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Abstract: In the article, the theory of optimal filtering of information 

processes is used to synthesize optimal one-stage estimation algorithm for 

the object orientation angles using the signals of the satellite navigation 

system. The article also provides equations of optimal filtering, as well as 

their representation in the form of the tracking system comprising of an 

orientation angles discriminator and a smoothing filter. The synthesized 

algorithm has no tracking systems for the phases of the received signals (or 

phase differences) and the procedures for resolving the ambiguity of phase 

measurements that enhance its noise immunity while maintaining high 

precision in estimating the orientation angles. The article provides 

expressions for the calculation of the Cramer-Rao lower limit for the 

dispersion errors matrix for estimating object orientation angles when 

receiving signals of an arbitrary number of navigation satellites. The results 

of the simulation of the synthesized system are provided in the study. 
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Introduction 

Satellite navigation systems are now widely used for 

a variety of technical problems, including extracting 

information from the phase of the received signals 

(Misra and Enge, 2012; Kaplan and Hegarty, 2006). One 

of such application is the determination of the orientation 

angles of the object on the signals of satellite radio 

navigation system, taken spaced points (Cohen, 1992; 

Parkinson and Spilker, 1996). The approach is because 

the signals coming from the navigation satellite in two 

spaced points have a phase shift depending on the angle 

between the reference line connecting the two points of 

reception and the direction of arrival of the satellite 

navigation signal. Measuring this angle and knowing the 

direction of satellite navigation, we can determine the 

orientation angle of the reference line. To implement this 

approach, navigation receivers are placed in the 

receiving points, which measure the phases of the 

received navigation signals. Further, the phase difference 

is formed, which carries information about the angle 

between the reference line and the direction of arrival of 

the signal from the navigation satellite. The main 

problem consists in that the measured phase difference is 

different from the true phase difference proportional to 

the phase difference between the arrival times of the 

signal phase edge in the receiving point on an integer 

number of periods of the high-frequency filling. That is, 

there is ambiguity of phase measurements. Various 

algorithms for ambiguity resolution of phase 

measurements are presented extensively in literature 

(Povalyaev, 2008; Lipkin, 2008; Boriskin et al., 2010; 

Perov and Kharisov, 2010; Knight, 1994; Hodgart and 

Purivigraipong, 2000; Lin et al., 2004; Verhagen and 

Teunissen, 2006). 

The described ideology for determining the orientation 
angles using signals of satellite navigation systems is 
based on the principle of two-stage processing of signals 
from navigation satellites (Perov and Kharisov, 2010), in 
which the first stage is estimation of parameters of the 

received radio signals (delay, phase and the Doppler 
frequency shift) and the second stage solves the navigation 
task-formation of estimations of coordinates, velocity and 
orientation angles of the consumer. At the same time in 
relation to a standard navigation equipment, recently there 
are proposed and studied one-stage processing algorithms, 

where, in a single complex filter processing the signals of 
all visible navigation satellites, the desired estimations of 
position and velocity of the consumer (Perov, 2004) are 
formed. One-stage algorithm has no intermediate stage of 
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forming pseudo-range and pseudo phases estimations and 
estimations of the desired parameters are formed by 
processing the outputs of discriminators (temporal and 
phase), which allows disambiguating phase measurements 

for prolonged observation time. This ideology, in 
principle, can be used to solve the problem of estimating 
the orientation angles of the object at the reception of 
navigation signals on several spatially separated antennas. 
The paper by (Perov and Kharisov, 2010) developed this 
approach for the task of determining the orientation of the 

reference line in a vertical plane and shown to be 
effective. This article contains the synthesis and analysis 
of the one-stage tracking algorithm for estimating the 
orientation angles of the object in space with the signal 
processing of all visible navigation satellites. 

Research Methodology 

Statement of the Problem for Synthesis 

Let us consider a geocentric coordinate system OXYZ 

rigidly connected with the Earth (1) and the triangle ABC 

defining the reference plane, which bind tightly 

Coordinate System (CS) Oc Xc Yc Zc, the centre of which 

Oc lies in the plane ABC, axis Oc Xc is directed along the 

line AB, axis Oc Yc lies in the reference plane, axis Oc Zc 

completes the system of coordinates to the right hand. 

Orientation of a triangle ABC in CS OXYZ is given by 

the Euler angles α1, α2 and α3 (roll, pitch and yaw, 

respectively) or in the vector form α = |α1 α2 α3|
T
, which are 

the rotation angles in CS Oc Xc Yc Zc, relatively to CS OXYZ. 

Assume that the triangle ABC moves in CS OXYZ, so 

that the orientation angles vector varies in time, i.e., α(t). 

Points A, B and C are used to receive radio signals 

from n navigation satellites. 

The result of processing the received signals is the 

task to synthesize the optimal filtration system for vector 

angles α(t). 

