
American Journal of Applied Sciences, 10 (4): 403-413, 2013

ISSN: 1546-9239

© 2013 S.K. Patra et al., This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license

doi:10.3844/ajassp.2013.403.413 Published Online 10 (4) 2013 (http://www.thescipub.com/ajas.toc)

Corresponding Author: Sambit Kumar Patra, Common Engineering Group, MAHINDRA COMVIVA, Bangalore, India

403 Science Publications

AJAS

Javascript Interpreter Using Non

Recursive Abstract Syntax Tree Based Stack

1
Sambit Kumar Patra,

2
Binod Kumar Pattanayak and

2
Bhagabat Puthal

1Common Engineering Group, MAHINDRA COMVIVA, Bangalore, India

2Department of Computer Science and Engineering, ITER, Siksha ‘O’ Anusandhan University, Bhubaneswar, India

Received 2013-03-05, Revised 2013-04-24; Accepted 2013-05-13

ABSTRACT

In a Mobile device, apart from the battery and memory, the execution time is the key design constraint for
executing the scripts of complex and unstructured JavaScript in the web-browser. Abstract Syntax Tree
(AST) is a better option for mobile code as it is compiled only once. Due to very recursive nature of the
AST, its traversal is going to be inherently recursive. Since use of recursion is out of scope, therefore the
ultimate decision would be to emulate the recursive behavior using a set of stacks. We design an algorithm
for a non recursive AST based stack, a lightweight interpreter which interprets and evaluates the complex
scripts of JavaScript in the allocated time period.

Keywords: Non-recursive Stack for Mobile Device, Script Interpreter, JavaScript Interprete, JavaScript Compiler

1. INTRODUCTION

In the Script Engine architecture, the compiler

component generates the AST and Symbol Tables (ST).

The interpreter executes the AST tree with reference to

ST. The other possible alternative is that the compiler

generates the byte-code. Traditional byte-code

generation involves 2 stages of compilation. At first, it

generates AST and then byte-code from the AST. Many

times, it has been observed that by using the jQuery

libraries of JavaScript, the scripts are compiled but not

executed. Considering the memory limitation of the

mobile devices and the limitation of execution, it is

preferable to generate AST node and execute as and

when required rather than converting all AST nodes to

respective byte-codes. However AST node is recursive in

nature which can block the high priority mobile

management operations such are “CALL” and “SMS”.
In this study we have designed the non-recursive

AST based stack algorithm to interpret the JavaScript
in a predefined time period with asynchronous
manner. The data structure of the algorithm has been
defined in Data Structure section. In System
Architecture section we define interpreter architecture.
The evaluations of AST from the instruction stack are

evaluated in Algorithm section. The detail asynchronous
behaviours are discussed in Asynchronous Behaviour
section. In evaluation section we have verified our
algorithm with test scripts of ECMA objects from
OMA-ESMP test cases (Open Mobile Alliance-ECMA
Script Mobile Profile. We have also ported the script
engine with devices (a) Moto RAZR v3 (brew 3.15),
(b) Qtopia (Linux OS), (c) Samsung (Windows) and
(d) Nokia Series (Symbian OS).

A lot of research works have been conducted relating
to interpreters. Ortiz (2008) presents S-expression
Interpreter Framework (SIF) based on the interpreter

design pattern and written in the Ruby programming
language in order for language design and
implementation, which can be used for demonstration of
advanced language concepts and various programming
styles. A comparison of two versions of an interpreter for
Java programming language is performed in the study of

Hills et al. (2011), where the authors chose the versions
such as visitor pattern and interpreter pattern and the
comparison is carried out with respect to maintenance
and execution efficiency of implementation of Java
programming language. Design of an interpreter with a
virtual hardware management facility is detailed by

Diessel and Malik (2002), which overcomes the Field-

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

404 Science Publications

AJAS

Programmable Gate Array (FPGA) resource limitations
and enables implementation of large systems with small

