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ABSTRACT 

Until now, almost all tools that are used to analyze gas transportation networks are based on steady flow 
conditions. Some design problems can be solved by the assumption of a steady state. However, some 
circumstances force us to use transient analyses, which commonly include changes in customer demand, the 
failure of a compressor station or gas pipeline ruptures. In this study, the dynamic behavior of natural gas in 
transmission lines was investigated through Computational Fluid Dynamic (CFD) simulations. The system 
was modeled using the equations of continuity, motion (or momentum), energy and the ideal gas equation 
when considering turbulence effects in a two dimensional cylindrical lattice. The coupled partial differential 
equations were discretized based on the finite volume method. The accuracy of this method was verified by 
comparing the experimental field data with this approach, showing errors of approximately 4 to 4.5%, 
which shows the precision of this approach. Finally, an important case study was used as an application for 
the model and the best possible operating solution was proposed for a compressor station failure during 
peak demand times when the pipelines were operating at the maximum flow rate.  
 
Keywords: Gas Transmission Line, Mathematical Model, Transient gas Flow, Computational Fluid Dynamic  

1. INTRODUCTION 

The analysis of flows and pressure drops in pipe 
systems has been investigated by many different 
researchers and has usually been based on the assumption 
of steady state conditions (Chaczykowski et al., 2011; 
Nouri-Borujerdi and Ziaei-Rad, 2009; Osiadacz and 
Chaczykowski, 2001). Transient flows are generated in 
gas systems by a time dependency of the load at 
different distribution points and from adjustments 
made by system operators in response to the demands 
of the system. As larger loads are placed on existing 
systems, the ability to supply gas at contracted 
pressures during peak customer demand periods is 
reduced. To cope with this situation, a larger variation 
of the supply system input capacity must be provided, 
resulting in more severe transient flow effects and 
requiring that a careful watch be maintained to 

successfully operate the system. Dynamic effects are 
particularly important when calculating the effects of 
short term emergencies such as a temporary reduction 
in the supply resulting from equipment failure 
(Chaczykowski, 2010; Dorao and Fernandino, 2011; 
Majid et al., 2012).  

There have been many studies on the flow of 

compressible gases in pipelines published in 

textbooks, papers and technical documents. Adiabatic 

flows and isothermal flows are two limiting cases that 

are often considered (Churchill, 1980; Crane, 1988; 

Crowl and Louvar, 2002; Farina, 1997; Levenspiel, 

1998). Adiabatic flow conditions assume a flow through 

an insulated pipe. These conditions are usually valid for 

short pipelines where there is little heat transfer to or 

from the gas. Isothermal flow conditions assume that the 

flow through a pipe is maintained at a uniform 

temperature and these conditions are commonly assumed 
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when analyzing the flow of a gas in a non-insulated 

pipeline. Most natural gas pipelines are considered to be 

isothermal. Mekebel and Loraud (1983) experimentally 

investigated an unsteady compressible flow in a long gas 

transmission pipeline They concluded that the inclusion 

of heat transfer was necessary in the theoretical analysis, 

which was contrary to common assumptions that were 

made for isothermal or adiabatic flow systems.  

The numerical simulation of unsteady internal 

compressible flows has been the goal of many 

researchers over the years and several algorithms have 

already been presented for developing such simulations. 
The numerical methods that were previously used to 

solve systems of linear partial differential equations 
include the method of characteristics and a variety of 
explicit and implicit finite difference schemes (Osiadacz, 
1996; Taylor et al., 1962; Wylie et al., 1971). Neglecting 
the inertia term in the momentum equation will result in 
a less accurate simulation result.  

The dynamic behavior of the gas distribution pipeline 
network was simulated by MATLAB-Simulink. To 
simplify the computational process, some terms in the 
moment equation were assumed to be negligible through 
an estimation of their magnitudes, while maintaining the 
inclination term. The method of characteristics and the 
Crank–Nicolson method was applied to solve the model 
(Herran-Gonzalez et al., 2009).  

Mary et al. (2000) proposed an accurate second-

order algorithm for the simulation of unsteady, viscous 

and stratified compressible flows. The advantage of 

their method is its capability to address a broad range 

of subsonic Mach numbers, including nearly 

incompressible flows, with a single model that is based 

on the fully compressible Navier-Stokes equations. 