Let us introduce the directing cosines of the i th 

navigation satellite, identifying them, for example, 

relatively to the point Oc and assuming they are the same 

for all the other points of the triangle ABC (which is 

permissible for small triangles relatively to distances to 

the navigation satellites): 

 

с с с

, ,

i О i О i О

xi yi zi

i i i

x x y y z z

R R R

− − −
µ = µ = µ =  

 

where, 
с

О
x , 

с
О
y , 

с
О
z  are coordinates of the point Oc in 

CS OXYZ; Ri is the distance to i-th navigation satellite. 

Let us introduce unit vectors µHC, i = |µxi, µyi, µzi|
T
, 

1,i n=  to CS OXYZ and unit vectors 
с

AО ,c
l , 

с
BО ,c
l , 

с
CО ,c
l , 

specifying the direction of points A, B and C respectively 

to the point Oc in CS Oc Xc Yc Zc. 

Let us transform unit vectors 
с

AО ,c
l , 

с
BО ,c
l , 

с
CО ,c
l , set in 

CS Oc Xc Yc Zc into vectors 
с

AО ,Зl , 
с

BО ,З
l , 

с
CО ,З
l  in CS OXYZ: 

 

( ) ( )

( ) ( ) ( ) ( )

с с

с с с с

З
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З З
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l α =U α l ,

l α =U α l ,l α =U α l
 (1) 

 

where, З

c
U  is transformation matrix for coordinates from 

CS Oc Xc Yc Zc to CS OXYZ, defined as: 
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Let us consider satellite radio signal with code 

division coming from i-th navigation satellite to the point 

Oc for which let us write the expression: 

 

( ) ( ) ( )( )0, дк, 0, 0 д, НС, 0,
cos

i i i i i i
s t Ah t t= − τ ω + ω + πϑ + ϕ  (2) 

 

where, A is the amplitude; ωi is the signal carrying 

frequency; 
д,i

ω  is the Doppler frequency shift due to 

the movement of the point A (Oc) of the triangle ABC; 

τ0,i is the delay of the envelope curve of the signal at 

its distribution from the navigation satellite to 

receiver, ϕ0,i is the initial phase of the signal received 

from the i-th navigation satellite, 
д,i

ω is the Doppler 

signal frequency shift; ( )
дк,i
h t  is the function of 

modulation by the ranging code, ϑHC, i are the 

navigation data taking the value of 0 or 1. 

Representation (2) is valid for a certain time 

interval T in which the parameters
д,i

ω , τ0,i can be 

considered as constant.  

At points A, B and C, the received signals are shifted 

in phase relatively to similar signals received at the point 

Oc into the phase angles: 

 

( )
( )

( )
( )

( )
( )

AO i AO

A i

BO i BO CO i CO

B i c i

2 L

2 L 2 L

c c

c c c c

т

НС, ,З

,

т т

НС, ,З НС, ,З

, ,

µ l α
α ,

µ l α µ l α
α , α

π
ψ =

λ

π π
ψ = ψ =

λ λ

 (3) 

 

where 
c

AO
L , 

c
BO

L , 
c

CO
L  mean the distance between the 

exact Oc and points А, В and С respectively. 

Therefore, it is possible to write (for the same time 

slot T) the following: 
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ψ
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= − τ
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where, ωA,ψ,i, ωB,ψ,i, ωC,ψ,i are the Doppler signals 

frequency shifts in points А, В and С respectively due to 

the rotation of the triangle ABC relatively the point Oc, 

τA,i, τB,i, τC,i is the delays of the envelope curve of the 

signal from the i-th NS in the receiving points А, В and С. 

Strictly speaking, the delays τA,i, τB,i, τC,i depend on 

the vector of angles α. However, the consideration of 

this dependence has little effect on the accuracy of 

estimating the orientation angles of the phase of the 

carrier frequency (ψA,i (α),(ψB,i (α),(ψC,i (α)). Thus, this 

dependence is not taken into account further. 

When receiving n satellite radio signals, the total 

signal over small time intervals (for example, equal to 

the period ranging code) are described by the following 

expressions: 
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 (4) 

 

Let us write the equations of observation in the points 

А, В and C: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

,

A A A B

B B C C C

y t s t n t y t

s t n t y t s t n t

= +

= + = +

 

 
where, nA(t), nB(t) and nC(t) are independent white 

Gaussian noises with equal bilateral spectral densities 

N0/2. 

Let us introduce the vector surveillance y(t) = |yA(t) 

yB(t) yC(t)|
T
, for which let us write: 

( ) ( ) ( )y s nt t t= +  

 
where, s(t) = |sA(t) sB(t) sC(t)|

T
, n(t) = |sA(t) sB(t) sC(t)|

T
 is 

white Gaussian noise vector with a matrix of bilateral 

spectral densities N0 = I N0/2. 
Let us assume that receivers carry synchronous 

sampling of the input process in time, so that the 
processing system receives an implementation in discrete 
time tk,i (Fig. 2): 
 

( )
, , , ,

y ,
k i k i k i k i

s t ψ n= +  

 
where, tk,i = kT+iTd; T = NTd is a step of discrete 

processing in the tracking system loop; Td is a 

discretisation period in an analogue-digital converter; nk,i 

is a vector of independent discrete white Gaussian noises 

with equal dispersions 2 0

2
n

d

N

T
σ = , where N0 is one-sided 

power spectral density of the internal noise of the receiver. 

