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ABSTRACT 

This study presents our findings on the fusion of Imaging Spectroscopy (IS) and LiDAR data for urban feature 
extraction. We carried out necessary preprocessing of the hyperspectral image. Minimum Noise Fraction 
(MNF) transforms was used for ordering hyperspectral bands according to their noise. Thereafter, we 
employed Optimum Index Factor (OIF) to statistically select the three most appropriate bands combination 
from MNF result. The composite image was classified using unsupervised classification (k-mean algorithm) 
and the accuracy of the classification assessed. Digital Surface Model (DSM) and LiDAR intensity were 
generated from the LiDAR point cloud. The LiDAR intensity was filtered to remove the noise. Hue Saturation 
Intensity (HSI) fusion algorithm was used to fuse the imaging spectroscopy and DSM as well as imaging 
spectroscopy and filtered intensity. The fusion of imaging spectroscopy and DSM was found to be better than 
that of imaging spectroscopy and LiDAR intensity quantitatively. The three datasets (imaging spectrocopy, 
DSM and Lidar intensity fused data) were classified into four classes: building, pavement, trees and grass 
using unsupervised classification and the accuracy of the classification assessed. The result of the study shows 
that fusion of imaging spectroscopy and LiDAR data improved the visual identification of surface features. 
Also, the classification accuracy improved from an overall accuracy of 84.6% for the imaging spectroscopy 
data to 90.2% for the DSM fused data. Similarly, the Kappa Coefficient increased from 0.71 to 0.82. on the 
other hand, classification of the fused LiDAR intensity and imaging spectroscopy data perform poorly 
quantitatively with overall accuracy of 27.8% and kappa coefficient of 0.0988. 
 
Keywords: Data Fusion, Feature Extraction, Urban Mapping, Hyperspectral, LiDAR 

1. INTRODUCTION 

The geometric expansion of urban population around 
the world and other geohazard related issues brought the 
need for sustainable urban planning and management for 
socioeconomic development and environmental 
protection into a limelight. Efficient urban management 
entails having an up-to-date infrastructural database that 

will enhance informed, timely and cost effective decision 
making. According to Blaschke (2010), one of the 
primary aims of remote sensing is to significantly 

provide accurate and up-to-date urban landscape. Since 
Landsat-1 was launched into the orbit in 1972 by the 
United States National Aeronautics and Space Agency 
(NASA), optical remote sensing data have been widely used 
to collect data over a wide coverage providing accurate and 
high spatial 2D information about the earth's surface for 

various applications (Chen et al., 2009; Yin et al., 2012). 
The advantages of optical imagery include rich spectral 
and textural information and clear feature boundaries 
delineation (Chen et al., 2009; Johansen et al., 2010). 
However, light and weather dependency of optical sensors, 
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complexity of spectral and textural information of urban 
environment (Yu et al., 2009) and the absence of height 

components limit the amount of information that can be 
derived from them. Thus, optical sensor data alone lacks the 
capability of meeting todays’ need for 3D analysis. 

In a similar development, progress in Light Detection 

and Ranging (LiDAR) sensor technology for dense 3D data 

collection allows the geometrical properties and surface 

roughness of both natural and man-made objects to be 

obtained (Guo et al., 2011; Jiangui and Guang, 2011). In 

fact, LiDAR data and its derived products have become 

acceptable component of national geospatial database 

similar to the way orthophotos took over geo database in the 

1990 s (Rottensteiner, 2010). The use of LiDAR data has, 

therefore, enhanced generation of accurate and up-to-date 

data for urban landscape, infrastructure inventory and 

vegetation monitoring (Edson and Wing, 2011), which has 

been the aim of remote sensing professionals. 

LiDAR provides good 3D geometry of urban feature 

and can discriminate distinct patches of the same 

material covered objects at different height (Chen et al., 

2009; Johansen et al., 2010). For example buildings of 

different heights, road, bare ground and different 

vegetation cover (Edson and Wing, 2011) can easily be 

distinguishable in LiDAR image. In addition to these 

benefits, LiDAR intensity is not affected by shadow 

and is less affected by natural illumination conditions. 

Despite these advantages, issues of undersampling, 

coarse resolution, limited textural information in the 

laser returns, inability to sharply delineate feature 

boundaries and poor performance over waterbody 

(Dong et al., 2009; Mancini et al., 2009) are the major 

challenges facing complete extraction of urban 

information from LiDAR data only. 

According to Awrangjeb et al. (2010) and Yu et al. 