Gato and Henriques (2005) numerically modeled the 

dynamic behavior of high pressure natural gas flows in 

pipelines for a one dimensional compressible flow. The 

occurrence of pressure oscillations in natural gas 

pipelines as a result of the compression wave that 

originated from the rapid closure of downstream shut-

off valves was investigated.  
However, the advanced techniques that have been 

developed more recently in the area of computational fluid 
dynamics are now being investigated for solving the full 
conservation laws that govern the transport processes 
(Cadorin et al., 2010; Woldeyohannes and Majid, 2011; 
Zhou and Adewumi, 1995). In the work of Zhou and 
Adewumi (1995), a special type of hybrid Total Variation 
Diminishing (TVD) scheme with appropriate handling 
capability boundary conditions is developed, with the Roe 
scheme being used as the underlying algorithm. The 
formulation employed fixed point iterations rather than 

discrete time steps for developing the solution. Two 
recent reports in this area have been published by 
Cadorin et al. (2010) and Woldeyohannes and Majid 
(2011). The CFD commercial code ANSYS CFX 11.0 
was used to evaluate the pressure drop through a pipe in 
a stream of high pressure gas that was characterized by 
a high Reynolds number in the study conducted by 
Cadorin et al. (2010). The flow was considered to be 
three-dimensional and the effect of turbulence was 
contemplated in equations for the first time based on 
the assumptions of isothermal flow and a steady mean 
limit. Woldeyohannes and Majid (2011) presented a 
simulation model for the analysis of a Transmission 
Pipeline Network System (TPNS) with detailed 
characteristics of the compressor stations using Visual 
C++ codes based on the Newton-Raphson solution 
technique to determine the pressure and the flow 
parameters of the network under various conditions. 
The model evaluated the energy consumption for 
various configurations to select the optimal TPNS and 
could assist in decisions regarding the design and 
operations of the pipeline.  

Based on a review of the these papers, there is no 
comprehensive mathematical model using least 
restrictive hypotheses and a precise numerical technique 
that can be used to solve the model to be applicable in 

transient natural gas networks, which is the main purpose 
of this study and such as that developed in this study. 
Computational fluid dynamics are employed to solve the 
set of coupled partial differential equations that are 
developed from the conservation and turbulence equations 
without neglecting any terms. Finite volume and Multigrid 

methods have been used for discretizing the differential 
equations and achieving a convergence in the solution of 
algebraic equations. This scheme was found to be more 
stable, robust and accurate. Finally, one of the more 
practical applications of this simulation will be discussed. 

1.1. Development of the Mathematical Model 

The transient flows of gases in pipes are described by 

a two-dimensional approach. The basic equations that are 

used to describe the transient flows of gases in pipes are 

derived from the equation of motion (or momentum), the 

equation of continuity, the equation of energy and the 

ideal gas equation. We assume that the transmission line 

has a constant cross-sectional area and that the gas flow 

is highly turbulent.  

1.2. Conservation of Mass: The Continuity 

Equation  

Generally, the continuity equation is expressed in the 

form Equation 1 (Bird et al., 2006):  
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1.3. Newton’s Second Law of Motion: The 

Momentum Equation  

For gas flows in a pipe, the compressible Navier-

Stokes equations can be written for the axis and the 

radial directions, respectively (Bird et al., 2006) 

Equation 2a and 2b:  
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In these equations, uz and ur the axial and the radial 

velocity components, respectively.  

The dimensionless viscous stress terms are defined 

for the tensor components as follows:  
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In the above equations, µeff is the effective viscosity 

(µ+µt, where µt is the turbulent viscosity, defined 

according to the turbulence model that was used) 

(Blazek, 2005).  

1.4. Conservation of Energy  

The basic form of the energy equation can be written 

as follows (Blazek, 2005; Ziaei-Rad and Nouri-Broujerdi, 

2008) Equation 3:  

[ ]

r z r

( E p)( E)

t z

1 [r( E p)u ] b 1 (rb )

r r z r r

∂ ρ +∂ ρ
+ +

∂ ∂
∂ ρ + ∂ ∂

= +
∂ ∂ ∂

 (3) 

 
where, E is the total internal energy. The heat flux and 

the work performed by frictional forces in the energy 

equation are defined as follows:  
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where, keff is the effective conductivity (k+kt, where it is 

the turbulent thermal conductivity, defined according to 

the turbulence model that was used) (Blazek, 2005).  