The dynamics of change of the orientation angles is 

defined by equations in sampling times tk: 

 

1 , 1 , , 1 , 1
α α v , v v ξ
k k k k k k

T
α α α α− − − −

= + = +  

 

where, ξα, k-1 is the vector of discrete white Gaussian 

noise with dispersion matrix Dξ.  

Synthesis of Optimal Filtering Algorithm for 

Orientation Angles 

Let us introduce a state vector 
,

α
X

v

k

k

kα

= , for which 

let us write the matrix equation: 
 

1 , 1k k k
X FX Gξ

α− −

= +  

 

where,
I I 0

F= , G
0 I I

T
= , I is an identity matrix with a 

size of 3×3. 

In this problem, the observations 

{ }1,1 1,1, 1,2 1,
Y y y ,..., y

k

k k k k N− − − −

=  the time interval [tk-1, 1,tk] 

(Fig. 1) give information about the state vector Xk-1, 

relevant to the time tk-1. Therefore, if we are interested in 

assessing the current state vector xk-1 according to the 

observations { }1 2

0 0,1 1,1 1,1
, ,...,

k k

k
Y Y Y Y

−

= , it is necessary to 

consider the a posteriori probability density ( )1 0
X Y

k

k
p

−

, 

for which it is possible to write the equations 

(Tikhonov and Kharisov, 2004; Perov, 2012): 
 

( ) ( ) ( )

( ) ( ) ( )

1

1 0 1 0 1,1 1

1 1

1 0 2 0 1 2 2

,

k k k

k k k k

k k

k k k k k

p X Y cp X Y p Y X

p X Y p X Y p X X dX

−

− − − −

∞

− −

− − − − −

−∞

=

= ∫
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Fig. 1. Geometric scheme of the objectives 
 

 
 

Fig. 2. Time indexing scheme 

 
Therefore, at the time tk, processing all of the 

available to the time observations 
0

k
Y , we will form a 

state vector estimate 
1

ˆ
k

X
−

, corresponding to the state 

vector Xk-1 at the time tk-1. 

Let us write the equations of optimal filtering of the 

vector Xk in the Gaussian approximation (Tikhonov and 

Kharisov, 2004), assuming the delays τA,i, τB,i, τC,i and 

Doppler frequency shifts 
д,i

ω , 
, ,B iψ

ω , 
, ,C iψ

ω , 1,i n=  

known as: 
 

( )
т

,

ˆ k k

k k X k

F X

X X D
X

 ∂
 = +
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ɶ

ɶ  (5) 
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−

=
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ɶ

ɶ

ɶ ɶ
 (6) 

 
Where: 
ˆ
k

X  = The estimation of the filtered process 

ˆ
k

X  = The extrapolated process estimation 

,X k
D  = The filtering errors dispersion matrix 

,X k
Dɶ  = The extrapolation errors dispersion matrix: 

( ) ( )1

,1
ln

k

k k k k
F X p Y X

+

=  

 
In (5), (6) the derivative of the scalar according to vector 

is understood as a row vector (Perov and Kharisov, 2010). 

Let us write signal functions (4) in the discrete time 

for the moments tk,j ∈[tk,1, tk,M], where tk,j = tk+jTd, Td is 

the discretisation step for analogue-to-digital converter, 

MTd = T is the time interval, multiple to periods of the 

ranging code: 
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 (7)  

 
In these equations, parameters ϕ0,i,k and ϑHC,i,k are not 

informative. Therefore, let us consider the likelihood 
function averaged by these parameters: 
 

( )

( )

1

,1

1

,1 0, , НС, , 0,1, 0, ,

1
... , , 1, ...

2

k
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π π

ϕ ϑ ϕ ϕ
π

+

+

− −
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 (8) 

 
where, I0(x) is the zero-order Bessel function of 

imaginary argument: 

 

( ) ( ) ( )2 2 2

, ,
α α α

i k c i k s i k
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Let us represent (10) in the form of: 
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+ + −

−

=

+ + −

−

=

+ + −

∑

∑

∑

( ) ( )

( )( )( )

( ) ( )

( )( )( )

( ) ( )

( )( )( )

, , дк, , ,

, 2

1
0 , д , , , ,

, , дк, , ,

, 2

1
0 , д , , , ,

, , дк, , ,

, 2

1
0 , д , , , ,

,
sin 1

,
sin 1

sin 1

M
A i k l i A i k

i k

ln k l i k A i k d

M
B i k l i B i k

Bi k

ln k l i k B i k d

M
C i k l i C i k

Ci k

ln k l i k C i k d

y t h tA

t l T

y t h tA
Q

t l T

y t h tA
Q

t l T

ψ

ψ

ψ

τ

σ ω ω ω

τ

σ ω ω ω

τ

σ ω ω ω

=

=

=

−

=

+ + −

−

=

+ + −

−

=

+ + −

∑

∑

∑

 (11)  

Describe the multi-channel correlator, during the 

implementation of which, the Doppler frequencies 
д ,i k

ω , 

ωA,ψ,i,k, ωB,ψ,i,k, ωC,ψ,i,k shall be replaced by the 

corresponding estimations 
д ,i k

ωɶ , 
, , ,A i kψ

ωɶ , 
, , ,B i kψ

ωɶ , 
, , ,C i kψ

ωɶ , 

which are formed in independent tracking rings such as 

those described in (Perov and Kharisov, 2010). 