FPGA chips. Design and implementation of a query
language interpreter with object oriented specification
for bibliographic information retrieval is presented by
Fisl et al. (1998) that uses an internet client application
in Java programming language. Effect of mis-predictions
during execution of the indirect branch instructions on an

interpreter is addressed by Wien (2003). Effects of
“recursive make” related to UNIX related programs are
discussed by Miller (2008). Strotz and Wold (1960)
provide a synthesis of recursive vs. non-recursive
systems with respect to interpretability of a parameter.
Typed Command Language (TyCL) an implementation

of the Tcl language that is aimed at producing better
results during compilation, is presented by Buss
(2011). A debuggable interpreter design pattern is
included in the work of Vrany and Bergel (2009) that
specifies the coexistence of multiple debuggers in
order to accept new debugging operations and at the

same time being easy to implement. The calculational
design of a generic abstract interpreter for a simple
imperative language is detailed by Cousot (1999).

2. PROBLEM DEFINATION

The objective of the script interpreter is to design the

JavaScript interpreter for embedded devices as per the

European Computer Manufacturers Association (ECMA)

by reducing memory consumption, reducing CPU cycle

consumption, generic in nature, executing in an allocated

time period and ease of portability to any devices.

JavaScript is cross platform, object oriented, lightweight

and standalone. The choice of stack-based interpretation

comes not out of choice but out of compulsion. For a

typical platform like feature phone where stack size and

memory available are low, features like recursion are

proscribed. Since AST based interpretation is chosen, due

to very recursive nature of the AST, its traversal is going

to be inherently recursive. But since use of recursion is out

of scope, therefore the ultimate decision would be to

emulate the recursive behavior using a set of stack.

The idea is to emulate the way recursion really works

in the existing machine architectures. It involves usage

of a Runtime Stack in the Data Segment. The Runtime

Stack consists of Stack Frames where each stack frame

refers to a function call. Similar behavior has to be

emulated in the form of a stack using linked-list; we can

use the same name Runtime Stack for this.

Again, traversing the AST will be a typical post-order

traversal, which also must be implemented without

recursion, for which we may use a stack, which we will

call as Instruction Stack. At the same time, we need to

save the Environment or say Execution Context in

typical compiler language, which gives the current state

of the interpretation and other details. As we move from

one execution context to other, we may require to push

them one after the other in a stack called Execution

Stack, so that we can come back to the previous

execution context with a mere pop.

3. SYSTEM ARCHITECTURE

The Script Interpreter’s typical states and the

transitions between states are represented in Fig. 1. The

Script Engine Controller invokes the script interpreter on

request from the consumer. The script interpretation

occurs in the context of the consumer. Script

Interpretation occurs on need basis, i.e., as and when the

consumer need to invoke the script interpreter is invoked

and the script is executed in the form of interpretation.

The word interpretation assumes that the script is already

compiled, but that may not often be the case. There will

be instances where the interpreter has to invoke the script

compiler to compile the scripts and then interpret.

The various states of the interpreter are:

3.1. Uninitialized

The Script Engine is yet to initialize this Component.
This is when the consumer is yet to make a request to the
Script Engine.

3.2. Initialized

The Script Engine initializes the script interpreter
component by an ‘initialize’ call. The interpreter gets
initialized along with its sub components. The
precondition is that the script compiler should be
initialized. Initialization mainly refers to the allocation of
various resources such as memory, coupling
(registration) among various components.

3.3. Interpreting

The script interpreter is invoked by an ‘interpret
AST’ call by the Script Engine. So interpreter needs to

interpret a script function. The function may be an
internal one (within the script interpreter context) or it
can be an external one (within consumer context).

3.4. Connected to Consumer

This is the most important state in the script
interpreter State transition scenario. This state is a
resultant of a ‘connect’ call from the Script Engine, where

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

405 Science Publications

AJAS

the SIP runs in the context of the Consumer, or typically
executing a functionality defined/stated by the consumer.

