
American Journal of Applied Sciences 11 (5): 811-817, 2014
ISSN: 1546-9239
©2014 Science Publication
doi:10.3844/ajassp.2014.811.817 Published Online 11 (5) 2014 (http://www.thescipub.com/ajas.toc)

Corresponding Author: Vijayakumar G. Dhas, Ramanujan Computing Centre, Anna University Chennai, India

811 Science Publications

AJAS

DISTRIBUTION OF LOAD USING
MOBILE AGENT IN DISTRIBUTED WEB SERVERS

Vijayakumar G. Dhas and V. Rhymend Uthariaraj

Ramanujan Computing Centre, Anna University Chennai, India

Received 2012-06-14; Revised 2014-02-07; Accepted 2014-02-28

ABSTRACT

The continuing growth of the World-Wide Web is placing increasing demands on popular Web servers. Many of
the sites are now using distributed Web servers (i.e., groups of machines) to service the increasing number of
client requests, as a single server cannot handle the workload. Incoming client requests must be distributed in
some fashion among the machines in the distributed Web server to improve the performance. In the existing
work, reducing the high message complexity is a challenge. This study introduces a novel algorithm, which has
low message complexity named Load Distribution by dynamically Fixing input to the server using Mobile agent
(LDFM) which distributes the incoming request, as it arrives from the client world, to avoid overloading of the
distributed web servers. LDFM uses prefetch techniques to balance the load among the distributed web servers.
Mobile agents are susceptible to failure. This issue is also addressed to bring reliability to the algorithm. The
simulation results confirm that the proposed method is reliable. The relative improvement in throughput,
comparing with the exiting methods is appreciable.

Keywords: Mobile Agents, LDFM, Load Balancing, Distributed System

1. INTRODUCTION

The exponential increase in demand for web services
makes distributed multiserver system the preferred
choice of solution to handle the requests effectively
(Colajanni et al., 1998). Balancing the workload in a
distributed multiserver is critical to improve the
performance (Jie and Kameda, 1998). In a distributed
multiserver, load balancing is done by transferring jobs
from the overloaded server to under loaded server. In
order to successfully carry out load balancing, the load
balancing policy is updated with load information of the
servers in the distributed environment.

Dispatcher based load balancing in the distributed
multiserver system improves the performance of the
servers (Pao and Chen, 2006). In a dispatcher based
system, the collection of load information about server
and scheduling of job among servers is done by the
dispatcher. Basically, the scheduling policy and
scheduler functions are present in the dispatcher. In
existing dispatcher based systems, the dispatcher

collects load information from the servers. The
collection of load information consumes a lot of
network bandwidth as the dispatcher and the multi
servers communicate with each other.

The unique contribution of the proposed work is to
reduce the message complexity in the system due to load
balancing. This results in conserving the bandwidth
usage, which can be used effectively for carrying out
other tasks like handling more user request. The
throughput of the whole system improves.

Mobile agent is used to collect the load information
of the server proactively and to communicate the load
information to the dispatcher. The mobile management
unit in the dispatcher receives the load information and
computes the rank of the server. The least loaded server
is given a rank of one. Based on the rank of the server,
the mobile management unit updates the dispatcher
table in the dispatcher. The dispatcher table is
dynamically updated. The dispatcher uses the
dispatcher table to dispatch the request to the server
using round robin scheduling policy.

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / American Journal of Applied Sciences 11 (5): 811-817, 2014

812 Science Publications

AJAS

Mobile agents are used for load balancing of servers.
However when mobile agent is lost the load balancing
policy fails (Ciardo et al., 2001) and the reliability of the
algorithm is compromised. In order to improve the
reliability, the proposed work determines the state of
mobile agent and creates a new mobile agent, if required.

The remainder of this study is organised as follows.
In section 2, some of the related work is reviewed.
Section 3, presents the proposed work for load balancing
in distributed multiserver system. In section 4, the
structure of the experiment set up is explained. Section 5,
presents the results from the experimental study. Section
6 contains the conclusion and future work of our study.