Let us note that the correlation integrals (11) shall be 

calculated in a single timeline. 

Substituting (9) into (7) and performing the necessary 

transformations, we obtain the following: 
 

( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )

2 2 2 2 2 2 2

, 1 , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , ,

2cos

2sin

2cos

2sin

i k Ai k Ai k Bi k Bi k Ci k Ci k

Ai k k Bi k k Ai k Bi k Ai k Bi k

Ai k k Bi k k Ai k Bi k Ai k Bi k

Ai k k Ci k k Ai k Ci k Ai k Ci k

Ai k k Ci k k Ai k

U α I Q I Q I Q

α α I I Q Q

α α I Q Q I

α α I I Q Q

α α I

ψ ψ

ψ ψ

ψ ψ

ψ ψ

= + + + + + +

+ − + +

+ − − +

+ − + +

+ − ( )

( ) ( )( )( )

( ) ( )( )( )

, , ,

, , , , , ,

, , , , , ,

2cos

2sin

Ci k Ai k Ci k

Bi k k Ci k k Bi k Ci k Bi k Ci k

Bi k k Ci k k Bi k Ci k Bi k Ci k

Q Q I

α α I I Q Q

α α I Q Q I

ψ ψ

ψ ψ

− +

+ − + +

+ − −

 (12)  

 
Let us introduce the vector: 

 
т

1 1 1
ψ ... ... ...

A An B Bn C Cn
ψ ψ ψ ψ ψ ψ=  

 

And a matrix c such that α = cX. 

Let us transform the derivative: 

 

( ) ( )( ) ( )k kk k k kk
F ψ αF X F αψ α ψ

c
X ψ α X ψ α

∂∂ ∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂
 (13) 

 

Let us consider the following: 

 

( )( )
( )( )( )

( )( )( )

( )( )( ) ( )( )( )

0

1

0 1

1

0 0

1

ln

ln

ln ln

n
k k

i k

i

k

A

n k n k

B Cn

F ψ α
I X α

ψ ψ

I U α

I U α I U α

ψ

ψ ψ

=

∂ ∂  
=  ∂ ∂  

∂

∂
=

∂ ∂

∂ ∂

∑

⋯ ⋯

 

 

Here: 

 

( )( )( )
( )( )
( )( )

( )1

0

( , ) 0 ( , )

ln
i k i k

i k

A B C i i k A B C i

I U α U α
I U α

I U αψ ψ

∂∂
=

∂ ∂
 

 

Is phase difference discriminator. 

The derivative 
( )

( , )

i k

A B C i

U α

ψ

∂

∂
 is obtained by differentiating 

(12) with respect to the corresponding parameter ψA(B,C)i 

and, for example, for ψAi it has the following form: 
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( )

( )

( )

( )
( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

2

, , , , , ,

, , , , , ,

, , 1 , , , ,

, , , , , ,

1

2

1
sin

cos

sin

cos

i k i k

Ai i Ai

Ai k k Bi k k Ai k Bi k Ai k Bi k

i k

Ai k k Bi k k Ai k Bi k Ai k Bi k

Ai k k Ci k k Ai k Ci k Ai k Ci k

Ai k k Ci k k Ai k Ci k Ai k Ci k

U α U α

U α

α α I I Q Q
U α

α α I Q Q I

α α I I Q Q

α α I Q Q I

ψ ψ

ψ ψ

ψ ψ

ψ ψ

ψ ψ

−

∂ ∂
=

∂ ∂

= − − + +

+ − − −

− − + +

+ − − 

 

 

Let us write the phases ψA,i(αk), ψB,i(αk), ψC,i(αk) with 

regard to (1), (4) in the following form: 
 

( )
( )

( )
( )

( )
( )

c с

c с

c с

т З

НС, c ,c

,

т З

НС, c ,c

,

т З

НС, c ,c

,

2
,

2
,

2

AO i k AО

A i k

BO i k BО

B i k

CO i k CО

c i k

L µ U α l
α

L µ U α l
α

L µ U α l
α

π
ψ

λ

π
ψ

λ

π
ψ

λ

=

=

=

 

 

Let us represent the vector ψ in the form 
т

т т т

A B C
ψ ψ ψ ψ= , where 

т

( , ) 1 ...

A B C A An
ψ ψ ψ=  and 

write the derivative 
ψ

α

∂

∂
 as a block matrix: 

 

A

B

C

ψ

α

ψ ψ

α α

ψ

α

∂

∂

∂ ∂
=

∂ ∂

∂

∂

 

 

Where: 

 

 

1 1 1

... ... ...

