not fully capture the 

complexity of behavior under varying conditions. The 

Markov Chain method examines the likelihood of 

occupants transitioning between these states based on 

observed movement patterns, this helps building 

operators, and subsequent investigations derive transition 

probabilities from historical occupancy data. This 

information aids in predicting and optimizing the use of 

space, energy consumption, and comfort levels. 

Agent-based modeling (ABM) simulates individual 

occupants as autonomous agents, each endowed with 

unique characteristics, decision-making processes, and 

preferences. These agents interact with their environment 

and other individuals, leading to emergent collective 

behavior at the macroscopic level. For instance, in a 

workplace setting, individual agents might have specific 

working hours, preferred meeting locations, or social 

tendencies that influence their movements in the building. 

The model captures the probabilities of a person moving 

from one room to another based on the current state 

(which room they are in) and the probabilities of different 

types of movements (e.g., staying in the same room, 

moving to an adjacent one) (Jia et al., 2019; Shelat et al., 

2020). Overall, these stochastic approaches provide 

valuable insights into occupant behavior, but their 

appropriateness depends on the specific complexity and 

variables of the system being investigated. There is a need 

to carefully select the appropriate method based on the 

context and objectives of any research 

Survival analysis is a valuable method used to 

examine the time occupants take to perform specific 

actions (Denfeld et al., 2023; Wang et al., 2019). By using 

this approach, the duration for which occupants perform 

certain activities can be analyzed (Gunay et al., 2016), as 

well as identify temporal patterns in their behavior, such 

as daily and weekly cycles, seasonal variations, and 

overall trends (Barthelmes et al., 2018). However, 

survival analysis methods might not delve into the 

intricacies of decision-making leading up to an event, a 

potentially missing context that could provide a more 

comprehensive understanding of behavior. One 

significant survival analysis advantage is its ability to 

reveal inherent temporal patterns in occupant behavior. 

Multiple research can identify recurrent daily and weekly 

cycles through modeling and analyzing time-to-event 

data. For instance, they may observe that the probability 

of occupants entering a particular room or using specific 

facilities follows distinct patterns throughout the 

workweek, with higher and lower utilization during peak 

and non-peak hours, respectively. These insights 
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significantly affect building design, operation, and energy 

management. Understanding these temporal patterns 

allows building operators to appropriately align HVAC 

system operations, lighting schedules, and other services 

with peak occupancy periods. This, in turn, leads to 

improved energy efficiency and enhanced occupant 

comfort. By strategically managing resources and services 

based on occupant behavioral trends, building owners can 

optimize facility performance, promote energy 

conservation, and create a more comfortable and 

sustainable environment for occupants. 

Survival analysis encompassed various methods, 

including the Kaplan-Meier survivor and Log-rank test 

(Barthelmes et al., 2018). Tree-structured survival models 

(Wallace, 2014), Survival random forests (Ruyssinck et al., 

2016; Nurhaliza et al., 2022). Deep learning survival 

models (Dai et al., 2020; Yang et al., 2019) and Survival 

regression models (George et al., 2014). In contrast to 

Bernoulli and Markov chain models, which primarily focus 

on predicting event probabilities at specific time instants 

(Holmes and Hassini, 2021); survival analysis considers 

the time taken for an event to occur. Specifically, it 

examines the duration between the initiation of an event 

and its completion. In building occupancy and behavior 

analysis, this methodology is particularly relevant for 

understanding the time it takes for occupants to perform 

specific actions, such as adjusting the thermostat, turning 

lights on or off, or leaving a room (Gunay et al., 2016). 

However, in an under-actuated zone, where occupant's 

activities are not explicitly controlled, survival analysis 

becomes valuable in identifying the time it takes for 

occupants to carry out specific actions in response to 

environmental conditions. For instance, several 

researchers can analyze the time taken by occupants to 

adjust the thermostat concerning changing room 

temperatures. This information provides valuable insights 

into occupant comfort preferences and their 

responsiveness to thermal conditions. Surviving analysis 

enhances building behavior by going beyond simple event 

occurrence predictions and exploring its duration aspect, 

offering a more comprehensive understanding of 

occupant actions over time. This knowledge empowers 

building design, operation, and energy management 

strategies with better insights, ultimately contributing to 

improved occupant comfort and energy efficiency.  

Survival analysis provides diverse methodologies for 

modeling time-to-event data. These methodologies unveil 

inherent temporal patterns encompassing diurnal cycles, 

weekly oscillations, seasonal modulations, and trends 

within occupant conduct. By dissecting event timing, 

survival analysis yields insights into how facets such as 

occupant presence, preferences, and extrinsic conditions 

influence the chronology of actions. Moreover, survival 

analysis can be applied in under-actuated zones to study 

the interaction of occupants with automated systems, such 

as motion-sensor-activated lighting. Survival analysis 

with a time-interval paradigm was employed to delve into 

the nuanced interplay between occupant behavior and 

HVAC systems within under-actuated zones. By 

examining the time, it takes occupants to trigger such 

systems; research is able to assess the effectiveness and 

user-friendliness of these technologies in enhancing both 

energy efficiency and occupant comfort. Survival analysis 

also enables the investigation of time-to-event patterns 

related to daily and weekly cycles, seasonal variations, 

and other temporal trends in occupant behavior. 

Understanding when and how frequently specific events 

occur allows building designers and operators to optimize 

system controls and resource allocation. Aligning these 

strategies with peak occupancy periods leads to more 

energy-efficient and responsive building environments. 

In this research, polynomial regression was employed 

as one of the Survival regression models to monitor 

occupant behavior using survival analysis with a time-

interval approach. It is a statistical modeling approach that 

uses data to fit a polynomial function (Sedera and 

Atapattu, 2019). When assessing their behaviour, the goal 

was to capture the correlation between time intervals and 

other factors influencing occupant activities. Polynomial 

regression was integrated into the survival analysis to 

create a comprehensive model that considers both cooling 

load and occupant behavior attributes. The analysis 

focused on three occupant behavior aspects, namely the 

number of occupants, their activities, and the electronic 

devices that are used.  

The main objective of this research was to provide 

valuable insights into cooling load and HVAC systems 

operation in the under-actuated zone. The justification for 

using polynomial regression is its ability to capture 

nonlinear relationships between variables. Fitting a 

polynomial function to the data made it possible to 

account for complex interactions and nonlinear trends 

between time intervals and occupant behavior factors. 

This approach offered a more accurate representation of 

the real-world dynamics in the under-actuated zone. 