2. RELATED WORK

Colajanni et al. (1998) have considered load
balancing of multi servers and pointed out that
overloaded servers and high bandwidth utilization leads
the user to spend more time in waiting to access the
documents. It is observed that when DNS scheduler is
used for load balancing, the scheduler has limited control
over scheduling of the job. Once the URL is translated to
IP address, it is cached in the client’s browser.
Subsequent requests are sent to the same web server
resulting in skewed load on the server. In this case DNS
cannot control caching.

Load balancing of multiservers in a distributed
environment is a job scheduling policy, where a job as a
whole is taken and assigned to a server (Jie and Kameda,
1998). In this approach only partial load information is
used to determine scheduling of job and the message
overhead is also high.

Using one virtual URL name for the clustered web
system, the problem of load balancing was approached
(Hong et al., 2006). In this method http requests are
assigned to the server with least load by the IP-
address dispatcher. The load information is collected
and broadcast to all the web servers, leading to high
message complexity.

Pao and Chen (2006) used dispatcher based web
server load balancing architecture to improve the
performance of popular web sites. The current loading
on the back end server is taken in to account before
forwarding the request to the least loaded server. The
load information is advertised by back end servers and is
collected by the dispatcher. This approach also leads to
high message complexity.

Reallocation of request from server queue leads to
delay in execution. Considerable time is spent in
collecting the load information negotiating with the
server to accept the job, if the job is not accepted then
find an alternate server. The number of hops required
before the job is accepted adds to the delay in processing
the request. The problem of redistribution of job request
is observed in the study of Zhang et al. (2005).

Mobile agent enabled approach for load balancing
distributed web servers was proposed by Cao et al. (2003).
They show that load balancing approaches involve
frequent message exchanges between the dispatcher and
the servers to detect and exchange load information. The
message exchange increases the bandwidth utilization and
reduces the availability of network bandwidth for other
useful purpose. They have pointed out that for effective
load balancing, comprehensive and up to date load
information should be available.

Aramudhan and Uthariaraj, (2006) (Aramudhan et al.,
2008) have proposed an approach for load balancing using
mobile agents. This method has certain drawbacks. First,
consider that the mobile agent is lost then the scheme
waits for twice the Round trip time before processing the
request. It can be inferred that loss of a mobile agent
cannot be left as it is, as this results in low throughput and
steps must be taken to correct this situation.

Karjoth et al. (1997) have pointed out that
mechanisms must be in place to prevent attacks. A host
can implant its own tasks or modify the agents’ state. If
the agents’ state is changed by a selfish host, then
behaviour of the agent can be counterproductive.

In the existing work, it is clear that message complexity
and throughput are parameters to be considered for
improving the performance of the distributed multiserver
environment. In addition, loss of mobile agent, overloading
of server, reallocation of request from queue are the other
factors that need to be considered.

3. PROPOSED SYSTEM

The literature survey reveals that for effective load
balancing, comprehensive and current load information
should be available. In the pursuit of achieving the
above, excessive bandwidth of the network is utilised in
the existing methods for collection and exchange of load
information. The limited availability of bandwidth
hampers in carrying out other useful work. There is
contention between collecting load information and
dispatching user request for using the limited bandwidth.

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / American Journal of Applied Sciences 11 (5): 811-817, 2014

813 Science Publications

AJAS

This contention for bandwidth usage must be streamlined
for effective utilization of resources. The request is also
migrated from server to server and this contributes to the
latency in processing the request. Also in the existing
system, when mobile agents fail the reliability of the load
balancing mechanism is reduced and thereby increasing
the possibility of system overload.

The proposed system of Load Distribution by
dynamically Fixing input to the server using Mobile
agent (LDFM) address the problem of excessive
utilization of network bandwidth for collecting and
exchange of load information. When mobile agents fail,
the problem of reduced reliability of the load balancing
mechanism and system over load is also considered.
The proposed system consists of a set of clients and a
network of servers. The LDFM framework defines two
worlds, namely: Client world and server world. The
client world is an aggregation of all the clients in the
physical world and the server world is an aggregation
of the clustered web servers, which are called replicas.

