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Abstract: In this study, we propose a learning-based approach using 

feature learning to minimize the manual effort required to extract features. 

Firstly, we extracted features from equally spaced sub-patches covering the 

input Region of Interest (ROI). The dimensionality of the extracted features 

is reduced using max-pooling. Furthermore, spherical k-means clustering 

coupled with max pooling (k-means-max pooling) is compared with well-

known feature extraction method namely Bag-of-features. The resulting 

feature vector is fed to two different classifiers: K-Nearest Neighbor (K-

NN) and Support Vector Machine (SVM). The performance of these 

classifiers is evaluated to use of Receiver Operating Characteristics (ROC). 

Our results show that k-means-max pooling, combined with K-NN, 

achieved good performance with an average classification accuracy of 

98.19%, sensitivity of 97.09% and specificity of 99.35%. 
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Introduction 

Breast cancer is disease that is diagnosed among the 

women in the world (Marrocco et al., 2010). 

Mammography is used as early screening tool for breast 

cancer. The studies in (Perlmutter et al., 1997; 

Rawashdeh et al., 2013; Rojas Domínguez and Nandi, 

2008), reported that the radiologist may over look some 

abnormalities during mammogram image screening. 

Hence, Computer Aided (CAD) system helps the 

radiologist to double check the mammogram images. A 

lot of literature has been reviewed in the area of CAD 

systems for breast cancer as well as techniques for 

improving classification accuracy (Etehadtavakol et al., 

2013; Korkmaz and Korkmaz, 2015; Pak et al., 2015; 

Ramirez-Villegas and Ramirez-Moreno, 2012;    

Wang et al., 2014). Feature representation is one of the 

techniques that were developed for improving the 

classification accuracy of CAD. Feature representation 

contains set of techniques that converts the input data 

into more meaningful representation so that machine 

learning algorithms can simply use it. 

Traditional manually designed feature descriptors 

in (Yadav et al., 2015), such as gradient operators and 

filter banks, are not able to capture if complex 

variation related in frequency is found in medical 

images (Rose et al., 2010). This paves the way for 

designing efficient image descriptors. The process of 

learning features concentrates into main categories 

namely supervised and unsupervised learning. In the 

supervised learning algorithms, usually it performs the 

process of learning using classes or targets. However, 

unsupervised learning methods, the process of feature 

learning is carried out without using any classes, 

(Hinton et al., 2006) (Mairal et al., 2009), auto-

encoders (Boureau and Cun, 2008), (Coates et al., 2011). 

To the best of our knowledge, limited work has 

been done on applying unsupervised feature learning to 

mammogram images. In this study, we adopted the 

unsupervised feature learning process based on 

unlabeled data (Coates and Ng, 2012). This approach 

can learn important and subtle features from the 

statistics of the image. By applying set of learned 

features coupled with labels to train the mammogram 

images, the features were extracted from patches of size 

8×8 that represent the ROI of mammogram images. 

Moreover, the obtained features from the patches were 

pooled together to reduce the dimension of the features. 

Finally, classification is performed to classify between 

normal and abnormal using the features obtained from 

the unsupervised learning algorithm. 
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Fig. 1. Feature learning pipeline 

 

The main contribution of this paper is the application of 

k-means-max pooling in mammogram images for 

automatic feature representation to enhance the 

classification of the mammogram images into normal 

and abnormal, as shown in Fig. 1. 

Materials and Methods 

The Digital Database for Screening Mammography 

(DDSM) is a publicly-available resource used by the 

image analysis community (Heath et al., 2000). In this 

experiment, we used a total of 400 images, which 

represented 200 normal conditions and 200 abnormal 

(benign and malignant) conditions. The cropping 

operation was applied to the images to cut off the 

unwanted portions. ROIs were cropped to the size of 

128×128 as shown in Fig. 2. The mammogram images 

were cropped manually by selecting the ROI of 

mammogram images. All the unnecessary parts such as 

background which are out of the tumor area were 

completely eliminated. 