Materials and Methods 

This research was conducted at the Universities 

Trilogy Library, as shown in Fig. 1. The library has a 

total area of 630.1 m2 and features a zone that is under 

and fully actuated. Data were collected from a reading 

room (room number 5) with eight vents, each covering 

an area of 25 m2. The activities of occupants were 

observed near five vents (C, D, E, F, G), while three of 

them (A, B, H) located at the crossing into the room 

were not included in the observations.  
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Fig. 1: Layout of Universitas Trilogi Library 
 

The study population and sample included students, 
lecturers, and academics accessing the library during 
working hours throughout the active semester, with an 
average daily attendance of 200. Observations spanned one 
week, corresponding to five working days and adhering to 
standard working hours. During this period, occupant 
behavior was systematically recorded, encompassing the 
quantification of individuals in each zone and the 
characterization of activities such as walking, standing, 
sitting, napping, squatting, and engaging in appliance 
operations. The data collection process involved a single set 
of computer equipment, and recording and preliminary 
processing were performed using Microsoft office excel. 
Subsequently, an initial data analysis was carried out using 
R programming studio. 

The research investigation consists of four stages. 
First, occupant behavior data were collected through 
manual case study observation. Second, the cooling load 
was calculated based on occupant behavior, activities, and 
appliance operation. In this scenario, the collected data 
was used to determine the cooling load attributed to 
various factors, including occupant behavior, activities, 
and appliance usage. Analyzing the contributions of each 
aspect to the cooling load helped to gain a comprehensive 
understanding of how the actions of the occupants affected it 
in the reading room. Third, multimodal distribution analysis 
was conducted using the Hartigan’s Dip Test (HDT) and 
descriptive statistics evaluation of the cooling load data 
based on different ventilations. Descriptive statistics were 
computed for the five datasets corresponding to different 
ventilation. These statistics include mean, median, standard 
deviation, and range measures.  

Analyzing the descriptive statistics of each dataset 
provided insights into the variability and distribution of 
cooling load data across various ventilation scenarios, which 
aided in understanding the cooling dynamics of the room. 
Fourth, this stage focused on analyzing the appropriate cooling 
load data time interval using polynomial regression. The 
present research determined the time interval that accurately 
fitted the cooling load behavior by calculating the R-squared 
values and standard error associated with each polynomial 
regression model. A time interval with a high R-squared value 
and low standard error indicated a strong relationship between 
time and cooling load, making it suitable for further analysis. 
This stage played a crucial role in identifying the most relevant 
time frame for evaluating the temporal patterns of the cooling 
load, enabling informed decisions on HVAC system 
optimization and energy management. 

Data Collection 

In the present research, the data collection process 
involved observing occupant behavior in the reading room 
every 5 min, from 7:45 to 4:45 PM, throughout a week 
(Monday to Friday) in the active semester. For each vent in 
the room, three variables were recorded, namely the number 
of occupants, their activities, and the electronic devices used. 
The data were saved daily in Microsoft office excel. Each 
vent had 108 records per day, resulting in a total of 2700 for 
all five in the reading room over the course of a week. This 
extensive dataset provides valuable information on occupant 
behavior and their interactions with electronic devices, 
enabling a comprehensive analysis of the cooling load and its 
variability based on different ventilation scenarios. 

The decision to conduct observations at 5 min intervals 
was carefully considered to strike a balance between 
capturing fine-grained details of occupant behavior and 
avoiding undue intrusion into their activities. This interval 
was chosen based on its ability to provide frequent snapshots 
of the interactions between occupants, electronic devices, 
and the environment, which are crucial for understanding 
dynamic cooling load patterns. Furthermore, the observation 
timeframe from 7:45-4:45 PM was selected to encompass the 
library's operational hours when the majority of the 
occupants were present. This time range was reasoned to 
offer comprehensive insight into occupant behavior 
throughout the active semester. 

Cooling Load Measurement Based on Occupant Behavior 

The cooling load attributed to occupant behavior was 
measured with respect to three significant activities. This 
includes the number of occupants, their activities, and 
electronic device usage. Each of these activities 
contributed to the sensible heat gain, which is a significant 
factor influencing the cooling load in the reading room. 
Table 1 shows the sensible heat gain values (expressed in 
watts per person) for various occupant activities. These 
values represent the additional heat introduced into the 
indoor environment due to different types of occupant 
behavior (Ogedengbe and Erinle, 2015).  
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Table 1: Zone thermal preferences of occupant activity 

  Heat transfer  

No. Type of activity coefficient (btu/h) 

1 Walk (3.5 Kmph) 307 

2 Stand and quiet 307 

3 Stand and talk 341 

4 Sit and quiet 222 

5 Sit and type 256 

6 Sit and talk 256 

7 Nap 205 

8 Squat 222 

 
Table 2: Zone thermal preferences of appliance operation 

   Heat transfer 

 Type of appliance  coefficient 

No. operation  (btu/h)  

1 Use laptop 854 

2 Use tablet 342 

3 Use handphone 273 

4 Use TV 1025 

5 Use computer 1366 

 

For example, sedentary work contributes 60 watts of 

sensible heat gain per person, while engaging in moderate 

physical activity adds 120 watts per person. By considering 

the thermal preferences associated with different occupant 

activities, the present research aims to comprehensively 

understand how occupant behavior impacts the cooling 

load in the reading room. Utilizing these specific heat gain 

values aids in the analysis of cooling load variations based 

on occupant activities and devises strategies for optimizing 

HVAC system operation to maintain a comfortable and 

energy-efficient indoor environment. 

The heat transfer coefficient for each electronic gadget 

used by the inhabitants throughout their activities was 

considered in the present research. Table 2 shows the 

available options for these coefficients, which are 

determined based on possible appliance operations 

selected by the occupants (Ogedengbe and Erinle, 2015). 

These coefficients are directly related to the power 

consumption of each electrical equipment and serve as a 

reference for calculating the heat transfer associated with 

the devices. The sensible heat gains values, along with the 

corresponding heat transfer coefficients shown in 

Tables 1-2, respectively, are used to calculate the 

cooling load contributions resulting from each occupant 

activity. This comprehensive analysis provides valuable 

insights into the overall thermal comfort and energy 

management in the under-actuated zone. By 

understanding how the activities of the occupants and 

electronic devices collectively impact the cooling load, the 

research aims to optimize HVAC system operation and 

enhance both occupant comfort and energy efficiency. 

The dataset was updated to include a new cooling load 

variable. Subsequently, the cooling load based on 

occupants was calculated for all records in the dataset. 