A B C

A B C

An Bn Cn

α α α
ψ ψ ψ

α α α

α α α

ψ ψ ψ

ψ ψ ψ

∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

= = =
∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂

 (14) 

 

Let us consider the derivative: 

 

( )( )c

с

т

НС, З

c ,c

2
AO iAi

k AО

L µ
U α l

α α

πψ

λ

∂ ∂
=

∂ ∂
 (15) 

  

Let us introduce the matrix: 

 
т

НС,1

т

НС,2

т

НС,

...

n

µ

µ
M

µ

=  

Then in view of (14), (15), the following expression 

can be written: 

 

( )( )c

с

З

c ,c

2
AOA

k AО

Lψ
M U α l

α α

π

λ

∂ ∂
= ⋅

∂ ∂
 (16) 

 

Similar expressions can be written for derivatives: 

 

( )( )

( )( )

c

с

c

с

З

c ,c

З

c ,c

2
,

2

BOB

k BО

COC

k CО

Lψ
M U α l

α α

Lψ
M U α l

α α

π

λ

π

λ

∂ ∂
= ⋅

∂ ∂

∂ ∂
= ⋅

∂ ∂

 (17) 

 

Let us note that in (16), (17) differentiation with 

respect to  the  orientation  angles  α  shall  be  

applied only to elements of the transformation 

matrix ( )З

c
U α , e.g.: 

 

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
( )

3 3З

c

3 3

1

2 2

1 1

2 2 1 1

3 3З

c

3 3

2

2 2

1 1

2 2 1 1

3З

c

3

cos sin 0

sin cos 0

0 0 1

cos 0 sin 0 0 0

0 1 0 0 sin cos ,

sin 0 cos 0 cos sin

cos sin 0

sin cos 0

0 0 1

sin 0 cos 1 0 0

0 0 0 0 cos sin ,

cos 0 sin 0 sin cos

sin

U α

U α

U α

α α

α α

α

α α

α α

α α α α

α α

α α

α

α α

α α

α α α α

α

α

−
∂

=
∂

⋅ ⋅ − −

− −

−
∂

=
∂

−

⋅ ⋅ −

− −

− −
∂

=
∂

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

3

3 3

2 2

1 1

2 2 1 1

cos 0

cos sin 0

0 0 0

cos 0 sin 1 0 0

0 1 0 0 cos sin

sin 0 cos 0 sin cos

α

α α

α α

α α

α α α α

−

⋅ ⋅ −

−
 

 

In view of the obtained expressions, let us write: 

 

( )( )

( )( )

( )( )

c с

c с

c с

З

c ,c

З

c ,c

З

c ,c

2

AO k AО

BO k BО

CO k CО

L M U α l
α

ψ
L M U α l

α α

L M U α l
α

π

λ

∂
⋅
∂

∂ ∂
= ⋅

∂ ∂

∂
⋅
∂

 

 

Then, let us represent (17) in the form of: 
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( ) ( )

( )( )

( )( )

( )( )

c с

c с

c с

З

c ,c

З

c ,c

З

c ,c

2

AO k AО

k k k k

BO k BО

CO k CО

L M U α l
α

F X F α
L M U α l c

X ψ α

L M U α l
α

π

λ

∂
⋅
∂

∂ ∂ ∂
= ⋅

∂ ∂ ∂

∂
⋅
∂

 (18) 

 

where, the matrix c is determined by the ratio α = cX, i.e., 

c = |I3×3 03×3|, where I3×3 is the identity matrix of 3×3 size. 

Substituting (18) into (5), let us write an equation for 

estimating the state vector: 

 

( )( )

( )( )

( )( )

( )

( )( )

( )( )

( )( )

c с

c с

c с

c с

c с

c с

т

З

c ,c

т

т З

, c ,c

З

c ,c

т

З

c ,c

т З

, c ,c д ,

З

c ,c

2
ˆ

2

AO k AО

k k

k k X k BO k BО

CO k CО

AO k AО

k X k BO k BО ψ k

CO k CО

L M U α l
α

F α
X X D c L M U α l

α ψ

L M U α l
α

L M U α l
α

=X D c L M U α l u
α

L M U α l
α

π

λ

π

λ

 ∂
⋅ 
∂ 

  ∂ ∂
= + ⋅   

∂ ∂  
∂ 

⋅ ∂ 

 ∂
⋅
∂

 ∂
+ ⋅

∂
∂

⋅ ∂

ɶ

ɶ

т

, д ,k X k α k
X D c u










= +ɶ

 

Where: 

( )
т

,

k k

dis ψ k

F α
u

ψ

 ∂ 
=  

∂ 
 

 
Is the vector of discriminators of phase difference 

according to the signals of visible NS: 
 

( )( )

( )( )

( )( )

c с

c с

c с

т

З

c ,c

З

, c ,c ,

З

c ,c

2

AO k AО

dis α k BO k BО dis ψ k

CO k CО

L M U α l
α

u L M U α l u
α

L M U α l
α

∂
⋅
∂

∂
= ⋅

∂

∂
⋅
∂

π

λ
 

 
Is the vector of discriminators for the orientation angles. 
Generalized block diagram of a single-stage 

filtration system for orientation angles of the object is 
shown in Fig. 3. 