The client world communicates with the server world
through the dispatcher. In this system the number of
servers in the multiserver environment is configured as
fixed number of servers. The fixed number is referred as
L. The block diagram of the proposed system is shown in
Fig. 1. In this system two data structures are deployed,
one for collection of the load information from the server
and the other organising the same for distribution. The
data structure deployed for collection of data from the
server is called the queue and organized as:

 Struct qitem {
 int load;
 int ipaddr [4];
 } mmu_queue [L];

The data structure deployed for receiving the ranked
data from the queue is called the dispatcher table and
defined as:

 Struct ipdata {
 char servr_id [L];
 int ipaddr [4];
 int rank;
 } dispatcher_table [L];

The function of the mmu_queue is to receive the server
load information according to the IP address of the server.
The MMU uses this information to sort the server load in

ascending order. Once the server loads are sorted, it is used
to update dispatcher table. The dispatcher table now
contains the IP address of the servers according to the
ascending order of server load. The least loaded server will
be the first entry in the table and the heavily loaded server
will be the last entry in the table. The table is dynamically
updated on collection of server load information
proactively. The dispatcher table is shown in Table 1.

The dispatcher is a front end machine, has a dispatcher
table and a Mobile Management Unit (MMU). The server
to which the http request is to be sent for processing by the
dispatcher is available in the dispatcher table. When the
http requests sent by the user arrives at the dispatcher the
dispatcher increments the count value by one. The http
request is associated with a Request Identification number
(RID). The RID is generated for each request using the
‘mod’ function. The mod function computes the RID
using count value and the number of servers available in
the distributed system for serving http requests from the
user. The RID value is computed as RID = count mod
(L+1). When the http request is associated with the RID,
the http request is sent to the server using the IP address of
the server available in the dispatcher table by the
dispatcher. The dispatcher uses round robin policy for
distributing the http requests.

When the request with RID is received at the server,
the incoming RID is compared with the previous RID in
the queue. The comparison result shows that if the present
RID is lesser than the previous RID then the load of the
server is communicated to the MMU. The request is
processed by the server.

The MMU initiates the mobile agent to the server.
Mobile agents are used to collect load information from
the server world and communicate to the MMU running in
the dispatcher. This enables reduced communication
overhead between the mobile agent and MMU. The MMU
ranks the server according to the load information received
from the mobile agent. The MMU then updates the
dispatcher table according to the rank of the server. The
MMU is responsible for the mobile agent and make sure
that it is active and has not crashed.

The mobile agent periodically sends an I Am Alive
(IAA) signal to the MMU. The MMU based on the IAA
signal checks the status of mobile agent and creates a new
mobile agent when needed. The MMU sets the time out
timer on receipt of IAA. When the time out occurs a new
mobile agent is initiated from the MMU for the server.

An event based algorithm is developed to handle
the various events in the system. The algorithm is
presented here.

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / American Journal of Applied Sciences 11 (5): 811-817, 2014

814 Science Publications

AJAS

Fig. 1. Proposed system

Table 1. Dispatcher table
Server ID IP address Rank
P 192.168.1.100 1
Q 192.168.1.101 2
R 192.168.1.102 3

Algorithm for load allocation
On receiving http request from client at dispatcher
 count = count+1
 RID = count mod (L+1)
 send request with RID to server

On receiving request with RID at server from dispatcher
 if (incoming RID < present RID in the queue)
 send load of server using mobile agent to dispatcher

running Mobile Management Unit (MMU)
 process the request
On receiving server load from mobile agent at dispatcher
running MMU
 Accept the load of server
 Compute the rank of server
 Update the dispatcher table according to the rank of

server
On receiving I Am Alive (IAA) signal from mobile agent
at dispatcher running MMU
 Set time out timer
On time out at MMU
 create mobile agent
 move mobile agent to corresponding server
On receiving server response at dispatcher
 Send server response to corresponding client

3.1. Updating of Dispatch Table

Each server in the server world has a mobile agent
initiated from the MMU so that polling of server by
the mobile agent is avoided. This reduces the latency
in collecting the load information. This also helps in
avoiding unnecessary usage of network bandwidth for
communicating load information. At any point in time
only one mobile agent will be communicating the load
information to the MMU. Initially the dispatcher
assigns the user request with RID’s to the servers 1, 2,
3….N in a round robin fashion.