Feature Learning Architecture  

The ROIs obtained from mammogram images were 

transformed into patches. Each patch of size of 8x8 

were collected and stored as feature vector. However, 

mammogram images taken during the breast cancer 

screening might have variations such as brightness 

and contrast. Hence, to eliminate this issue image 

normalization. The learning architecture proposed by 

(Coates and Ng, 2012) uses the following procedure 

for feature learning representation of an image patch: 

 

• Normalize for each patch, subtract out the mean of 

the intensities and divide by the standard deviation 

as follows: 
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Whitening Transform  

Principal Component Analysis (PCA) is used to 
reduce the dimensionality of the data (Kambhatla and 
Leen, 1997). There is a similar preprocessing step called 
ZCA whitening (Coates and Ng, 2011), which is 
required for some algorithms. If we are training on 
images, the raw input is redundant, since neighboring 
pixel values are highly correlated. The aim of whitening 
is to make the input less redundant: 
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If VDV

T 
= cov(x) is the eigenvalue decomposition of 

the covariance of the data points, x, then the whitening 

points are decomposed as V(D+∈zcaI)
-1/2

V
T
x, where ∈zca 

is constant. In this study, to normalize the data, we set 

∈zca as 0.01 for 8 by 8 pixel patches.  

Spherical K-Means Clustering 

Coates and Ng (2012), make a convincing case that 
K-means clustering is capable of learning dictionaries 
that can be easily used for classification. The K-means 
algorithm is particularly intriguing and it’s very fast 
compared to standard K-means using Euclidean 
distances. Following the steps of a spherical K-means 
algorithm, which is much faster than using the 
conventional K-means (Zhong, 2005). 
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(a) 

 

 
(b) 

 
Fig. 2.  Sample mammogram images: (a) normal images, (b) abnormal images 

 

Max Pooling 

Max pooling makes the feature learning into new 

reusable features that keeps significant information 

although removing redundant information. The typical 

properties of pooling are the robustness to cluster and 

compactness of representation (Boureau et al., 2010). In 

this study, the following pooling steps were applied. 

Notations: 

 

• For instance, if the unpooled data are a p × K matrix 

of 1-of-k codes taken at P locations, we extract a 

single P-dimensional column v of 0s and 1s, 

indicating the absence or presence of the feature at 

each location 
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• The vector v is reduced by a pooling operation to a 

single scalar f(v) 

• Max pooling: ( )
1

1 p

a ii
f v v

p =
= ∑  

average pooling : fm (v) = maxivi  

• Given two classes C1 and C2, we examine the 

separation of conditional distributions: 
 

( ) ( ) ( ) ( )1 2 1 2| | , | |m m a ap f C and p f C p f C and p f C  (3) 

 

In this experimental design, we take the max of the 

cluster memberships over each 8x8 region. Max pooling 

reduces the dependency of the feature vectors on their 

exact placement in an image (each element of each 8x8 

block gets treated about the same) and it also maintains a 

lot of the information that was in each of the feature 

vectors, especially when the feature vectors are expected 

to be sparse. Moreover, during the experiment design, 

we have taken different size of clusters (100 clusters and 

150 clusters) to figure out the performance of the 

classifiers, as shown in section 3. 

Bag-of-Features 

Bag-of-features is s a vector of occurrence counts of 

a vocabulary of local image features. The basic steps of 

bag-of-words when applied to images are as follows 

(Cheng et al., 2010): 

 

• Building a codebook for local patches 

• Extracting the local patches from the ROIs of 

mammogram images 

• representing an ROIs using the statistics of its 

quantized local patches 

• Inference based on the statistics collected in step 3 

 

The obtained set of ROI of mammogram images is 

represented and divided into testing and training sets. 

Then, visual vocabulary is built by clustering the patches 

from the training set followed by representing them as 

per image distributions. Moreover, each patch is 

represented as histogram of visual words drawn from 

vocabulary. In The experimental setup, 100 clusters and 

150 clusters based on k-means as clustering method was 

applied to evaluate the classifier performance. 

Classification  

The learned features were stored as feature vector. 

The next step is to separate given classes into normal and 

abnormal. Two well know classifiers are adopted in this 

study as follows: 

K-Nearest Neighbor 

The KNN classifier usually applies either the 

Euclidean distance or the cosine similarity between the 

training tuples and the test tuples. In this study, the 

Euclidean distance is applied in implementing the 

KNN(k = 1) model for feature classification 

(Cunningham and Delany, 2007). 