This new cooling load variable was derived by 

considering three main components. These include 

cooling load based on occupants (OCL), activities 

(ActCL), and appliance operation (ApCL). The OCL 

component was determined by multiplying the number of 

occupants present in the reading room by a cooling load 

unit of 85 watts or 290 Btu/h per occupant, as per the 

reference (Kang and Noh, 2019). This component 

accounts for the thermal energy generated by the 

occupants and considers their specific cooling 

requirements. This is the equation of cooling load based 

on occupant behavior: 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝐿𝑂𝐵 = 𝑂𝐶𝐿 + 𝐴𝑐𝑡𝐶𝐿 + 𝐴𝑝𝐶𝐿  
(1) 

 

 

𝑂𝐶𝐿 = (𝑛𝑂𝑐𝑐 × 𝑂𝑐𝑐𝐶𝑜𝑒𝑓) + 𝐴𝑐𝑡𝐶𝐿 + 𝐴𝑝𝐶𝐿 (2) 

 

𝐴𝑐𝑡𝐶𝐿 =  ∑ 𝑛𝐴𝑐𝑡𝑖

𝑛

𝑖=0

 ×  𝐴𝑐𝑡𝐶𝑜𝑒𝑓𝑖 
(3) 

 

 

𝐴𝑝𝐶𝐿 =  ∑ 𝑛𝐴𝑝𝑖

𝑛

𝑖=0

 ×  𝐴𝑝𝐶𝑜𝑒𝑓𝑖 (4) 

 

where: 

 

a) CLOB represents the total cooling load based on 

occupant behavior 

b) OCL is the cooling load based on the number of 

occupants present in the reading room 

c) NOcc is the number of occupants 

d) OccCoef is the cooling load unit per occupant 

e) ActCL is the cooling load based on occupant activities 

f) NActi is the number of occupants engaged in activity i 

g) ActCoefi is the sensible heat gain value associated 

with activity i 

h) ApCL is the cooling load based on electronic 

device usage 

i) NApi is the number of instances of electronic device i 

being used 

j) ApCoefi is the heat transfer coefficient associated 

with electronic device i 

 

 The ActCL was calculated by summing up the total 

sensible heat gain for each occupant activity present in the 

reading room. In order to obtain the ActCL, the sensible 

heat gain values from Table 1 (such as sedentary desk 

work, moderate and light physical activities, standing or 

walking, use of electronic devices, resting and sleeping) 

were multiplied by the respective coefficients 
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representing the heat transfer associated with each 

activity. The result assessed the additional cooling load 

generated by different occupant activities. Considering 

the ActCL component provides valuable insights into how 

various occupant activities contribute to the cooling load 

in the reading room. This comprehensive analysis is 

crucial for optimizing HVAC system operation and 

achieving occupant comfort and energy efficiency. The 

ApCL component was determined by considering the 

cooling load generated by electronic devices and 

appliances in the reading room. This aspect accounts for 

the thermal energy emitted by these devices and their 

impact on the overall cooling load. By including the 

APCL in the analysis, the research gains valuable insights 

into the impact of electronic devices and appliances on the 

cooling load in the under-actuated zone. This information 

is essential for optimizing energy management and 

ensuring occupant comfort in the indoor environment. 

Multimodal Distribution Analysis 

This section conducted a descriptive statistical analysis 

to examine the multimodal distribution of the cooling load 

data based on occupant behavior in under-actuated zones. 

The dataset used for this analysis comprised the cooling 

load values recorded at regular time intervals within the 

target zones. This analysis aims to gain insights into the 

distinct patterns of the cooling load and identify potential 

bimodal characteristics. This sheds light on the underlying 

factors influencing the cooling load in these areas. 

Hartigan’s Dip Test (HDT), a statistical method designed 

explicitly for identifying multimodal distributions, was 

used to assess the presence of bimodal characteristics in the 

cooling load data. The HDS is used to test the null 

hypothesis that the data follow an unimodal distribution 

against the alternative hypothesis of a multimodal one. This 

test was used to determine whether the cooling load data 

shows distinct modes or peaks, which could indicate 

different cooling load regimes or behavior patterns in the 

under-actuated zones. This analysis provides valuable 

insights into the cooling dynamics and patterns in these 

areas, aiding in developing effective HVAC control 

strategies for optimal energy management and occupant 

comfort. The following steps outline the procedure for 

applying the HDS and interpreting its results: 
 
1) Step 1: Calculation of dip statistic values: 
 

a) ( )XD F calculation: Compute the dip statistic 

( )XD F , which measures the difference between 

the empirical Cumulative Distribution Function 

(eCDF) and the estimated uniform distribution 

obtained from the cooling load samples. This 

quantifies the extent of the deviation from 

unimodality 

b) ( )
rUD F  calculation: Calculate ( )

rUD F , the dip 

statistic from arbitrary identical samples 

(bootstrap samples) generated from a uniform 

distribution. Generate the same number of 

bootstrap samples as the data points in the 

original cooling load dataset 
 
2) Step 2: Iterative comparison: 
 

a) Iterative process: Compare the dip statistic 

( )XD F  from the original cooling load dataset 

with each ( )
rUD F value obtained from the 

bootstrap samples. This iterative comparison is 

essential for evaluating the multimodality of the 

cooling load data 

b) Bootstrap sample comparison: For each 

bootstrap sample, determine whether ( )XD F  is 

less than ( )
rUD F . If ( )XD F  is smaller, it suggests 

that the cooling load data is closer to an unimodal 

distribution than a uniform distribution. In such 

cases, set the indicator function 
Ur

I for that 

bootstrap sample to one, indicating unimodality 

c) Multimodal indication: Conversely, if ( )XD F  is 

greater than or equal to ( )
rUD F , it implies that the 

cooling load data exhibits characteristics of a 

multimodal distribution. Set 
Ur

I  for that specific 

bootstrap sample to one, indicating multimodality 
 
3) Step 3: p-value calculation: 
 

a) Probability assessment: The observed dip 

statistic ( )XD F is compared with the distribution 

of ( )
rUD F values obtained from the bootstrap 

samples. This comparison calculates the p-value, 

representing the probability of observing a dip 

statistic as extreme as ( )XD F under the 

assumption that the cooling load data follows an 

unimodal distribution: 
 

1

1
( )

Ur

R

i

r

p value I x
R





    (5) 

 

1, ( ) ( )

0,

r
r

D fx D F
I

otherwisw


 


 


 (6) 

 
b) Interpretation: A low p-value indicates strong 

evidence against the null hypothesis of 

unimodality, suggesting the presence of a 

significant multimodal pattern in the cooling load 

data. This statistical approach allows the effective 

identification and characterization of the cooling 

load multimodal distribution, providing valuable 

insights into the underlying cooling load behavior 

in the under-actuated zones 
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The Hartigan’s dip test results are interpreted based on 

the calculated p-value. A significant result (p<0.01) 

provides strong evidence of bimodal characteristics in the 

cooling load data, indicating the presence of distinct 

cooling load regimes or behavior patterns in under-

actuated zones. This significant result provides strong 

evidence of bimodal characteristics in the cooling load 

data. To further analyze the multimodal distribution in the 

cooling load data based on occupant behavior in under-

actuated zones, descriptive statistics, such as the mean, 

mode, standard deviation, skewness, and kurtosis, were 

calculated. These measures provide a comprehensive 

distribution analysis, helping to understand the under-

actuated zones' cooling load patterns and characteristics. 

This information is vital for optimizing HVAC system 

controls and ensuring occupant comfort in such zones.  