This process continues as long as the incoming
RID is greater than the present RID. Due to the cyclic
property of the mod function the above condition will
fail, initiating the mobile agent. This arrangement
enables staggered communication between the mobile
agent and the MMU. The mobile agent collects the
load of the server proactively and sends it to the
MMU. The mobile management unit after receiving
the information from the mobile agent computes and
updates the dispatcher table with IP addresses along
with ranks 1, 2, 3… of N servers with lightest load.
The ranking of the server is according to the load. The
list of IP address of the server in the dispatcher table
will be different every time the load information is
received and the dispatcher table is updated
dynamically. The table is used by dispatcher for
allocation of server for new http request.

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / American Journal of Applied Sciences 11 (5): 811-817, 2014

815 Science Publications

AJAS

4. EXPERIMENTAL SETUP

The experiment was conducted using computers in a
LAN network. The processors used were of Intel Pentium 4
or core or core 2 duo. The memory capacity was in the
range of one to four GB. Simulation was done using Java in
LINUX environment. Aglets software development kit
AGLETS SDK 2.0.1was used for mobile agents.

The web server processes only http requests. The
server processes the request in FIFO (First in First out)
manner. User requests are handled only by the
dispatcher. In our approach it is assumed that the IP-
address dispatcher is not overloaded by http requests.
The queue at the dispatcher has a finite buffer and a tail
drop discard policy. The dispatcher is highly reliable
and has sufficient capacity to process the requests.
Mobile agent was implemented using aglets.

4.1. Methodology

Initial values were assigned. The number of server (L)
was chosen to be 4. The requests were generated from the
clients and sent to the dispatcher. One mobile agent was
initiated from the MMU to each of the server. The
dispatcher table was initialized with IP address of
computers. The load request sent to the computer was

assumed to be the same. The initial order of dispatch of
request was 1, 2, 3 and 4. The dispatcher was assigned one
virtual address. The request from the user will have
uniform execution time. The servers are heterogeneous
having varying CPU, Memory capacity and
configurations. The experiment was conducted by
gradually increasing the number of users in the system and
the corresponding throughput was taken. The experiment
was repeated a number of times and the average value
used. The failure of mobile agent was simulated by
disabling the IAA signal. On time out the creation of new
mobile agent was observed. Similar experiment is done
for the system without LDFM and the average was taken.

5. RESULT

Among various performance parameters, system
throughput i.e., the total number of request processed per
second by the given system is considered. LDFM algorithm
is simulated for various numbers of requests at different
frequencies and the system throughput is measured.

The system throughput of the server (the total
number of request processed per second) is plotted against
the number of request from client world. The result of
the experiment using LDFM algorithm and without
LDFM algorithm is shown in Fig. 2.

Fig. 2. System throughput

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / American Journal of Applied Sciences 11 (5): 811-817, 2014

816 Science Publications

AJAS

It was observed that without LDFM the throughput of
the system gradually gets degraded. With LDFM the
system throughput comparatively increases. The result
also shows a performance degradation when mobile
agent failure was simulated.

6. DISCUSSION

The improvement in performance is attributed to the
reduced message complexity of mobile agents. The
reduced message complexity compared with other method
has contributed to processing more user requests. The
reduction in message complexity is achieved by using
mobile agent to communicate with the MMU for
collection of load information. The mobile agent
communicate only when the RID condition fail. The
failure of the condition is achieved by the use of ‘mod’
function. This arrangement helps the mobile agent to
communicate always in a sequential manner. In the
previous work of Hong et al. (2006) the load information
was broadcast to all the servers. Also Pao and Chen (2006)
have used the advertisement technique to convey the load
information to dispatcher from backend servers. The
communication is not at all regulated. In the experiment
there is no distribution of job request from the one queue to
another. The load information was proactively collected,
ranked and dispatcher table updated. The sequence of
distribution of user request by the dispatcher to the server is
altered whenever the dispatcher table is updated.