3.5. Suspended

For a typical phone environment, this is a state ought
to be considered. The Consumer via Script Engine forces
the SIP with a ‘Suspend’ call, when the consumer itself
goes for a Suspension state. At this point of time, the SIP
saves the current state in persistent memory and remains
suspended until resumed further with a ‘resume’ call to
go back to its previous state.

3.6. Disconnected

The SIP is out of the context of the Consumer with a
‘Disconnect’ call. Now the SIP can either go to
initialized state with an ‘operation over’ call or to a
stopped state with a ‘Reset’ call.

3.7. De Initialized

This is the end state of the SIP. Essentially the SIP is
de-initialized at this point. De-initialization would mean
freeing up resources, decoupling.

3.8. Algorithm

The Script Interpreter (SIP) is a component of the

Script Engine. The main function of SIP is as follows:

• Interprets the Abstract Syntax Tree (AST) generated

by the Script Compiler, using following operations:

• Non recursively Traverses the IST (Interpretive

Syntax Tree (AST+ST)) in appropriate order

• Evaluate the AST Nodes/Sub trees using a stack

in synchronization with the Symbol table and

Scope information

• Fires execution commands for the Consumer

• Handles event from the Consumer

• The Script Interpreter works with the Interpretive

Syntax tree i.e., we can say annotated Abstract

Syntax Tree (AST) with Symbol Table (ST)

information. The IST is optimized for efficient

traversal while interpretation and is perfectly

semantically checked

Fig. 1. Script interpret state diagram

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

406 Science Publications

AJAS

Fig. 2. A typical AST and its traversal

As the stack-based non-recursive interpretation

method is chosen for the AST traversal, the AST
traversal method plays a crucial role during the
interpretation. For simple arithmetic expressions,
normally the post order method is preferred, where the
rule is to visit the root node at the end, after visiting
left node followed by the right. Post-order traversal
holds good as long as it’s a simple arithmetic
operation, but when it comes to the AST of a structured
programming language like Java Script with so many
programming constructs such as for, while, try-catch, a
normal post-order traversal won’t fit to the purpose.
Hence, a modified post-order traversal method has been
conceived. Here we describe about the way the AST is
traversed for different types of programming constructs.

Consider the following expression:

x = b + (c * d) – e ; b++

From Fig. 2, the two statements form a statement list,

one starting with the first node with element “=” and the
next node with element “++”. Clearly “=” being a binary
operator contains two children “x” and “+” and “++”
being a unary node contains a single child “b”. Similarly
“+” is a binary operator containing two children “b” and
“-”, “-” is binary operator containing two children “*”
and “e” and “*” is also a binary operator containing two
children “c” and “d”.

For a traversal, a stack called “Instruction Stack” is
used. This single stack is responsible for holding the
temporary AST nodes that are pushed and also the
evaluated result node.

Table 1 shows a simple expression evaluation using
an Instruction Stack (IS) to hold the nodes and temporary
results. The evaluation logic depends on the type of
programming construct being evaluated. Instruction
Stack is the key to the execution of the traversal; keeping
the information about the way a node is pushed onto the
Instruction Stack helps in the correct evaluation of the
AST. More constructs and their traversal methods are
discussed later.

3.9. The Instruction Stack

Each of the elements in the instruction stack is
represented in Fig. 3. The entries of each element are the
AST Node and the way it's pushed to the stack. The way
of pushing is important from the AST traversal point of
view. In order to facilitate the C Array implementation,
the stack top is chosen to be equal to 0 in the beginning.
On pushing, the stack top is incremented by one; making
the first element corresponding to zero-th element in the
Array. The Max Stack Size can be configured depending
on the width of a typical expression.