Time-Interval Analysis 

The research investigated various time intervals 

ranging from 5 min to 2 h (Wang et al., 2018). There are 

five distinct time intervals, namely 5, 15, 30 min, and 1 h, 

each associated with a different cooling load value. The 

selected time intervals ranged from very short (5 min) to 

moderately longer (1 h). This choice allows the analysis 

to capture the cooling load behavior across various 

temporal scales. Shorter intervals help to capture rapid 

changes, whereas longer intervals encompass more 

gradual variations. The inclusion of 5 min intervals 

provides a fine-grained view of fluctuations in the cooling 

load over short periods. This can be important for 

understanding rapid changes and responses in the cooling 

system. Time intervals of 15, 30 min, and 1 h are 

commonly used in practical scenarios, particularly in 

building and energy management. These intervals align 

with the common operational decisions and control 

strategies that building operators and energy managers 

may implement. Frequently, data collection systems are 

configured to record values at standard intervals, which 

are often aligned with the selected time intervals. This 

ensures the availability of data for analysis without 

requiring additional adjustments or interpolations.  

The intervals were chosen to be diverse, but still 

statistically significant. Very short intervals might capture 

more noise than meaningful patterns, whereas excessively 

long intervals might miss important fluctuations. The 

selected intervals strike a balance between the granularity 

and overall trends. Collecting data at extremely short 

intervals (e.g., seconds) might require higher-frequency data-

recording mechanisms, which could be resource-intensive 

and lead to excessive data volumes. Conversely, intervals 

much longer than 1 h might not capture important variations 

in the cooling load. The chosen intervals align with the 

timeframes over which building energy-management 

decisions are often made. Polynomial regression was 

selected as the appropriate method for analyzing nonlinear 

data within these intervals. The formula of Polynomial 

regression is stated as follows: 
 

𝑓(𝑥) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯ + 𝐶𝑛𝑥𝑛 (7) 
 

In this equation, f(x) represents the predicted value of 

the cooling load based on a given time interval x. The 

equation is a polynomial function, where x is the 

independent variable (time interval) and f(x) is the 

dependent variable (cooling load). The coefficients C0, 

C1, C2,…, and Cn are constants determined by polynomial 

regression analysis and they play a crucial role in shaping 

the relationship between the time interval and cooling 

load. Each coefficient is associated with a particular 

power x. C0 represents the intercept, which is the value of 

the dependent variable when the independent variable (x) 

is zero. It's the base value of the cooling load. C1x 

represents the linear term, where c1 signifies the change 

in the cooling load for a unit change in the time interval 

(x). C2x2 represents the quadratic term, capturing the 

curvature of the relationship between the time interval and 

the cooling load. C2 influences how the curve bends. 

This analysis aimed to determine the most suitable 

time interval from five available options. In order to 

achieve this, the R-squared metric was used as a measure 

of goodness of fit. R-squared is a statistical parameter that 

assesses the degree to which the independent variable 

(time interval) explains the variance in the dependent one 

(cooling load). A high R-squared value indicates a 

stronger relationship between the time interval and 

cooling load data. This signifies that the time interval 

effectively accounts for a significant portion of the 

cooling load variance. Generally, a desirable goodness of 

fit is indicated by an R-squared value of not less than 0.9 

(Wang et al., 2018), depicting a strong relationship 

between the time interval and cooling load data. The proper 

time interval was selected by comparing the R-squared 

values obtained from the regression analysis for each of the 

five time intervals. The standard error associated with each 

R-squared value was also considered. The objective was 

to select the time interval with the highest R-squared value 

while minimizing the standard error.  

Suppose that we calculate the R-squared values for each 

time interval in Table 3. In this example, the 30 min time 

interval had the highest R-squared value (0.95). This means 

that the cooling load variance is explained well by the 

polynomial regression model using the 30 min time interval. 
 
Table 3: Example of time interval measurement 

Time interval R-squared 

5 min 0,92 

15 min 0,87 

30 min 0,95 

1 h 0,82 
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Based on high R-squared, the 30 min time interval was 

selected as the most suitable for modeling the cooling load 

behavior. This hypothetical example illustrates the process 

of choosing the optimal time interval using the R-squared 

metric and considering the relationship between the 

variables, as modeled by the polynomial regression 

equation. The R-squared metric is particularly useful for 

analyzing the appropriateness of time intervals, as it provides 

a quantitative measure of how well the time interval explains 

the variability in cooling load behavior (Kim, 2021): 

 

2 1 RES

TOT

SS
R

SS
    (8) 

 

The R-squared value was calculated by evaluating the 

sum of squared regression, accounting for the squared 

differences between the observed cooling load values and 

the predicted based on the time interval. This value is 

compared to the sum of squares, representing the squared 

differences between the cooling load values and their mean. 

The resulting R-squared value ranges from zero to one. 

Results and Discussion 

Data were collected from the reading room comprising 

five observed ventilation areas, with 440 records obtained 

for each 5 min interval throughout the day. A total of 2200 

records were gathered from this room for a week (Monday 

to Friday). The collected data were saved in a file using 

Comma-Separated Value (CSV) format, enabling 

efficient organization and analysis of the data. In this 

research, data were collected from a reading room that 

had five different observed ventilation areas. The data 

were recorded at 5 min intervals, resulting in 440 records 

for each ventilation area in a single day. Throughout the 

week (Monday to Friday), 2200 records were obtained 

from this room. The collected data provides essential 

information on cooling load data related to occupant 

behavior, activities, and appliance operation. Further 

analysis was facilitated by storing the data in a Comma-

Separated Value (CSV) format. The data collection process 

involved gathering information at regular intervals of 

every 5 min, commencing at 07:45 AM and concluding 

at 03:00 PM, spanning five weekdays (Monday to 

Friday) during the active semester. This procedure was 

conducted for five different ventilation setups, yielding 

distinct datasets. 

 
Table 4: Hartigan’s dip test for 5 vents 

Vent Hartigan’s dip value p-value Multimodal 

C 0.05682 0.0337 Bimodal 

D 0.03489 0.6369 Bimodal 
E 0.04036 0.3735 Bimodal 
F 0.06156 0.0128 Bimodal 
G 0.01276 0.0079 Trimodal 

The selection of particular days for data collection 

within the reading room was underpinned by a meticulous 

rationale driven by the intention to create a dataset that 

accurately reflects real-world scenarios. The decision to 

focus on weekdays, spanning from Monday to Friday, was 

made with the aim of capturing a representative cross-section 

of a standard work week. During this period, the reading 

room encountered diverse levels of occupancy, a wide 

range of activities, and varying environmental conditions. 

This choice becomes especially meaningful as the week 

unfolds. Across these weekdays, there was a progression in 

the dynamics of the reading room. Factors such as occupant 

density and equipment utilization may display fluctuations 

that can be instrumental in revealing valuable insights into 

the variations in cooling load behavior. This temporal 

evolution reflects the genuine ebb and flow of activities 

within the reading room during a typical workweek. 