Support Vector Machine 

A Support Vector Machine (SVM) is widely used 

in mammogram images classification due to its 

performance for the accuracy rate. This classifier 

achieves the classification rate by applying 

hyperplane. To see the classification performance of 

SVM for separating the two classes (normal Vs 

abnormal) and it is recommended the hyperplane has 

the largest distance to the nearest training data point 

of the two classes (Chang and Lin, 2011). 

Performance Measures 

The performance of the classifier is evaluated using 

a ten-fold cross validation method (Acharya et al., 

2015). The dataset is divided into ten equal parts. 

Each part contains the features from a similar 

proportion of images from normal and abnormal 

classes. Nine parts are used to train the classifiers. 

The remaining parts of the image features are used as 

a testing set. This process is repeated ten times using a 

different set in each case. In each fold, we apply 

several classification measures in order to obtain a 

more reliable comparison. Normal and abnormal 

mammographic images, respectively correspond to 

negative and positive samples. In this study, True 

Positive (TP) and True Negative (TN), respectively 

represent the number of abnormal and normal tests, 

which are properly classified. Similarly, False 

Positive (FP) and False Negative (FN), respectively, 

represent the number of normal and abnormal tests, 

which are incorrectly classified. The mathematical 

computation of performance measures are as follows: 

 

Accuracy 100
TP TN

N

+
= ×  (4) 

 

TP
Sensitivity

TP FN
=

+
 (5) 

 

TN
Specificity

TN FP
=

+
 (6) 

 

Pr
TP TN

ecision
N

+
=  (7) 

 

Receiver Operating Characteristics 

The Receiver Operating Characteristics (ROC) 

curve provides a visual representation of the tradeoff 

between true positive and false positives. They are the 
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percentage of correctly classified features with respect 

to the percentage of incorrectly classified negative 

features (Nascimento et al., 2013). As shown in Fig. 4 

to 7, the point (0,0) along curve represents a classifier 

that by default classifies all features as being negative, 

where a point (0,1) represent a classifier that 

positively classifies all features. 

The experimental results is carried out using 

windows 8 and MATLAB R2013a. Some of the tools 

that were selected were image processing and statistical 

tool box with application of Laptop of intel Core i5-

4200U CPU @1.6GHZ. 

Results  

Table 1 to 4 presents the classification results using 

KNN and SVM classifiers for k-means-max pooling and 

Bag-of-features. We have obtained the highest 

performance for k-means-max pooling as compared to 

Bag-of-features method with an average accuracy, 

sensitivity and specificity of 98.19, 97.09 and 99.35% 

respectively (at 150 clusters). It is also obvious from the 

results that the KNN classifier performs better than 

SVM, with a high accuracy of 98.19%. To get the best 

optimum classifier with a single dataset, the classifier 

should not only have significant accuracy, but should 

also provide good sensitivity and specificity. Such a 

balance is required to make certain decisions that 

classify two classes (normal Vs. abnormal). Hence, this 

K-NN classifier was selected as the optimum classifier 

for this dataset mainly because it provided the best 

accuracy, sensitivity and specificity. 

Figure 3 visualizes the resulting 50 clusters centers 

from k-means-max pooling. We sorted the data based on 

how often data centers are assigned to each cluster. So, 

the top left has the most elements and the bottom right 

has the least. 

Figure 4 to 7 show the ROC curve for k-means-max 

pooling compared with Bag-of-features using KNN and 

SVM. It can be observed from these figures that the 

performance of k-means-max pooling is better in the 

KNN classifier at the 150 cluster. Furthermore, the ROC 

curve is more near to the y-axis for the KNN classifier 

than Bag-of-features, indicating a higher AUC value for 

KNN. Therefore, k-means-max pooling coupled with 

KNN has the highest discrimination capacity to separate 

the two classes (normal Vs. abnormal). 