1.5. Equation of State  

The equation of state for gases is related to the 

variables p, ρ and T. This equation is commonly expressed 

in the natural gas industry as follows Equation 4 (Kralik, 

1988; Wylie and Streeter, 1978):  
 
p RT= ρ  (4) 

 
The dynamic turbulent viscosity and the thermal 

conductivity are explained by the k-ε turbulence model 
(Blazek, 2005):  
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The kinetic energies of the turbulence and the 

dissipation terms are computed by solving two transport 
Equation 5 and 6 (Launder and Spalding, 1974):  
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where, Cε = 0.07 The right sides of Equations (5) and 

(6) contain the production and the destruction terms for 

ρk and ρε: 
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where, c1 = 0.129 and c2 = 1.83. By definition, the 
following expressions for D and P in 2D can be used:  
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The classical k-ε model is valid if the local Reynolds 

number is high. Therefore, it is not adequate to describe 

regions that are close to a solid wall. The idea is to use a 

two-layer approach by coupling K-ε the model to a one-

equation model automatically, which enables us to 

compute the flow up to the wall with no empirical work 

required. However, this approach requires more 

computational resources as a finer mesh should be used. 

This method comprises introducing a local Reynolds 

number w wy (where y k y / )+ + = ρρ µ , where the subscript w 

refers to the point that is closest to the wall and y is the 

distance between the current point and this point. To 

compute y
+
 at values that are less than 200, is used 

according the following transport Equation 7 (Apsley, 2007):  
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/Iε and the dynamic viscosity of 

turbulence is based on the relationship t c kIµ µµ = ρ . lµ 

and lε are two length scales that include the damping 

effects in the near wall regions and are defined as follows: 
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where, c3 = 70 and c4 = 0.41 (Crowl and Louvar, 2002). 

2. MATERIALS AND METHODS 

2.1. Simulation Details  

As mentioned in the introduction, the target of this 
study is to dynamically simulate the flow of natural gas 

in gas transmission lines to evaluate the sensitivity 
analysis of the effective parameters.  

Therefore, the third Iranian Gas Trunkline (IGAT ΙΙΙ) 
that is used to transport natural gas from the south to the 
north of Iran for domestic consumption was examined. 
The composition of the gas in this trunk line and the main 
characteristics of this gas transmission system are shown 
in Fig. 1 and Table 1.  

The pipelines between compressor stations six, seven 
and eight were selected for investigation. A grid 
refinement study was conducted to determine an adequate 
distribution and to ensure that the solution was not mesh-
dependent. Finally, a mesh containing 873,760 and 
1,103,583 cells were generated for the pipelines Ι and ΙΙ. 

2.2. Numerical Techniques  

CFD is a helpful tool for researchers and engineers to 

predict and analyze fluid flows and has been used since the 

early 1980s (Patankar, 1980). CFD is a numerical solution 

approach that is used to solve the coupled and highly non-

linear set of equations that characterize fluid flows and other 

engineering problems, such as chemical reactions.  
As a first step in this numerical technique, the solution 

space or the domain is broken down into a large number of 
individual cells. Generating a good mesh for a particular 
flow situation is extremely important for CFD techniques. 
The equations are integrated over the volume of each cell in 
a discrete manner, which is also known as the Finite 
Volume Method. The introduction of a general variable φ to 
the conservative form of all fluid flow equations can be 
written as follows (Versteeg and Malalasekera, 2007) 
Equation 8:  
 

CV CV

CV CV

( )
dV div( u)dV

t

div( grad )dV S dVφ

∂ ρφ
+ ρφ

∂

= Γ φ +

∫ ∫

∫ ∫
 (8) 

 
Equation (8) is the transport equation for the property 

φ. It clearly highlights the various transport processes: 
the rate of change term and the convective term on the 
left side and the diffusive term (Γ = diffusion coefficient) 
and the source term on the right side. To determine the 
common features among all these terms, we have to hide 
the terms that are not shared between the equations in the 
source terms. Applying the Gauss Divergence Theorem, 
Equation (8) can be rewritten as follows Equation 9:  
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In time-dependent problems, it is necessary to 
integrate using small increments of time ∆t (from t to 
t+∆t). The general forms of these integrals result in the 
following transport Equation 10:  
 

t CV

t A t A t CV

( )dV dt
t

n.( u)dAdt n.( grad )dAdt S dVdt

∆

φ φ

∆ ∆ ∆

 ∂
ρφ +  ∂  

ρφ = Γ φ +

∫ ∫
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 (10) 

 