To analyze the underlying distribution characteristics of 

these datasets, the Hartigan’s Dip Test (HDT), a statistical 

method tailored to identify unimodal or multimodal 

distributions, was applied. The results of the Hartigan’s dip 

test are shown in Table 4, elucidating the outcomes 

obtained for each ventilation configuration. Remarkably, 

the ventilation setups labeled C through F showed 

compelling evidence to reject the null hypothesis, as 

reflected in their respective p-values, which were lower 

than the selected significance level (alpha = 0.05). To 

comprehensively evaluate the inherent distribution 

characteristics within our dataset, we used the dip test () 

function, a prominent component within the R environment 

sourced from the dip test package. A favored analytical 

approach, the Hartigan’s dip test, was employed to discern 

potential deviations from the conventional unimodal 

framework inherent in the datasets. This test entails a 

comparative assessment that juxtaposes the empirical 

distribution function with an equivalent median variance 

endowed with a multimodal distribution function. 

Moreover, we conducted an exhaustive inquiry to extend 

the analytical scope to probe the plausible emergence of 

multimodal patterns intrinsic to our dataset. This 

exploration encompassed the utilization of the bimodal () 

and trimodal () functions intrinsic to the dip test package. 

Based on the results, it was concluded that these 

datasets do not follow an unimodal distribution. 

Interestingly, the dataset corresponding to ventilation G 

showed a trimodal distribution, indicating the presence of 

three distinct modes within the data. The identification of 

a trimodal distribution in the dataset corresponding to 

ventilation G unveils intriguing insights that warrant 

further exploration in the context of occupant behavior 

and cooling load analysis. This distinctive distribution 

pattern, characterized by the presence of three discernible 

modes, holds implications that extend beyond the 

conventional unimodal or even bimodal scenarios. The 

recognition of a trimodal distribution within the dataset 



Yaddarabullah et al. / American Journal of Applied Sciences 2023, Volume 20: 48.64 

DOI: 10.3844/ajassp.2023.48.64 

 

56 

associated with ventilation G could potentially signify the 

influence of distinct time-based variations on occupant 

behavior and cooling load dynamics. Such variations 

introduce an additional layer of complexity that can 

significantly impact the interpretation of the observed 

distribution pattern. The trimodal behavior could be 

intimately linked to temporal fluctuations in occupant 

behavior. Each mode may correspond to different time 

periods, each characterized by unique activities and 

occupancy levels. For instance, one mode could align with 

peak occupancy periods, such as during working hours, 

while another could denote periods of diminished 

occupancy, potentially during off-peak hours. 

To analyze the cooling load contributions from occupants 

in the under-actuated zone, three factors were considered, 

namely occupant number, activities, and appliance loads. 

The analysis was conducted using a default time interval of 

5 min. The findings are shown in Fig. 2 illustrating the 

cooling load profiles for five different ventilation scenarios. 

Based on the cooling load measurement shown in Fig. 2. 

Ventilation F had the highest cooling load, with an average 

value of 304 Btu/h. This indicates that ventilation F is 

frequently used for more strenuous activities. It experienced 

a higher cooling burden on Wednesdays and Fridays, 

indicating increased occupancy and activity levels. Similarly, 

ventilation D displayed a significant cooling load with an 

average value of 295 Btu/h. Ventilation F was subjected to 

frequent and intense activities. This research reported that 

ventilation D is most active on Wednesdays and Fridays, as 

well. Ventilation G had the lowest cooling load, with an 

average of 138 Btu/h. This implied that this ventilation mode 

is used less frequently or for less intense activities than F-D.  

 

 
 

 

 
 

 
 

 
 
Fig. 2: Cooling load-based occupant for five ventilations 
 

Among the measured modes, Ventilation E had the 

lowest overall cooling load, but it still showed a relatively 

high cooling burden, particularly on Fridays. This shows 

that despite being used less frequently or for less 

demanding activities, ventilation E experiences a higher 

cooling load on Fridays. In accordance with the data 

analysis, two main observations were made. Firstly, F and 

D were the most frequently used ventilation modes and 

tended to have higher cooling loads, specifically on 

Wednesdays and Fridays. Conversely, ventilation G has 

the lowest cooling burden and is the least used mode. The 

analysis also revealed that ventilation days exhibit 

variable usage patterns, with a notably higher cooling load 

recorded on Fridays. The cooling load attributed to 

occupants showed a notable pattern, starting at 09:25 AM 

and exhibiting fluctuations until 12:00 PM. During the 

lunch break period (12:00-01:00 PM), the cooling load 

decreased, indicating a reduction in occupant activities. 

After the lunch break, the cooling load rose again from 
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01:00-03:00 PM. This observation suggested that 

occupants engaged in minimal activities during the lunch 

break, leading to a decrease in cooling load. When 

considering all ventilation scenarios, the cooling load was 

observed to rise above the baseline at 09:00 AM. This 

indicates that the presence of occupants and their 

associated activities did not immediately coincide with 

the opening time of the room. Instead, it took some time 

for the cooling load to peak as occupants gradually 

entered and engaged in activities within the reading room 

throughout the morning. Approximately 1 h after the 

room's opening, the presence of occupants was felt and a 

density diagram encompassing all ventilation scenarios 

was constructed to gain deeper insights. The diagram 

showed the highest peak at a cooling load value of 0, 

indicating numerous time intervals with no cooling load 

contribution. These intervals corresponded to periods 

when the room remained unoccupied. Specifically, these 

unoccupied intervals were identified from 07:45-09:00 AM 

and 12:00-01:00 PM. During these time frames, the 

cooling load remained at a minimum due to the absence 

of occupants in the reading room.  
Figure 3 shows the cooling load density across all 

ventilation scenarios over a period. This diagram clearly 
shows a dominant cooling load value of zero. It indicates 
numerous time intervals with no cooling load contribution. 
These intervals likely correspond to periods of low activity 
or when the reading room is unoccupied. In order to 
effectively analyze the time variance for ventilations C to 
F, these were divided into two groups 09:25 to 12:00 PM 
and 01:00 to 03:00 PM. For ventilation G, three distinct 
groups were identified 09:25 to 10:30 AM, 10:45 AM to 
12:00 PM, and 01:00 to 03:00 PM. This division allows us 
to examine the cooling load behavior during different time 
intervals and identify patterns associated with occupant 
activities and the usage of the reading room. 

A detailed analysis of temporal cooling load patterns, 

encompassing room openings, lunch breaks, and peak 

cooling load times, provides substantial insights into 

occupant behavior. These patterns align with the existing 

literature on occupant behavior in similar contexts, 

confirming the validity of the findings. The findings 

corroborate the impact of occupant schedules on energy 

consumption and emphasize the importance of adapting 

cooling systems to occupant routines. The observed 

fluctuations during lunch breaks underscore the collective 

influence of occupant activities on thermal comfort needs, 

necessitating considerations for transient occupancy-

related events in cooling strategies. The identification of 

peak cooling load intervals aligns with prior research, 

highlighting the significance of predictive models for 

effectively managing peak demand. Overall, aligning 

these patterns with existing literature enriches the validity 

of the study and contributes to a deeper understanding of 

the interplay between occupants, cooling loads, and 

energy management strategies.  