Let us note that in the diagram of Fig. 3 has a 
multichannel correlator. 

The Potential Accuracy of the Estimation of 

Orientation Angles 

It is known (Perov and Kharisov, 2010) that the 
discriminator is a device for which the parameters of the 
received signal and their evaluation are constant at the 
duration of the interval T. To characterize the quality of 
the estimates generated in the optimal discriminator, one 
can use the lower limit of the Cramer-Rao for the 
dispersion of the parameter estimates. Let us calculate 
this boundary for the problem. 

 

 
 

Fig. 3. Generalized block diagram of a single-stage filtration system for orientation angles of the object 
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To simplify notations, let us turn to continuous time 

and consider the time interval [0, T]. Lower boundary for 

the matrix Dpot,α of the dispersion of estimation errors of 

the orientation angles α is determined by the expression 

(Tikhonov and Kharisov, 2004; Perov, 2012): 

 
1

,pot α
D J

−

= −  (19) 

 

where, J is the Fisher's information matrix: 

 

( )( )
т

0
ln

T
p Y α

J E
α α

  ∂∂  =   ∂ ∂
   

 (20) 

 

where, ( )0

T
p Y α  is described by (8), E[*] is a sign of the 

mathematical expectation of a random variable in 

brackets. 

Let us consider the derivative of the natural logarithm 

(7) by α: 

 

( )( ) ( )( )
( )( )

( )0 1

1 0

ln
T

n
i i

i i

p Y α I X α X α

α I X α α
=

∂ ∂
=

∂ ∂
∑  (21) 

 

where, I1(x) is the first order Bessel function of 

imaginary argument. 

In the standard signal/noise ratio corresponding to the 

Interface Control Document (n.a., 2011)
( )( )
( )( )

1

0

1
i

i

I X α

I X α
≈ . 

Therefore, (21) takes the form of: 

 

( )( ) ( )0

1

ln
T

n

i

i

p Y α X α

α α
=

∂ ∂
=

∂ ∂
∑  (22) 

 

Taking into account (22), let us write (20) in the 

form of: 

 

( )
т

1

n

i

i

X α
J M

α α
=

  ∂ ∂
 =  
∂ ∂   

∑  (23) 

 

As Xi is determined by synphase and quadrature 

components Ij,i, Qj,i, then in order to perform the 

averaging in (23), it is necessary to have the 

mathematical expectations Ij,i and Qj,i. Therefore, let us 

perform averaging in (11): 

 

( )( )
( )( )

0

0

, 0, ,

, 0, ,

2 cos ,

2 sin

j

j

j i c n i A i

j i c n i A i

M I q T α

M Q q T α

ϕ ψ

ϕ ψ

  = + 

  = − + 

 (24) 

where, qc/n0 = Ps/N0 is the ratio of signal power to the 

power of spectral density of the internal noise. 

Taking into account (24) and the relations (9) and (3), 

let us calculate M[Xi] = 6qc/n0T. 

Performing in (23) differentiation with respect to α 

and averaging the result obtained by realizations of 

noise, taking into account (24), let us write the 

expression for the matrix elements J: 
 

( ) ( )

( ) ( )
0

, ,

3

,

1 1
, ,

1 1

2

1

3

j j

j j

A i A i

n

c n
m mi j A i A i

j j

α α

J q T
α α

ν γ

ν γ

ν γ

ψ ψ

α α

ψ ψ

α α

= =

= =

  ∂ ∂ 
  

 ∂ ∂  
= −  

 ∂  ∂  
−      ∂ ∂    

∑ ∑

∑ ∑

(25) 

 

where, 1,3ν = , 1,3γ = : 

 

( ) ( )( )

( ) ( )

c с

c c

с с

т З

НС, c ,c,

З З

c cт т

НС, ,c НС, ,c

2

2 2

j jj

j j

j j

A O i A ОA i

A O A O

i A О i A О

L µ U α lα

L LU α U α
µ l µ l

ν ν

ν ν

πψ

α α λ

π π

λ α λ α

 ∂ ∂  =
 ∂ ∂
 

   ∂ ∂
= =      ∂ ∂   

 

 

Let us consider the special case where the distance 

cjA O
L , from the point Oc to all points of reception Aj, 

1,j m=  are the same and equal to l. Then (25) can be 

written as follows: 

 

( ) ( )

( ) ( )

0

2

,

, ,

1 1 , ,

1 1

2
2

1

j j

j j

c n

A i A i

n m

m mi j A i A i

j j

l
J q T

α α

α α

m

ν γ

ν γ

ν γ

π

λ

ψ ψ

α α

ψ ψ

α α

= =

= =

 
= −  

 

  ∂ ∂ 
  

 ∂ ∂  
×  

 ∂  ∂  
−      ∂ ∂    

∑ ∑

∑ ∑

ɶ ɶ

ɶ ɶ

 (26) 

 

where: 

 

( ) ( )
с

З
, cт

НС, ,c

j

j

A i

i A О

α U α
µ l

ν ν

ψ

α α

∂  ∂
=   ∂ ∂ 

ɶ

 