The integration of these equations employed an 
accurate second-order finite-volume method where the 
transport equations were discretized following a 
conservative control-volume approach, with the values of 
the dependent stored in the computational cell centers. 
Approximations of the diffusion and source terms were 
made using central differencing and a second-order 
upwind difference scheme was applied with respect to the 
convective and pressure fluxes. When an extended time 
period was used in this study (∆t = 1200s) an implicit 
scheme for unsteady state flows and the SIMPLER 
algorithm (Patankar, 1980; Patankar and Spalding, 1972) 
have been used to resolve the coupling between the 
velocity and the pressure. It is clear that the implicit 
method for any time period is unconditionally stable 

(Gerald and Wheatley, 2004) and for this reason, this 
method is recommended for solving transient fluid 
problems using CFD techniques. The values that are 
required for integration at the boundary of each cell are 
evaluated based on the neighboring cells and the 
boundary conditions that are supplied by the user. When 
the integrated equations at each cell are collected, they 
form a matrix of algebraic equations that can be solved 
using iterative numerical techniques. The Gauss-Seidel 
and the Incomplete LU decomposition (ILU) iterative 
methods (Axelsson, 1996) have been employed for scalar 
and coupled systems, respectively, because their 
application in computer programs is straightforward. 
However, in complicated problems, the convergence of 
the solutions is very slow. The Multigrid method 
(Chung, 2010) was utilized to overcome this problem 
and accelerate the convergence. 

The total number of iterations to obtain the final 

converged results ranged from 650 to 700. The numerical 

computation was considered to be converged when the 

residual sum across all computational nodes at the nth 

iteration was less than or equal to 1.0e-05 for continuity 

and the velocities in the r and z directions. The 

convergence criterion for the energy equation was 1.0e-08, 

while the convergence criterion for k and ε was 1.0e-04).
 

 
 

Fig. 1. The structure of the gas transportation system 

 

Table 1. Gas composition and main characteristics of IGAT-ΙΙΙ 

Components Mole percent Operating conditions Physical properties  

CH4 89.1700 Operating pressure (bar) Mw = 17.774  

C2H6 5.4400 72.375  

C3H8 0.5800 Total length (Km) k = 4.0033×10−2  

  820.0000 (W/m.K)  

i-C4H10 0.0300 Capacity (MMScMD) h = 25 (W/m2.K)  

n-C4H10 0.0300 90 a

ave
Z 0.8875=  

i-C5H12 0.1300 Inlet temperature (K) Cp = 2533 (J/kg.ºC)  

n-C5H12 0.0009 318.15 Cv = 1697 (J/kg.ºC)  

n-C6H14 0.0000 Pipe Diameter (inch) µ = 1.34 10-5 

n-C7+ 0.0000 56 (kg/m.s)  

N2 3.6600 Pipe wall thickness (mm) R = 476.76 (J/kg.ºC)  

CO2 0.9600 19.2 Roughness = 0.03  

H2S 0.0002 No. of compressor stations (mm)  

H2O 0.0000 8  

a-Compressibility factor was calculated for every discretization section of the pipeline using SGERG 88 (ISO, 2006) equation 
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Fig. 2. The flow domain and the boundary conditions 

 

 
 

Fig. 3. The changes in the pipeline flow rate with time 

 

2.3. Boundary Conditions  

 The boundary conditions for gas flow in a 2D 

pipeline are shown in Fig. 2.  

2.3.1. Steady state condition  

• Fluid boundary  

• Inlet: P, u, T are definite and ρ is defined according 
to the state equation 

• Outlet: The general condition of the fluid, which is 
commonly applied in the finite volume method, is as 
follows (Ferziger and Peric, 2002): 

 

n
T / n 0and u / n 0∂ ∂ = ∂ ∂ =  

 
A defined Pout aiming considered mass flow rate.  

where, n is the normal outward vector of the outlet 

surface.  

• Solid boundary  

• No slip condition u = uw = 0  

• Constant temperature on the wall T = Tw  

• Symmetric boundary condition  ∂φ/∂n = 0 

2.3.2. Initial Conditions for Unsteady State  

The parameters P, u, T and ρ must be specified 
according to their initial values at t = 0 Therefore, the 
steady state condition data are also the initial conditions 
of the unsteady state.  