New mobile is created after timeout, when mobile
agent fails. However a performance de gradation was
observed and this is due to the fact that in the intervening
period the mobile agent is not communicating the load
information and the dispatcher table is not updated. The
dispatcher table is not update with the current
information of load on the server, resulting in the
performance de gradation. The same phenomenon was
observed in the other works, but the failure condition
was restored by our intervention. If the failure condition
was not restored, the performance will be poor.

7. CONCLUSION

A load-balancing algorithm that improves throughput
and reduces communication overhead due to collection
of load information was presented and discussed. The
method uses mobile agent and mobile management unit
for load information collection, ranking of servers and
dynamic update of dispatch table. Reallocation of job
request from queue is eliminated. If there is a loss of
mobile agent, there is a possibility that all the request
end up reaching a single server, leading to adverse
effects due to overloading. To avoid this, a fault

tolerance system is introduced to keep track of the
mobile agent and to restore the mobile agent. Our
analysis shows that improvement in throughput is due to
reduced message complexity. In case of failure of
mobile agent, the reliability of the algorithm is restored
with creation of new mobile agent.

It is assumed that the dispatcher is not overloaded.
However if the dispatcher is overloaded there is a
performance impairment. The mobile agents are prone to
attacks, have security issues and needs to be addressed.
Additionally, more parameters apart from load of server
which help to make the dynamic change of input to the
server more optimal can be introduced. More over some
priority can be introduced in processing of request in the
queue. The improvement to the above limitations can be
considered for future work.

8. REFERENCES

Aramudhan, M. and V.R. Uthariaraj, 2006. LDMA and
WLDMA: Load balancing strategies for distributed.
IJCSNS Int. J. Comp. Sci. Netw. Security, 6: 76-84.

Aramudhan, M., S. Karthikeyan, K. Mohan and V.R
Uthariaraj, 2008. ELDMA: Enhanced load balancing
decision making using decentralized mobile agent
framework. Proceeding of the International Conference
on computer and Communication Engineering, May,
13-15, IEEE Xplore Press, Kuala Lumpur, pp: 11-14.
DOI: 10.1109/ICCCE.2008.4580559

Ciardo, G., A. Riska and E. Smirni, 2001. EquiLoad: A
load balancing policy for clustered web servers.
Performance Eval., 46: 101-124.

Colajanni, M., P.S. Yu and D.M. Dias, 1998. Analysis of
task assignment policies in scalable distributed web-
server systems. IEEE Trans. Parallel Distributed
Syst., 9: 585-600. DOI: 10.1109/71.689446

Hong, Y.S., J.H. No and S.Y. Kim, 2006. DNS-based
load balancing in distributed web-server systems.
Proceedings of the 4th IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous
Systems, Apr. 27-28, IEEE Xplore Press, Gyeongju.
DOI: 10.1109/SEUS-WCCIA.2006.23

Cao, J., Y. Sun, X. Wang and S.K. Das, 2003. Scalable
load balancing on distributed web servers using
mobile agents. J. Parallel Distributed Comput., 63:
996-1005. DOI: 10.1016/S0743-7315(03)00099-6

Jie, L. and H. Kameda, 1998. Load balancing problems
for multiclass jobs in distributed/parallel computer
systems. IEEE Tran. Comp., 47: 62-76. DOI:
10.1109/12.660168

Karjoth, G., D.B. Lange and M. Oshima, 1997. A
security model for aglets. IEEE Internet Comput., 1:
68-77. DOI: 10.1109/4236.612220

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / American Journal of Applied Sciences 11 (5): 811-817, 2014

817 Science Publications

AJAS

Pao, T.L. and J.B. Chen, 2006. The scalability of
heterogeneous dispatcher-based web server load
balancing architecture. Proceedings of the 7th
International Conference on Parallel and Distributed
Computing, Applications and Technologies, Dec. 4-
7, IEEE Xplore Press, Taipei, pp: 213-216. DOI:
10.1109/PDCAT.2006.110

Zhang, Q., A. Riska, W. Sun, E. Smirni and C.
Gianfranco, 2005. Workload-aware load balancing
for clustered web servers. IEEE Tran. Parallel
Distributed Syst., 16: 219-233. DOI:
10.1109/TPDS.2005.38