The structure of Instruction stack is as follows:

typedef struct _st_instruction_stack
{
 AST *ASTNode;
 short int uhPushMethod ;
 }INST_STACK[MAX_STACK_SIZE] ;

The AST root node of the script block is first pushed
to the instruction stack before the traversal. The traversal
algorithm construct is as follows:

PROCEDURE START_INTERPRETE
 (INST_STACK *IS, TIME
TIME_DURATION)
{
 START_TIME = GET_THE_SYSTEM_TIME
() ;
 while (hTop>0&&TIME_DURATION
> 0)
 {
 END_TIME =
GET_THE_SYSTEM_TIME () ;
 STACK_POP (IS, &ast, &pushType)
;
 N_NODE= GET_NEXT_NODE(ast);
 If (IS_LIST_TYPE(ast->eNodeType
))
 {
 STACK_PUSH(IS, N_NODE,
E_PUSH_AS_ROOT);
 }
 If(IS_LEAF_NODE(ast-
>eNodeType))
 {
 PROCESS_LEAF_NODE (ast, pushType);

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

407 Science Publications

AJAS

Table 1. Evaluation of expression using instruction stack

 Table column head

 --

AST node Popped result stack Push with description

 (=) = “=” is initially pushed to the IS.

 (=)--(++) x (As Left) On popping “=”, its observed that the

 / = (As Root) next statement to it is need to executed, after the

 / ++(As Root) execution of “=”. Hence “++” is pushed as Root.

 (x) Now the node under consideration i.e. “=”

 is having a left child. Upon seeing the

 left child, the left child is pushed as

 Left after pushing the “=” node again back to the IS.

 (=)--(++) + (As Right) On popping “x” its observed that it’s a leaf node,

 / \ X (As Left) which means that the node is a left hand

 / \ = (As Root) expression for its parent. Now when such

(x) (+) ++(As Root) a Left Leaf is popped, the IS is peeped to get its

 parent. If the parent is having a right child

 (It MUST have) and if it’s a non

 leaf then it’s pushed to the IS,

 after the node under consideration “x” is pushed again.

 (=)--(++) b (As Left) Similar to Step 2

 / \ + (As Right)

/ \ X (As Left)

(x) (+) = (As Root)

 / ++(As Root)

 /

 (b)

 (=)--(++) B - (As Right) Similar to Step 3

/ \ b (As Left)

/ \ + (As Right)

(x) (+) X (As Left)

 / \ = (As Root)

 / \ ++(As Root)

 (b) (-)

 (=)--(++) * (As Left) Similar to Step 2

 / \ - (As Right)

/ \ b (As Left)

(x) (+) + (As Right)

 / \ X (As Left)

 / \ = (As Root)

 (b) (-) ++(As Root)

 /

 /

 (*)

 (=)--(++) c (As Left) Similar to Step 2

 / \ * (As Left)

 / \ - (As Right)

(x) (+) b (As Left)

 / \ +(As Right)

 / \ X (As Left)

 (b) (-) = (As Root)

 / ++(As Root)

 /

 (*)

 / \

 / \

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

408 Science Publications

AJAS

Table 1. Continue

(c) (d)

 (=)----C c*d(As Left) Here’s a deviation to Step 3, since its found that c’s

(++) - sibling i.e. the right child “d” is a leaf node.

 / \ (As Right) Now “c” is already evaluated as a leaf node,

 / \ b (As Left) and we have got its sibling as a leaf node as well.

 (x) (+) +(As Right) Hence the operation “*” (c and d’s parent)

 / \ X (As Left) is to be carried out using these

 / \ = (As Root) two leaf nodes “c” and “d”.

 (b) (-) ++(As Root)

 / \

 / \

 (c*d) (e)

 So c is popped, followed by its parent “*”

 and multiplication operation is carried

 out on left leaf node “c” and “*”’s right node “d”.