 

From (26) it follows that the elements Jv,γ of the 

Fisher's information matrix contain the same factor 

0

2

2
2

c n

l
q T

π

λ

 
 
 

, i.e., it is possible to write the following: 

 

0

2

2
2

c n

l
J q T J

π

λ

 
= −  

 
ɶ  (27) 

 

Where: 
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( ) ( )

( ) ( )

, ,

1 1 , ,

1 1

1

j j

j j

A i A i

n m

m mi j A i A i

j j

α α

J

α α

m

ν γ

ν γ

ψ ψ

α α

ψ ψ

α α

= =

= =

  ∂ ∂ 
  

 ∂ ∂  
=  

 ∂  ∂  
−      ∂ ∂    

∑ ∑

∑ ∑

ɶ ɶ

ɶ

ɶ ɶ

 

 
Substituting (27) into (19), let us write: 

 

0

1

, 2

1

2
2

pot α

c n

D J
l

q T
π

λ

−=
 
 
 

ɶ  (28) 

 
About (28) is the source of well-known provisions 

that the potential accuracy of the estimation of the 
orientation angle is as higher as better is the signal/noise 
ratio qc/n0T and as higher is the ratio l/λ, which 
characterize the ratio of some characteristic linear 
dimension l of the receiving system to the wavelength of 
the received navigation signal. About (28) also means 
that the potential accuracy of the estimation of 
orientation angles of the object by the NS signals is 
dependent on the spatial angle between the lines 
connecting the receiving points and the direction of arrival 
of navigation signals from the number n of the processed 
NS signals and the number m of reception points. 

To analyse the expressions (19) and (25), let us use 

the following procedure. Let the values of the vector of 

orientation angles α be independent random variables 

that take values from a given range, for example α∈[-

30°, 30°], β∈[-20°, 20°], γ∈[0°, 360°]. We also believe 

the location of navigation satellites relatively to the 

object to be random with uniform distribution law in the 

upper hemisphere. We are interested in the histogram of 

distribution of the values of standard errors estimation of 

the angular orientation vector Dpot,α1, Dpot,α2, Dpot,α3 (19). 

Let us assume qc/n0, expressed in decibels 
0

c n
qɶ = 

45 dBHz, T = 5 ms, λ = c/f0, f0 = 1575.42 Hz. Let us 

consider the 3 reception point located in the plane OcXcYc 

and lying at the vertices of an equilateral triangle 

inscribed in a circle of radius R = 1 m centred at the 

point Oc. 

Figures 4-6 show histograms of the distribution of 

values of standard errors estimation of different angles at 

the reception n = 4 signals from navigation satellites. 

Figures 5 and 6 show that the histogram 

distributions for the various components of the 

angular orientation are close enough to each other. 

Therefore, we will only talk about one component, for 

example α. The most probable value of the mean 

square error of the angle estimation is σα = 3.15 arc. 

min., mean square scatter of values is ~ 1 arc. min. 

Let us consider the effect of the number of navigation 

satellites for distribution histogram of mean square 

errors for angle estimation. Figures 7 and 8 show 

distribution histograms of values of mean square error of 

α angle estimations calculated at n = 10 and n = 24 and 

when receiving signals in the same three points. 

From the histogram it is clear that with the increase 

of the number of NS processed signals, there is a 

decrease of the most probable value of the mean squared 

error of angle estimation (σα = 3.15 arc. min. for n = 4; 

σα = 2 arc. min. for n = 10; σα = 1.3 arc. min. for n = 

24); the range of possible values of the mean square 

errors of the angle estimation is narrowed. 

 

 
 

Fig. 4. Histogram of the distribution of values of mean square errors of estimation of the angle α1 at n = 4 
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Fig. 5. Histogram of the distribution of values of mean square errors of estimation of the angle α2 at n = 4 
 

 
 

Fig. 6. Histogram of the distribution of values of mean square errors of estimation of the angle α3 at n = 4 
 

 
 

Fig. 7. Histogram of the distribution of values of mean square errors of estimation of the angle α1 at n = 10 
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Fig. 8. Histogram of the distribution of values of mean square errors of estimation of the angle α1 at n = 24 
 
Results  

Simulation of the Synthesized Tracking System 

To carry out a simulation of the synthesized tracking 
system for orientation angles, let us simplify the 
dispersion Equations 6. 

The essence of this simplification is to replace the 

derivative 
( )

T

k k
F X

X X

 ∂∂
 
 ∂ ∂
 

ɶ ɶ

 with its mean value 

( )
T

k k

k k

F X

E
X X

X X

  ∂∂  
  ∂ ∂

   = 

ɶ ɶ

ɶ

. Carrying out this averaging, 

we obtain the following: 
 

( )

( )
т т

T

k k

k k

T

k k

k k

F X

E
X X

X X

F α
E c c c Jc

α α
α α

  ∂∂  
  ∂ ∂

   = 

  ∂∂
 = =  ∂ ∂    =

ɶ ɶ

ɶ

ɶ ɶ

ɶ
ɶ

 (29) 

 
Taking into account (29) and (19), the dispersion 

Equations 6 can be written as follows: 
 

т т 1 1 т 1

, , 1 , , ,
,X k X k X k x k pot αD FD F GD G D D c D cξ

− − −

−

= + = +
ɶ ɶ  (30) 

 
Equation 30 is a matrix equation with constant 

coefficients, which solution in the steady state shall be 
denoted as DX,steady. 

