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Abstract: This paper focuses on the analysis of passive devices using a 
recent emerging technology named Substrate Integrated Waveguide 
(SIW). This technology has been used in the conception of planar 
compact components for the microwave and millimeter wave’s 
applications. Through using Ansoft HFSS and CST code a substrate 
integrated waveguide coupler has conceived and optimized in this 
study. The SIW 90° coupler design simulations show good 
performances with low return loss, high isolation better than -20 and -40 
dB, respectively and broad operational bandwidth. 
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Introduction 

The extensive use of the rectangular waveguide 
components in millimeter-wave and microwave 
communication systems, radar and other equipments are 
due to their significant features such as their high 
Quality factor (Q-factor), high power capability and low 
insertion loss (Labay and Rao, 2011; Labay and 
Bornemann, 2008; Ahmad et al., 2013). However, they 
are difficult to be integrated in modern microwave and 
millimeter-wave integrated circuits because of their big 
size, nonplanar structure and strict requirement of 
manufacturing precision (Hao et al., 2006). 

A new novel planar circuit named Substrate 
Integrated Waveguide (SIW) is facing recently a 
growing interest as it has common advantages with 
printed circuits such as low cost, small size (Labay and 
Rao, 2011; Ahmad et al., 2013) and which is known as 
the most popular and developed technology until now. 
Moreover, the SIW components are characterized with 
low insertion loss, low radiation loss and insensitive to 
outside interference since its components are covered by 
metal surfaces on both sides of the substrate (Hao et al., 
2006; Abdel-Wahab et al., 2011; Rahali et al., 2014; 
Xinyu et al., 2005; Zhigang et al., 2011). 

In this present paper, the design platform of the new 
SIW 90° coupler is presented and discussed. Besides, this 
letter presents 90° coupler prototypes which are optimized 
and simulated, in addition to the results which are presented 
and compared with two electromagnetic (3D) software. 

Design of SIW 90° Coupler 

SIW technology defines as a type of rectangular 
dielectric-filled waveguide which includes a planar 
substrate with arrays of metallic vias to realize bilateral 
edge walls and on the same substrate its transitions 

with planar structures for instance microstrip and 
Coplanar Waveguide (CPW) are designed and integrated 
(Murai et al., 2011; Patrovsky et al., 2008; Rahali and 
Fahem, 2013). Within the same planar platform the planar 
and nonplanar structures can be integrated, which leads in 
this case to the design and development of low-cost 
millimeter-wave Integrated Circuits (ICs) and systems    
(Ali et al., 2008; 2009; Rahali and Feham, 2014). 

A 90° coupler with low cost and low loss Substrate 
Integrated Waveguide (SIW) has been designed for low 
profile and compact mm-wave applications. 

Design of SIW 

The SIW consists of two linear metallic connected 

via dielectric substrate with a height of b. The 

electromagnetic fields within the SIW are confined by 

these metallic via arrays (Ali et al., 2008). The width of 

the SIW is a, the diameter of the metallic vias is D while 

the space between the adjacent vias is s. The geometric 

parameters are primarily determined by the relationship 

between the conventional rectangular waveguide and the 

SIW (Guo et al., 2008; Djerafi and Wu, 2007; 2012; 

Djerafi et al., 2010; 2011). 
In Fig. 1, port 1 is the input port, port 2 is considered 

as the through port, while port 3 stands for the coupling 
port and finally port 4 is used as an isolation port. 

 In order to achieve a wide-band performance the 
coupler parameters are finely tuned using three-
Dimensional (3D) Electromagnetic (EM) simulation with 
HFSS and CST software. 

Figure 2 presents the design parameters for the 
microstrip-to-SIW coupler. The designs use SIW 
parameters of low loss dielectric material, Rogers RO 
4003 with εr = 2.2 and loss tangent of 0.009, substrate 
height b = 0.5 mm and the vias holes are D = 0.4 mm 
and their distances s = 0.7 mm. 
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Fig. 1. Configuration for the proposed SIW couplers with 

geometric parameters 

 

 
 
Fig. 2. Configuration for the proposed SIW couplers with 

different Dvia 

 
Table 1. Dimension of the structure 

a h t1 t2 

12.25 mm 2.2 mm 20.5 mm 7.2 mm 

w2 l1 l2 l3  

3.7 mm 4.1 mm 10.4 mm 10.4 mm 

 

For the microstrip line which has the same substrate and 

metallization thickness as the SIW is selected and which 

leads to a 50 Ω line width of w1 = 1.3 mm. These 

parameters are identical for all microstrip-to-SIW 

couplers highlighted in this study and the remaining 

design-specific dimensions are presented in Table 1. 

Parameter Studies for SIW 90° Coupler 

As an example, SIW 90° coupler is designed and the 

extra metallic via Dvia is optimized with different 

diameters. This variation shows a good improvement in 

the return loss and isolation. The design of the SIW 

coupler with different parameters Dvia is optimized to 

improve the return loss and isolation of -17 to -23 dB 

and, -27 to -44 dB, respectively. These results are shown 

in Fig. 3 and 4. 

 

 

Fig. 3. Simulated S11 with different Dvia 

 

 

 

Fig. 4. Simulated S14 with different Dvia 

 

Simulation Results 

The electric field distribution of the TE10 mode 

(Abdel-Wahab et al., 2012), the reflection coefficients 

S11, the transmission coefficients S21, the coupling 

coefficient S31 as well as the isolation coefficient S41 

are presented in Fig. 5 and 6, respectively. It is 

noticeable through the results of this analysis that the 

90° coupler character in the band is [9.5-12.5] GHz, in 

which the levels of reflection and isolation are below -

15dB in more than 24% of the bandwidth and the 

insertion loss S 21 and coupling S31 are between -3 

and -6 dB. 

The simulation phase difference between two 

outputs ports is shown in Fig. 7. It is obvious that the 

phase difference is distributed in the range 89~93° in 

which the frequency band fluctuates between 9.5 and 

12.5 GHz. 

 So, it is clear that these simulation results 

demonstrate the  good  performance  of this integrated 

structure. 
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Fig. 5. Electric field distribution of TE10 mode for SIW coupler at f = 11 GHz 
 

 
 

Fig. 6. Performance comparison between HFSS and CST with Dvia = 0.8mm 

 

 
 

Fig. 7. Simulated phase difference 
 

Conclusion 

This paper focuses on the analysis of 90° coupler 
using a recent emerging technology named Substrate 
Integrated Waveguide (SIW). Prototypes of these 90° 

couplers with different via diameters are designed and 
simulated by the HFSS and CST code. Therefore, the 
paper presents results of this modeling which are 
discussed and allow as well integrating these devices 

in planar circuits. 
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