 The result c*d is formed as leaf node is

 again pushed the way “*”

 was pushed i.e. as a Left

 (=)---(++) c*d c*d-e (As Right) Similar to Step 8

 / \ b (As Left)

 / \ + (As Right)

(x) (+) X (As Left)

 / \ = (As Root)

 / \ ++(As Root)

 / \

 (b) (c*d-e)

 (=)----(++) c*d-e b+c*d-e (As Right) Here the node “c*d-e” popped is a Right

 / \ x (As Left) leaf node, if this is the case then its parent must

 / \ = (As Root) be a left leaf node, here in this case it’s “b”,

(x) ++(As Root) which is popped as the left hand expression,

(b+c*d-e) now again the parent (which must be a binary

 operator) is popped. In this case its “+”.

 Hence addition operation is done with

 one operand as the left leaf node “b”

 and the other the right leaf node “c*d-e”.

 The result b+c*d-e is pushed the

 way “+” was pushed

 (++) b+c*d-e x’ (As Root) Similar to Step A

 ++(As Root) Here the operation “=” is carried out

 using x as the left hand Expression,

 and b+c*d-e as the right hand expression.

 The result x’

 (whatever assigned) is pushed again

 to IS the way “=” was pushed

 (++) x’++(As Root) The node popped was pushed as Root

 and it’s a leaf node, so its ignored.

 …..

 Repeat Step 1

}
 else
 {

 PROCESS_NON_LEAF_NODE (ast);

 }
 TIME_DURATION :=
 TIME_DURATION
 – (END_TIME –
START_TIME);

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

409 Science Publications

AJAS

Fig. 3. Instruction stack elements

 }
}

PROCEDURE IS_LIST_TYPE (E_AST_TYPE

eNodeType)

{

 If (eNodeType == E_CONSTLIST ||

eNodeType == E_UNARYLIST || eNodeType == E_

BINARYLIST || eNodeType == E_TERNARYLIST) {

 return TRUE ;

 }

 return FALSE ;

}

PROCEDURE IS_LEAF (E_AST_TYPE

 ENODETYPE

{

 Switch (ENODETYPE)

 {

 case E_ CONST :

 case E_NUMBER:

 case E_STRING:

 case E_RESULT:

 case E_REG_EXP : return TRUE;

 default: return FALSE ;

 }
}
PROCEDURE STACK_PUSH
 (AST *ast, E_PUSH_TYPE
pushType)

{

 If(hTop < MAX_STACK_SIZE)

{

 IS->ast = ast ;

 IS-> uhPushMethod = pushType;

 hTop++ ;

 }

 else {

 sipError();

 exit (1);

 }

}

PROCEDURE STACK_POP

 (AST **ast, E_PUSH_TYPE

*pushType)

{

 If(hTop > -1)

{

 *ast = IS->ast ;

 *pushType = IS-> uhPushMethod ;

 hTop-- ;

 }

 else {

 sipError();

 exit (1);

 }

}

PROCEDURE STACK_PEEP

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

410 Science Publications

AJAS

 (AST **ast, E_PUSH_TYPE
*pushType)
{
 If(hTop > -1)
{
 *ast = IS->ast;
 *pushType = IS-> uhPushMethod
 }
 else {
 sipError();
 exit (1);
 }
}
PROCEDURE PROCESS_NON_LEAFNODE
 (AST ASTNODE,
E_AST_TYPE ASTTYPE)
{
 switch (ASTTYPE)
 {
 case
E_AST_SWITCH:SWITCH_NODE (ASTNODE) ;
 case E_AST_TRY
 :TRY_NODE(ASTNODE) ;
 case E_AST_WITH
 :WITH_NODE(ASTNODE) ;
 case E_AST_FORIN
 :FORIN_NODE(ASTNODE) ;
 case E_AST_FUNCTION:
FUNCTION_LIT(ASTNODE) ; case
E_ATYPE_CATCH:
 case E_ATYPE_REG_EXP :
 case E_ATYPE_DOT_OPR :
 default:
 {
 if (
IS_BINARY(ENODETYPE))
 {