 
 

 
 

 
 

 
 

 
 
Fig. 3: Density of cooling load based occupant for five 

 ventilations 
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Table 5: Descriptive statistics for all ventilations 

Vent Mean Standard error Median Standard deviation Sample variance Kurtosis Skewness Range 

C 163,96 29,54 0 275,6 75978 2,66 1,91 1017 

D 299,26 37,54 184,2 350,2 122662 1,39 1,38 1412E

 255,35 37,64 122,8 351,1 123282 11,62 2,74 2258 

F 308,25 34,47 245,6 321,5 103378 0,69 1,12 1282 

G 140,45 26,46 0 246,8 60915 6,01 2,45 1180 

 
Table 6: Descriptive statistics for groups of time variance in ventilations  

Vent Group Mean Standard error Median Standard deviation Sample variance Kurtosis Skewness Range 

C 1 258,6 57,7 122,8 321,3 103243 0,32 1,23 1009 

 2 159,3 49,4 83,6 242,1 58604 3,65 1,96 928 

D 1 435,8 69,8 307 389 151420 0,57 1,09 1412 

 2 288,1 65 305 318 101410 3,01 1,65 1194 

E 1 315,2 51,2 245 285 81395 0,88 1,06 1139 

 2 215,1 50,3 122,8 246,5 60805 -0,029 1,09 750 

F 1 238,4 60,02 116 334,2 111704 1,85 1,69 1180 

 2 91,54 27,96 0 136,9 18765 3,76 1,92 518 

G 1 347 111,67 122,8 402,6 162130 -0,21 1,08 1180 

 2 183,7 71,72 116 277,79 77171 6,09 2,33 1030 

 3 91,5 27,9 0 136,9 18765 3,76 1,92 518 

 

Among the five ventilators used over one week, there 

were notable differences in cooling load patterns. Table 5 

shows a comprehensive overview of the descriptive 

analysis measurements for all the ventilation systems 

before being segregated into bimodal and trimodal 

distributions. These measurements offer valuable insights 

into the cooling load characteristics of each ventilation. 

With respect to the five ventilation used during the 

observation period, each exhibited distinct cooling load 

patterns. Ventilation C had a moderate mean cooling load 

of 163.96. However, its relatively high standard deviation 

of 275.64 indicated a wide spread of cooling load values. 

The positively skewed distribution (skewness = 1.91) 

suggested that higher cooling loads were less frequent but 

could be significantly larger when they occurred. A mode 

at 0 indicated instances of zero-load or inactive periods 

for the ventilation system, possibly during low occupancy 

or reduced cooling loads. The large range of 1017.6 

indicated considerable variation in cooling requirements. 

However, the kurtosis value of 2.66 suggested a peaked 

distribution with heavier tails, implying the potential 

presence of outliers or extreme values. This indicated that 

there were instances with significantly higher cooling 

loads than the general pattern. Ventilation D had a greater 

mean cooling load of 299.26 compared to C, indicating a 

larger average cooling requirement.  

Ventilation D also had a larger standard deviation 

(350.23) and range (1412.8), signifying a broader spread and 

greater variability in cooling load requirements. The strongly 

positively skewed distribution (skewness = 1.39) and 

kurtosis value (1.40) indicated that the cooling load data of 

Ventilation D deviated from the normal distribution.  

Ventilation F had the largest mean cooling load, at 

308.29. The standard deviation (321.52) and range 

(1282.8) demonstrated significant fluctuations in cooling 

loads, albeit at a lower level than Ventilation E. The 

moderate right skewness (1.12) indicated a slightly 

asymmetric cooling load distribution, while the kurtosis 

value (0.69) showed a nearly normal distribution with 

relatively lighter tails than those of Ventilation E. Among 

all the ventilations, G had the lowest mean cooling load 

of 140.45, indicating the least average cooling 

requirement. It showed significant variance in cooling 

loads, although less than Ventilation E, as proven by the 

standard deviation and range of 246.81 and 1180.6, 

respectively. The distribution of Ventilation G was 

strongly positively skewed (skewness = 2.45) with a 

kurtosis value of 6.01, indicating a peaked distribution 

with heavier tails compared to a normal distribution. 

Ventilation E exhibited the highest variability among the 

five ventilation techniques, with the largest mean cooling 

load of 255.35 and significant variability reflected by the 

wide standard deviation and range of 351.12 and 2258, 

respectively. It also had a highly skewed distribution 

influenced by high-load occurrences. Ventilation G had 

the lowest mean cooling load and a skewness similar to E 

but with a smaller standard deviation and range. The 

cooling load measurements based on different ventilations 

revealed variability within the dataset. After a multimodal 

analysis, the ventilation dataset was divided into several 

groups. Ventilations C to F were divided into two groups and 

G has three groups based on the modality analysis. The 

detailed descriptive statistics of all groups in the ventilations 

dataset are shown in Table 6. The descriptive statistics for the 

cooling load at Ventilation C during the entire observation 

period (07:45-15:00) depict a mean cooling load of 

163.96 Btu/h with a standard error of 29.55 Btu/h, reflecting 

the precision of the sample mean estimate. 
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The data showed a considerable spread, with a high 

standard deviation and sample variance of 275.64 Btu/h 

75978.02272 Btu^2/h^2. The kurtosis value of 2.66 

suggested a distribution with relatively heavy tails, while 

the positively skewed data (skewness = 1.91) indicated a 

longer one on the right side. The cooling load range spans 

1017.6 Btu/h, illustrating its variability. When comparing 

the two-time variance groups, significant differences in 

the cooling load characteristics were observed in groups 1 

(09:25-12:00) and 2 (13:00-15:00). Group 1 showed a 

higher mean cooling load (258.59 Btu/h) compared to the 

entire observation period. This simply suggested an 

increased cooling load during that time span. On the 

other hand, group 2 showed a lower mean cooling load 

(159.38 Btu/h), indicating it reduced during the later 

hours. The standard errors for both groups depicted 

precise mean estimates. Group 1 cooling load variability 

was higher (standard deviation = 321.32 Btu/h) than the 

entire observation period, while group 2 showed moderate 

variability (standard deviation = 242.08 Btu/h). The 

kurtosis values indicate non-normal distributions, with groups 

1 and 2 displaying a more normal-like (kurtosis = 0.32) and 

heavy-tailed distribution (kurtosis = 3.65), respectively. 

Skewness values remained positive in both groups, 

depicting occasional high cooling load values.  