 
Table 1. Performance of feature learning at 100 clusters 

 Performance 

 ----------------------------------------------------------------------------------------------------------------------------------------- 

Classifier Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

KNN K-means-max- pooling 97.50 96.48 98.77 98.49 

 Bag-of-features 91.87 93.20 90.68 92.77 

 
Table 2. Performance of feature learning at 150 clusters 

 Performance 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

Classifier Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

KNN K-means-max- pooling 98.19 97.07 99.39 98.50 

 Bag-of-features 92.86 93.85 91.80 92.87 

 
Table 3. Performance of feature learning at 100 clusters 

 Performance 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

Classifier Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

SVM K-means-max- pooling 88.6 81.77 100.0 90.36 

 Bag-of-features 83.6 80.67 96.8 87.50 

 
Table 4. Performance of feature learning at 150 clusters 

 Performance 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

Classifier Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

SVM K-means-max- pooling 89.46 82.58 100.0 83.27 

 Bag-of-features 84.70 80.17 88.6 81.98 
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Fig. 3. Visualization cluster centroids 

 

 
 

Fig. 4. ROC performance of KNN classifier (at 150) 
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Fig. 5. ROC performance of KNN classifier (at 100 clusters) 

 

 
 

Fig. 6. ROC performance of SVM classifier (at 150) clusters 
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Fig. 7. ROC performance of SVM classifier (at 100 clusters) 

 
Table 5. Summary of studies reporting automated detection of breast tumors from mammographic images 

Authors No. of Images Features Method used Dataset Classifier Accuracy (%) 

(Rocha et al., 2014) 300 image Gray Level Co-occurrence Matrixes Gleason and Menhinick DDSM SVM 86  

  (GLCM), Gray Level Run Length diversity indexes 
  Matrixes (GLRLM) and Gray Level 

  Gap Length Matrixes (GLGLM) 

(Lim and Er, 2004) 343 images First-order gradient distribution First-order gradient distribution DDSM GDFNN 70 
  and Gray-level Co-occurrence  and gray-level co-occurrence 

  Matrices (GCMs) matrices 

Our proposed study 400 images Unsupervised feature learning  k-means-max pooling DDSM KNN, SVM  98.6-88.6 

 

Discussion  

Selecting the significant features from mammogram 

images is important for the mammogram image 

classification. Significant features increases the accuracy 

rate of the CAD system in breast cancer. The proposed 

methods to extract important features from mammogram 

images vary from one another and they are implemented 

either in supervised or unsupervised learning. In this 

study, we take the unsupervised feature learning method 

that will help in detecting breast tumors. We present the 

comparison of the results obtained using our technique 

and other techniques in the literature that also aim to 

diagnose mammogram breast tumors. 

The summary of the studies reported by different 

authors is shown in Table 5. Rocha et al. (2014) 

classified 200 DDSM mammogram images into normal 

and malignant classes using Gleason and Menhinick 

diversity indexes and the SVM classifier. They have 

reported sensitivity and specificity of 90 and 83.33%, 

respectively. Lim and classified 343 DDSM 

mammogram images into benign and malignant using 

first-order gradient distribution, gray-level co-occurrence 

matrices and Generalized Dynamic Neural Networks 

(GDFNN). They achieved a true-positive and false 

positive fractions of 95.0 and 52.8%, respectively. The 

advantages of our proposed method are as follows: 

 

• We reported the highest sensitivity of 97.09% and a 

specificity of 99.35% in classifying the normal and 

abnormal classes compared to Bag-of-features 

• The proposed system is able to detect two classes 

(normal Vs abnormal) with 98.19% accuracy; this 

will reduce the workload of clinicians 

• Our proposed method is more reliable, as we used 

ten-fold stratified cross-validation and used 400 

mammogram images in this study 

 

Future Works 

In the future, this study will focus outside the 

boundaries of the skin which is the area of cancer. By 
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performing possible multiple selection between benign 

and malignant  

Conclusion 

An accurate and fast diagnosis of breast cancer can 

help clinicians in their diagnosis. Hence, in this study, 

we proposed a CAD system based on k-means-max 

pooling for early detection of breast cancer. We 

reported an accuracy of 98.19%, sensitivity of 97.09% 

and specificity of 99.35% using the K-NN classifier 

for k-means-max pooling. We have also showed that, 

the features of k-means-max pooling performed better 

than Bag-of-feature. Our proposed system is able to 

clearly diagnose all normal and abnormal cases 

correctly (97.07% sensitivity) and reduce clinician 

workloads.  
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