 PROCESS_BINARY_NODE (ASTNODE);
 }
 else if (
IS_AST_UNARY_TYPE(ENODETYPE))
 {

 PROCESS_UNARY_NODE (ASTNODE);
 }
 else)
 {
 PROCESS_TERNARY (ASTNODE) ;
 }
 }
 }
}

PROCEDURE PROCESS_LEAF_NODE
 (AST *ast , E_PUSH_TYPE
HOW_IT_WAS_PUSHED)
{
 switch (HOW_IT_WAS_PUSHED)
 {
 case
E_PUSH_AS_FUNCTION_EXPR_RESOLVED:
 FUNCTION_EXPR (ast) ;
 break ;
 case

E_PUSH_AS_FUNCTION_NAME_EXPR:
 FUNCTION_NAME_EXPR(
ast) ;
 break ;
 case E_PUSH_AS_LEFT:
 PROCESS_LEFT_LEAF_NODE (ast) ;
 break ;
 case E_PUSH_AS_RIGHT:

 PROCESS_RIGHT_LEAF_NODE (ast) ;
 break ;
 case E_PUSH_AS_COND:
 CONDITION_EXPR(ast) ;
 break ;
 case E_PUSH_AS_ROOT:
 RETURN_VALUE (ast-
>pbBranch);
 -
-
default:
 }
}

3.10. Processing a Left Leaf Node

PROCEDURE PROCESS_LEFT_LEAF_NODE
 (AST
*LEFT_NODE);
{
 STACK_PEEP (&PARENT_NODE,
&PARENT_PUSHED);
 STACK_GET_RIGHT_CHILD
 (&PARENT_NODE,
&RIGHT_NODE);
 If (IS_PARENT_NODE_BINARY_TYPE
(PARENT_NODE))
 {
 If (IS_LEAF_NODE
(&RIGHT_NODE))
 {
 OPERATE (PARENT_NODE-
>eNodeType,

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

411 Science Publications

AJAS

 LEFT_NODE,
 RIGHT_NODE,
 &RESULT_NODE);
 STACK_PUSH (RESULT_NODE,
PARENT_PUSHED);
 }else
 {
 STACK_PUSH (LEFT_NODE,
PUSH_AS_LEFT) ;
 STACK_PUSH (RIGHT_NODE,
PUSH_AS_RIGHT);
 }
 }else{
 -
 -
 }
}

On Popping the left leaf node, its parent is checked.

Note that we can assert that its parent must be a non-

block binary node. Now we have to check if the parent is

having a right child or not. If the right child is a leaf one,

then both left and right nodes are ready to be evaluated

and are the two operands for the parent operator. In that

case, the parent is popped and the operation is performed

using two operands i.e. left-leaf and right-leaf nodes. The

result of the operation is again pushed to the stack in the

way the parent is popped. If the right child is a non-leaf

node, then the current left leaf node is pushed again and

the right child is pushed as PUSH_AS_RIGHT.

3.11. Processing Right Leaf Node

PROCEDURE PROCESS_RIGHT_LEAF_NODE
 (AST *LEFT_NODE);
{
 STACK_POP (&LEFT_NODE,
&LEFT_PUSHED);
STACK_POP (&PARENT_NODE,
&PARENT_PUSHED);
If
(IS_PARENT_NODE_BINARY_TYPE(PARENT_NO
DE))
{
 OPERATE(PARENT_NODE->eNodeType,
 LEFT_NODE,

RIGHT_NODE,

 &RESULT_NODE);

 STACK_PUSH (RESULT_NODE,

PARENT_PUSHED);

 }else{

 -

 -

 }

}

On popping the right leaf node, we can assert that it

must have been pushed after pushing its left sibling. In

that way, the stack order must be such that the operator

node is on the top of it followed by the right node on top

of the left node. Once the right leaf node is popped, we

can simply perform two pops to get the left leaf sibling

and its parent operator node respectively. Now, the

operation can be performed and the result is pushed the

way the parent operator node was popped.