These findings have important implications for 

understanding the temporal patterns of cooling load at 

Ventilation C. The surge in cooling loads during group 1 

(09:25-12:00) was attributed to increased occupancy or 

more energy-intensive activities during that period. The 

lower cooling load observed in group 2 (13:00-15:00) was 

linked to reduced occupancy or less energy-intensive 

activities in the afternoon. The descriptive statistics for the 

cooling load at Ventilation D during the entire observation 

period (07:45-15:00) reveal the following insights, the 

mean cooling load and standard error are 299.26 Btu/h 

and 37.55 Btu/h, respectively, indicating the precision of 

the sample mean estimate. The data showed positive 

skewness (skewness = 1.39) and moderate kurtosis 

(kurtosis = 1.40), suggesting a distribution with a longer 

and relatively moderate tail on the right side compared to 

the normal distribution. The cooling load variability is 

evident, with a high standard deviation and range of 

350.23 and 1412.8 Btu/h, respectively. By comparing the 

cooling load between two time variance groups, it was 

discovered that groups 1 (09:25-12:00) and 2 (13:00-

15:00) exhibited distinct patterns. Group 1 showed a 

significant surge in cooling load, with a higher mean 

(435.88 Btu/h) and median (307 Btu/h) compared to the 

entire observation period. The cooling load variability in 

group 1 was also higher, with a larger and wider standard 

deviation (389 Btu/h) and range (1412 Btu/h). On the 

other hand, group 2 showed a decrease in cooling load, 

which was reflected in lower mean (288.16 Btu/h) and 

median (305.3 Btu/h) values compared to the entire 

observation period and group 1. In group 2, the cooling 

load variability is moderate, with a standard deviation and 

range of 318.45 and 1194.2 Btu/h, respectively.  

The descriptive statistics of cooling load at Ventilation 
E for the entire observation period (07:45-15:00) was 
followed by a comparison between two-time variance 
groups, namely 1 (09:25-12:00) and 2 (13:00-15:00). 
During the entire observation period at Ventilation E, the 
mean cooling load and standard deviation were 255.35 
and 37.64 Btu/h, respectively indicating the precision of 
the sample mean estimate. The mode remained at 0 Btu/h, 
depicting frequent occurrences of no cooling load. The 
data showed significant variability, as evident from the 
high standard deviation and wide range of 351.12 and 
2258 Btu/h, respectively. A comparison between the 
two time variance groups, 1 and 2, revealed distinct 
patterns. Group 1 experienced a notable surge in 
cooling load, with a higher mean and median of 315.30 
and 245.6 Btu/h, respectively. The cooling load 
variability in group 1 was relatively moderate 
compared to the entire observation period. In contrast, 
Group 2 showed a decrease in cooling load, with a 
lower mean and median of 215.19 and 122.8 Btu/h. The 
cooling load variability in group 2 was also moderate. 
These findings highlighted considerable cooling load 
variability throughout the day at Ventilation E.  

The descriptive statistics of cooling load at Ventilation 

F during the entire observation period (07:45-15:00) are 

the mean cooling load and standard error of 308.29 and 

34.47 Btu/h, respectively, indicating precise estimation. 

The data show a considerable spread, with a high standard 

deviation and sample variance of 321.52 Btu/h and 

103378.14 btu2/h2. The cooling load distribution exhibited 

moderately heavy tails (kurtosis = 0.69) and a positively 

skewed pattern (skewness = 1.12). The median cooling load 

was 245.6 Btu/h and the mode remained at 0 Btu/h, 

indicating frequent occurrences of no cooling load during 

this period. The range of cooling load values spans 

1282.8 Btu/h, reflecting substantial variability in cooling 

load. A comparison between the two-time variance groups, 1 

(09:25-12:00) and 2 (13:00-15:00) showed significant 

differences in cooling load characteristics. During group 1, 

the mean cooling load was 238.42 Btu/h, lower than the 

mean of the overall observation period, indicating a reduced 

cooling load. The standard deviation of 334.22 Btu/h 

implied relatively higher variability, while the distribution 

remained positively skewed (skewness = 1.69) with 

heavier tails (kurtosis = 1.86). The median cooling load in 

group 1 was 116 Btu/h, further highlighting the decreased 

cooling load during this period. In group 2, the mean 

cooling load dropped significantly to 91.54 Btu/h, 

indicating a substantial decrease in cooling load during 

the later period. The standard deviation of 136.99 Btu/h 

reflected moderate variability and the distribution 

remained positively skewed (skewness = 1.93) with heavy 

tails (kurtosis = 3.77).  
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The cooling load at Ventilation G during the 

observation period (07:45-15:00) exhibited substantial 

variability, with a mean and high standard deviation of 

140.45 and 246.81 Btu/h, respectively. The data showed 

frequent occurrences of no cooling load (mode = 0 Btu/h) 

and a positively skewed distribution with heavy tails 

(skewness = 2.45, kurtosis = 6.01). When comparing the 

cooling load among the three-time variance groups, 

notable differences were observed. Group 1 (09:25-10:30) 

experienced a significant surge in cooling load, with a 

mean of 347.03 Btu/h. Group 2 (10:45-12:00) showed an 

increase in cooling load (mean = 183.79 Btu/h) but to a 

lesser extent than those in 1. Group 3 (13:00-15:00) depicted 

a considerably lower cooling load (mean = 91.54 Btu/h) with 

frequent occurrences of no cooling load.  

The comparison between the three-time variance 

groups indicated significant temporal variations in 

cooling load, with group 1 experiencing an enormous 

increase in cooling load, group 2 showing an increase to a 

lesser extent, and group 3 indicating a considerably lower 

cooling load during the specified period. The distribution 

of the number of occupants across activities and appliance 

operation loads is shown in Fig. 4. This provided insights 

into the connection between occupants and their behavior 

in the under-actuated zone for all five ventilation days 

(Monday to Friday). The cooling load-based activities have 

a higher average value of 176 Btu/h compared to appliance 

operation, which has an average value of 38 Btu/h. This 

consistent pattern holds true across all ventilations, 

indicating that the higher cooling load primarily originated 

from occupant’s activities rather than appliance operations.  

 

 
 

 

 
 

 
 

 
 
Fig. 4: Cooling load-based activities and appliance operation 

 for five ventilations 

 

A comparison of cooling load patterns across different 

ventilation techniques constitutes a crucial facet of this 

study. The comprehensive descriptive statistics provided 

for each ventilation configuration revealed their distinct 

cooling load characteristics, providing a foundation for 

insightful interpretations. However, it is imperative to 

contextualize these findings within a broader framework of 

anticipated trends. For instance, in the case of Ventilation 

C, the moderate mean cooling load of 163.96 Btu/h 

corresponds to scenarios in which intermittent high-

occupancy periods are interspersed with periods of reduced 

cooling requirements. Ventilation D's higher mean cooling 

load of 299.26 Btu/h aligns with the notion that increased 

ventilation rates and higher occupancy densities contribute 

to elevated cooling demands. Similarly, the highest mean 

cooling load of 255.35 Btu/h observed in Ventilation E 

corresponds to its role in accommodating varying 

occupancies and ventilation needs.  
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Table 7: Value of R squared for 5 ventilations 