3. RESULTS 

When the CFD technique is used, a comparison 
between the simulation data that was produced from 
this amethod with the experimental (actual) data or 
from other successful projects is necessary to verify the 
accuracy of the simulated data. 
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Fig. 4. A comparison of the pressure outlet changes between the field data and the predicted results 

 

To illustrate the practicality of using this numerical 

simulation method on a gas transmission network, we 

compare the computational results with the real field 

data measured on-site from the Iran National Gas 

Company. Figure 3 shows the change in the gas flow 

rate in the pipeline over time. Figure 4 demonstrates 

the outlet pressure change as a function of time as the 

flow rate changes for both the simulated data from CFD 

and the information that was obtained from the 

National Gas Company According to the above figures, 

the field data and the predicted results show a 

satisfactory correlation, which implies that the CFD 

method is significantly accurate in predicting and 

analyzing the natural gas flow parameters in 

transmission pipelines, with an error of only 4 to 4.5%. 

4. DISCUSSION 

Hereon, an important case study related to the main 

goal of this study will be studied. During peak demand 

times in winter, the pipelines are operated at their 

maximum allowable flow rates. Therefore, compressor 

stations must operate with their maximum compression 

ratio to achieve desirable pressures at the end of the line. 

During these critical days, if one of the compressor 

stations fails to work for any reason, what changes have 

to be introduced into the pipeline system? What can be 

done to solve this problem? These questions will be 

discussed in the following paragraphs. 
It is assumed that natural gas is flowing in the 

pipeline at the maximum operating flow rate (90 
MMScMD). Compressor stations 6 and 7 compress the 
gas to a maximum operating condition of 72.74 bar or 
1055 psi in the input line. The input gas temperature is 
50°C. The natural gas pressure gradient along the length 
of the pipe under these conditions is shown in Fig. 5.  
The gas pressure is reduced to 57.13 bar at station 7 and 

it is compressed to 72.72 bar. Eventually, the pressure at 

the end of the line (station 8) is reduced to 47.81 bar, 

which is extremely close to the critical pressure (or the 

minimum allowable pressure) of 47.07 bar. 

If compressor station 7 suddenly fails to work under 

these conditions, the outlet pressure changes in line ΙΙ as 

a function of time as illustrated in Fig. 6. 
As shown, the compressor failed at 2 o’clock. A 

sudden pulse was observed simultaneously at the end of 
the line and the output pressure was reduced slowly to a 
steady value of 22 bar. 

In gas transmission lines, when the pressure at the 
end of the line is dropped to less than 47 bar, the gas 
flow is cut from that compressor station onward. 

One of the general solutions for this issue is to reduce 

the gas flow rate in the line. The gas pressure drop would 

decrease and the outlet gas pressure would therefore 

increase because of the reduction in the flow rate. 
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Fig. 5. The gas pressure gradient along the length of the pipeline during periods of peak demand 
 

 
 

Fig. 6. The change in the outlet pressure with time after a sudden shutdown of compressor station 7 
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Fig. 7. The changes in the outlet pressure as a function of the flow rate at steady state 

 

 
 

Fig. 8. The changes in the outlet pressure when the flow is reduced over time 
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The changes in the outlet pressure with flow rate at 

steady state can be seen in Fig. 7. If the flow rate is 

decreased to a value of 65 MMScMD, the outlet 

pressure is increased to 48.63 bars, regaining a proper 

pressure in the pipeline. 

According to Fig. 8 when the outlet pressure was 

reduced to a steady value of 25.08 bar, there was a 

reduction in the flow rate after 22 h. The reduction in 

the flow reduction was conducted stepwise such that 

the outlet pressure increased to a steady value of 

48.63 bar in h 36. 

In this study, the natural gas flow rate in the pipeline 

was cut for approximately 25 h between hours 3 and 28. 

Using natural gas storage facilities would be very helpful 

during these situations to alleviate the gas production 

shortages.  

5. CONCLUSION 

In this study, the natural gas flow was modeled based 

on transient conditions in transmission lines. Mass 

transfer, momentum and energy equations were used for 

modeling the flow. Turbulence flow effects were applied 

in equations based on the two dimensional geometry of 

the system. For solving the set of six PDE coupled 

equations, Computational Fluid Dynamics (CFD) and the 

finite volume method were used to discretize the 

equations. The results that were obtained from this 

method were compared with the experimental data that 

was produced by National Gas Company. The errors 

between these comparisons were approximately 4 to 4.5 

percent, which showed that the data generated from this 

model was accurate.  

The results provide interesting insights into the 

transient behavior in transmission pipelines under 

operational scenarios and also indicate that a decrease 

in the flow rate leads to an increase in the outlet 

pressure at the pipe. In other words, in order to 

decrease the pressure loss, one should reduce the flow 

rate of the natural gas.  
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