3.12. Asynchronous Behavior of Script

Interpretation

Case 1: From a feature-phone’s perspective, the

execution of the Java Script by the script engine cannot

be blocking. It must work in a suspend-resume manner.

Suspension of the execution might come when a high

priority task like a phone-call has to be addressed and

hence, suspending the execution process at some point

say ‘X’. When the control is reverted back to the script

engine application, it has to resume from the point X

where we suspended.

Case 2: Not only in the case of priority tasks, but also

in case of long loops or say infinite loops in the script,

we need to suspend the application because execution

cannot go infinitely as it will exhaust battery power and

other resources. So identification of such infinite loops is

critical to the smooth interpretation of the script.

As we discussed in the previous section that script

interpretation involves traversing an AST in a non-recursive

manner using a set of logical stacks like Execution Context

Stack, Instruction Stack. The stack information form a

logical context for a given script execution.

For case 1, the logical context has to be saved when

the execution undergoes suspension and it has to be

retrieved on resumption. Saving the stack information

will give the advantage in terms of knowing the current

AST node that was under execution just before

suspension. That’s clearly the top of the stack. So

resumption of the interpretation will follow naturally

since the next node information that is to be processed is

already in the stack.

For case 2, every time, after execution of one

instruction form the stack, will be compared with the

allocated time period. If the duration of time is less, it

will continue for the next instruction, else will suspend

the execution and wait for the next time interval.