Vent Group 5 min 15 min 30 min 1 h 

C 1 0,176 0,232 0,659 1 

 2 0,101 0,380 0,993 0,860 

D 1 0,239 0,495 0,730 1 

 2 0,380 0,753 0,856 0,979 

E 1 0,066 0,256 0,562 1 

 2 0,492 0,732 0,841 1 

F 1 0,197 0,481 0,879 1 

 2 0,424 0,698 0,861 1 

G 1 0,332 0,804 1 1 

 2 0,221 1 1 1 

 3 0,177 0,541 0,786 1 

 

The characteristics of Ventilation F, with a mean of 

308.29 Btu/h, show a balanced distribution indicative of a 

ventilation system designed to cater to average occupancy 

density and thermal comfort requirements. The lowest 

mean cooling load of 140.45 Btu/h in Ventilation G 

reflects its function as an energy-efficient ventilation 

strategy that is suitable for scenarios with reduced cooling 

needs. This contextualization bridges the empirical 

findings with theoretical expectations, enhancing the 

discussion by situating the results in a broader context of 

ventilation characteristics and occupant behaviors. A 

significant aspect of this investigation was determining 

the optimal time interval for data collection and modeling. 

Striking a balance between capturing detailed information 

within a manageable time frame and avoiding excessive 

data volume, which could complicate proper 

quantification, was crucial. However, a longer period 

could introduce uncertainties during the validation 

process. Finding the ideal time interval ensured both 

accuracy and efficiency during the analysis.  

In order to address this issue, the obtained data were fitted 

and modeled over multiple time intervals 5, 15, 30 min, and 

1 h. The aim was to investigate how different temporal 

resolutions would impact the modeling results. Table 7 

shows a detailed summary of the cooling-load-based 

occupant data distribution across each of the five time 

intervals, 5, 15, 30 min, and 1 h. It includes information on 

occupant number, activity, and appliance loads, allowing a 

comprehensive assessment of data variability for modeling 

applications. It also presents the coefficients of fit for the 

cooling-load-based occupant, indicating the level of 

agreement between the collected data and the predicted 

result. Analyzing these coefficients helps to ascertain the 

accuracy and reliability of the models built using each time 

interval. The careful selection of the time interval used 

throughout the data fitting process is crucial for producing 

relevant and robust modeling outcomes. By assessing the 

coefficients of fit and evaluating the distribution of cooling-

load-based occupant data, informed decisions could be 

made regarding the most appropriate time interval for 

modeling purposes. This ensures that the models capture 

the underlying patterns and relationships in the data 

accurately, leading to meaningful and precise results. 

Table 7 shows the proper time intervals for different 

groups within each ventilation scenario. In ventilation C, 

groups 1-2 had proper time intervals of 1 hand 30 min, 

respectively. For ventilation D, E, and F, the proper time 

interval for all groups was 1 h, indicating similar cooling 

load averages for occupant number, activities, and 

appliance operation in these areas. However, ventilation G 

exhibited more variation, with different proper time 

intervals for each group. Groups 1, 2, and 3 had proper time 

intervals of 30, 15 min, and 1 h, respectively. These 

differences suggest distinct cooling load characteristics and 

occupant behavior for each group within ventilation G. 

The proper time intervals in the different ventilation 

groups tend to vary, with some having shorter intervals 

(30 and 15 min) and others having longer ones (1 h). The 

variations in proper time intervals were due to the specific 

needs of the occupants and activities in each area. 

Tailoring the time intervals for data collection and 

modeling based on these unique characteristics is crucial 

for accurately representing and analyzing cooling load 

patterns. This approach ensures that the modeling results 

are relevant and reliable for each ventilation scenario. 

The exploration of diverse time intervals for data 

fitting and modeling, as exemplified in this study, offers 

valuable insights into the intricate dynamics of cooling 

load patterns across varying temporal resolutions. The 

analysis of R-squared values across different intervals, as 

presented in Table 6, serves as a quantifiable metric to 

assess the suitability of each interval for modeling. 

However, delving into the rationale underlying the 

selection of specific time intervals and expounding on the 

profound implications of these choices on model 

accuracy, robustness, and practical applicability, provides 

a more comprehensive understanding of this 

methodological approach.  

The rationale behind the time interval selection resides 

in the pursuit of accurately capturing the inherent 

variability and transient behaviors within the cooling load 

patterns. Shorter intervals, such as 5 min, facilitate the 

capture of rapid fluctuations and nuanced occupant 

activities; however, they might also amplify noise and 

obscure overarching trends. In contrast, longer intervals, 

such as 1 h, offer a broader perspective on cooling load 

trends but might smooth out important transient 

variations. Intermediate intervals, such as 15 and 30 min, 

strike a balance between these extremes. The crux of this 

matter is that the chosen time interval hinges on research 

goals, occupant behaviors, and the desired temporal 

resolution in modeling. The consequences of this choice 

extend to the accuracy and applicability of models. Opting 

for shorter intervals may result in models that are sensitive 

to minor variations but are less capable of extrapolating to 

longer time frames. Conversely, models based on longer 



Yaddarabullah et al. / American Journal of Applied Sciences 2023, Volume 20: 48.64 

DOI: 10.3844/ajassp.2023.48.64 

 

62 

intervals might provide better generalization but could miss 

rapid changes. The effectiveness of the models during 

transition periods or sudden shifts in occupant behavior 

hinges on the chosen interval. Moreover, the practical 

utility of these models in real-world scenarios is at stake. 

Overly short intervals could render models susceptible to 

noise, whereas overly long intervals could compromise 

their responsiveness to adaptive control strategies.  

In conclusion, selecting a time interval for data fitting and 

modeling is a nuanced decision based on research goals and 

temporal intricacies, dictating the accuracy, reliability, and 

real-world utility of the models and providing a 

comprehensive methodological foundation for their 

implementation and interpretation in practical contexts. 

Conclusion 

In conclusion, this research focused on three important 

characteristics of tenant behavior, the number of 

occupants, their activities, and the use of technological 

devices. Analyzing real-world occupant data from a 

library, provided useful insights into the dynamic nature 

of occupant activity and its impact on cooling load. In 

order to have a better understanding of the subtle aspects 

of occupant behavior in under-actuated zones, survival 

analysis was used to discover temporal patterns, such as 

daily and weekly cycles, as well as seasonal fluctuations. 

The incorporation of polynomial regression enabled the 

capture of nonlinear interactions between time intervals 

and occupant behavior parameters. This comprehensive 

approach provided a more accurate picture of the complex 

dynamics within such zones, with R-squared values 

greater than 0.8, indicating a robust association. The 

present research successfully determined the optimal time 

for monitoring cooling load changes based on occupant 

behavior, which could be valuable for enhancing HVAC 

control strategies. To expand the applicability of the 

findings, future research needs to encompass a broader 

range of under-actuated zones and building contexts. This 

broader approach would help to better understand 

occupant behavior dynamics and their implications for 

HVAC management systems. 
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