Synthesized algorithm of optimal filtering for 
orientation angles of the object was simulated on a 
computer at a steady value of DX,steady. 

For clarity, we present the results of a simplified 

version. Assume that the triangle ABC is isosceles with a 

side length of l, point Oc CS OcXcYcZc is located in the 

middle of the line AB, the axis OcXc is directed to the 

point B and the axis OcYc-to the point C. The object is 

rotated around the axis OcYc only. 

In the simulation, we assume that V0 = 300 m s
−1
; a0 

= 40 m/s
2
; 

2

5 60

π

ν =

×

, 
0

c n
qɶ = 40 dBHz, l = 1.5 m. 

In a tracking system (20), we shall use a filter with 
constant parameters of gains: 
 

( )
2

1 1н 2 2н 2н cc 1н 2н
, , 0,53 , 2K K T K K T K f K K= = = ∆ =  

 

where, ∆fcc is the bandwidth of the Tracking System (TS). 

We assume that the errors on Doppler frequencies are 

not presented. Let us consider first the case of zero initial 

error in the angle and angular velocity. Assume that ∆fcc 

= 2 Hz and the number of NS is 8 and is uniformly 

distributed angularly in sight. Figure 9 shows the 

implementation of the tracking error in the angle. Mean 

square error of the estimation is σβ = 0.75 arc. min. 

Let us narrow TS bandwidth ∆fcc = 0.5 Hz. Figure 10 

shows the implementation of the tracking error in the angle. 

Mean square error of the estimation is σβ = 0.34 arc. min. 

Assume ∆fcc = 2 Hz and the number of navigation 

satellites is 2 (the first two of the preceding 8). Figure 11 

shows the implementation of the tracking error in the angle. 

Mean square error of the estimation is σβ = 5.48 arc. min. 

Let us consider the effect of the initial error in the 

angular coordinate (with zero error in the angular velocity). 

Let us set the initial error in the angular 

coordinate
нач

5β∆ = ° , ∆fcc = 2 Hz and the number of 

navigation satellites is 8. Figure 12 shows the 

implementation of the tracking error in the angle. Mean 

square error estimation of the angle in that mode is σβ 

= 0.77 arc. min. 
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Fig. 9. Tracking error in the angle at ∆f
cc
 = 2 Hz, n = 8 

 

 
 

Fig. 10. Tracking error in the angle at ∆f
cc
 = 0.5 Hz, n = 8 

 

 
 

Fig. 11. Tracking error in the angle at ∆f
cc
 = 2 Hz, n = 2 
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Fig. 12. Tracking error in the angle at ∆f
cc
 = 2 Hz, n = 8, 

нач
5β∆ = deg 

 

Discussion 

From the simulation results, it is clear that the 

synthesized filter algorithm for orientation angles of the 

object is successfully working in various tactical 

situations when the initial error on the orientation angles 

not exceeding 5 degrees. We also note the following: 

 

• The synthesized estimation algorithm for orientation 

angles of the object has no tracking systems for the 

phase differences of the received signals, as was the 

case in the algorithm described in (Perov and 

Kharisov, 2010) 

• The synthesized estimation algorithm of orientation 

angles of the object has no procedures for resolving 

ambiguity of the phase measurements on signals of 

navigation satellites 

 

Conclusion 

In this study, the theory of optimal filtering of 

information processes was used to synthesize the optimal 

one-stage algorithm for estimation of orientation angles of 

the object by the signals of satellite radio navigation system. 
Equations of optimal filtering are obtained, as well as 

their representation in the form of a tracking system 
including a discriminator for orientation angles and a 
smoothing filter. 

The synthesized algorithms have no tracking systems 
for the phases of the received signals (or phase 
differences) and procedures for resolving ambiguity of 
phase measurements, which enhances its noise 
immunity, while maintaining high precision estimation 
of orientation angles. 

Expressions are obtained for the calculation of the 
lower limit of matrix of dispersion estimation errors 
for orientation angles of the object when receiving 

signals from an arbitrary number of navigation 
satellites in the interval with duration of T, in which 
the orientation angles do not change over the signals 
of satellite navigation systems with an arbitrary 
number of navigation signals. 

Examples of receiving from 4 to 24 signals from 

navigation satellites at three points show that an increase 

of the received signals decreases the most probable value 

of the mean squared error for estimation of angles (3 to 

1.2 arc minutes respectively at the signal/noise ratio of 

45 dBHz and T = 5 ms). The range of possible values of 

the standard errors for angles estimation is narrowed. 

The results of simulation are provided, from which it 

follows that at the length of the spaced receiving points 

of l = 1.5 m, there can be achieved a mean square error 

estimation of the orientation of angles in the steady state 

of 0.5...0.7 arc. min. 
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