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

412 Science Publications

AJAS

Table 2. Instruction push type

Push Type Syntax

E_PUSH_AS_SWITCH_CONDITION Switch
E_PUSH_AS_SWITCH_CASE_BODY Switch-

CaseE_PUSH_AS_CASE_CONDITION Case with Condition

E_PUSH_AS_SORT Sort
E_PUSH_AS_DO_STMT Do-

StatementE_PUSH_AS_TRY Try

E_PUSH_AS_CATCH Catch
E_PUSH_AS_THROW_EXPR Throw-Expression

E_PUSH_AS_RETHROW_EXPR Rethrow-Expression

E_PUSH_AS_REPLACE Replace

E_PUSH_AS_UNARY_EXPR Unary-Expression

E_PUSH_AS_FUNC_NAME_EXPR Function-Name-Exp

E_PUSH_AS_FUNC_EXPR_RESOLVED Function-Expr

E_PUSH_AS_ARG_LIST_EVALUTED Function-Argument

E_PUSH_AS_RETURN Return Statement

E_PUSH_AS_NEW_CALL New Call

E_PUSH_AS_WITH With Statement

E_PUSH_AS_FORIN_LEFT FOR-IN Statement

E_PUSH_AS_CALLBACK Callback Funtions

E_PUSH_AS_FORIN_RIGHT FOR-IN Statement

E_PUSH_AS_MAP MAP Statement

E_PUSH_AS_LABEL_EXECUTED Lable Statement

E_PUSH_AS_WITH_ARGUMENT With Arguments

E_PUSH_AS_EVAL Eval Statement

E_PUSH_AS_TRY_CATCH TRY with Catch

E_PUSH_AS_THROW Throw Statement

E_PUSH_AS_CATCH_PREV CATCH Statement
E_PUSH_AS_FORIN_NEXT FOR-INNext

E_PUSH_AS_SET_TIMEOUT_STMT Set-Time-Out
E_PUSH_AS_SUSPENSION Suspension

E_PUSH_AS_NEW_AFTER_CALL New after Call

E_PUSH_AS_TRY_END Try-End Statement
E_PUSH_AS_LEFT_PRIMITIVE Left Primitive

E_PUSH_AS_RIGHT_PRIMITIVE Right Primitive

E_PUSH_AS_DYN_COMP_INLINE Inline Script
E_PUSH_AS_FOREACH Foreach

E_PUSH_AS_DEFAULT_RETURN Default Return

E_PUSH_AS_NEW_RETURN New Return
E_PUSH_AS_FINALLY Finally Statement

E_PUSH_AS_EVAL_NODE eval Statement

E_PUSH_AS_DELETE Delete Statement
E_PUSH_AS_TYPEOF Type-of Statement

E_PUSH_AS_CALL Call Statement

E_PUSH_AS_APPLY Apply Statement

E_PUSH_AS_LEFT_DOT DOT-Operator

Table 3. Execution time

Objects in MS Execution time

Array 610
Date 62
Error 735
Math 562
Reg Exp 1985
String 1265
Total (in MS) 5219

Fig. 4. Scripts Vs execution time

3.13. Evaluation

Expect LEFT, RIGHT, ROOT, as per the ECMA

specification, we have added different instruction type as

follows (Table 2).

We have downloaded the test scripts of ECMA

objects from OMA-ESMP test cases (Open Mobile

Alliance-ECMA Script Mobile Profile). The evaluation

time has been calculated (Table 3) considering the

interval time of 10 milliseconds and other constraints.

Figure 4 represents the scripts with the respective

execution time.

4. CONCLUSION

This study presents a non recursive algorithm for the

JavaScript. We have tested and verified this algorithm

with top10 Alexa web-sites in different mobile devices.

It executes all the scripts of the web-sites without

blocking any mobile operation. We have ported, tested

and verified our script engine with low end devices such

are Moto RAZR v3 (brew 3.15), Qtopia (Linux OS),

Samsung (Windows) and Nokia Series (Symbian OS). In

future, this can be optimized further and execution time

can be reduced further.

5. REFERENCES

Buss, A., 2011. TyCL: An interpreter/compiler of a

typed language implementation of Tcl/Tk.

Proceedings of the 18th Annual Tcl/Tk Conference,

(ATTC’ 11).

Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013

413 Science Publications

AJAS

Cousot, P., 1999. The Calculational Design of a Generic

Abstract Interpreter. In: Calculational System

Design, Broy, M. and R. Steinbruggen (Eds.),

NATO ASI Series F. Amsterdam, IOS Press.

Diessel, O. and U. Malik, 2002. An FPGA interpreter

with virtual hardware management. Proceedings of

the Abstracts and CD-ROM Parallel and Distributed

Processing Symposium, Apr. 15-19, IEEE Xplore

Press, pp: 155-162. DOI:

10.1109/IPDPS.2002.1016553

Fisl, I., Z. Konjovic and D. Surla, 1998. Design and

implementation of the query language interpreter for

bibliographic data retrieval. Novi Sad J. Math., 28:

11-19.

Hills, M., P. Klint, T.V.D. Storm and J. Vinju, 2011. A

case of visitor versus interpreter pattern.

Proceedings of the 49th International Conference on

Objects, Models, Components, Patterns,

(ICOCP’11), ACM Press, Springer-Verlag Berlin,

Heidelberg, pp: 228-243.

Miller, P., 2008. Recursive make considered harmful.

AUUGN J. AUG Inc., 19: 14-25.

Ortiz, A. , 2008. language design and implementation

using ruby and the interpreter pattern. ACM

SIGCSE Bull., 40: 48-52. DOI:

10.1145/1352322.1352155

Strotz, R.H. and H.O.A. Wold, 1960. Recursive vs.

nonrecursive systems: An attempt at synthesis.

Econometrica, 28: 417-427.

Vrany, J. and A. Bergel, 2009. A debugger for the

interpreter design pattern. Software Data Technol.,

22: 73-85. DOI: 10.1007/978-3-540-88655-6_6

Wien, T.U., 2003. The structure of efficient interpreters.

J. Instruct. Level Parallelism, 5: 1-25.