(2009), combination of man-made and natural features 

complicates the extraction of feature using single remote 

sensing data. Despite the successes (Shafri et al., 2012a; 

2012b; Shafri and Zeen, 2011; Taherzadeh and Shafri, 

2011) about the use of imaging spectroscopy for urban 

characterization, the maps produced are insufficient for 

3D representation of the urban environment. As a result 

of this, the concept of data fusion has received the 

attention of the research community of late. Data fusion 

technique involves the principle, theory and technology 

of combining data from different sensors to improve the 

representation and quality of information extraction 

(Yang et al., 2010). Data fusion has the advantages of 

giving better characterization and understanding of the 

study area, improve feature extraction, improve visual 

analysis and provide a base for planning and decision 

making (Chen et al., 2009; Dong et al., 2009). On the 

application side, pattern recognition, visual 

enhancement, object detection and reconstruction, area 

surveillance, land use and land cover classifications 

have benefited immensely from data fusion. 

Several studies have been done combining satellite 

image with LiDAR data (Cartus et al., 2012; Edson and 

Wing, 2011; Hartfield et al., 2011). At the same time, 

nearly a dozen algorithms have been developed to fuse 

data from different sensors in order to complement the 

advantages of the respective sensor for optimal 

information extraction. Chen et al. (2009) employed 

hierarchical object oriented algorithm to classify nine 

kinds of urban land cover objects in Kuala Lumpur city 

centre by fusing LiDAR and QuickBird data. Dempster-

Shafer theory of evidence is another fusion method that 

have been widely used in remotes sensing, computer vission 

and pattern recoginition. Typical applications include 

landslide susceptibility mapping (Althuwaynee et al., 

2012), land cover classification (Tabassian et al., 2012) 

andforest species and height estimation (Mora et al., 

2013). Also, Kada and McKinley (2009) fused building 

footprint and LiDAR data for 3D building reconstruction 

in the cities of East Berlin and Cologne, while 

Kabolizade et al. (2010) used improved snake model to 

automatically extracted building from fusion of aerial 

image and LiDAR data in the city of Taft, Iran.  

Similarly, Li et al. (2010)experimented an Adaptive 

edge detection algorithm based on image fusion. In his 

study, Chen et al. (2009) equally employed hierarchical 

objects oriented method to classify nine urban cover types 

in Kuala Lumpur city centre from the fusion of Quickbirds 

and LIDAR data. Arroyo et al. (2010) integrates the 

similar data types (Quickbirds and LIDAR data) to map 

riparian biophysical parameters and land cover types in 

Australian tropical savana and Ke et al. (2010) used it for 

object-based forest species classification. Other 

researchers include (Demir et al., 2009) who detected 

building at Zurich Airport (Switzerland) from the 

integrated aerial image and LiDAR data. In Mannheim 

area (Germany), Mancini et al. (2009) extracted building 

and road from LiDAR and multispectral fused image using 

AdaBoost classifier with CART as weak classifier. Also, 

Awrangjeb et al. (2010) automatically detected residential 

building by fusing LiDAR data with image Details on the 

standard multi-sensor fusion algorithms can be found in 

Dong et al. (2009) and Jiang et al. (2011). 
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In spite of the progress made in research directed at 

extracting urban features from Multi-sensor data fusion, 

there are few publications available that combine other 

sensors with the wealth of information contained in 

imaging spectroscopy for the same purpose. Buckley et al. 

(2013) combined hyperspectral and LiDAR data for 

geological out crop analysis, floodplain classification 

(Verrelst et al., 2009) and civil engineering structural 

monitoring (Brook et al., 2010). Most of the other work 

on LiDAR and imaging spectroscopy data fusion 

(Colgan et al., 2012; Dalponte et al., 2012; Ghosh et al., 

2013; Jones et al., 2010); focus on vegetation 

applications. The growing interest in urban precise 

engineering mapping, deformation monitoring and the 

critical time factor involved in selecting training sites for 

supervised classification, especially for large areas or 

during emergency situations, motivates this study. The 

goal of this study is to evaluate quality of fused data, 

assess the performance of automatic classification for 

urban features extraction from fused imaging 

spectroscopy and LiDAR data and, as well, its influence 

on 3D modeling for visualization. 

2. MATERIALS AND METHODS 

2.1. Study Area and Data Description 

The Advanced Imager Spectrometer for Applications 

(AISA) and TerraScan LiDAR data collected over part of 

the University Putra Malaysia (UPM) campus, located in 

Selangor, Malaysia, were used for this study. The 

vicinity of the Institute of Advanced Technology 

(ITMA) (03° 04’N and 101° 43’E) was selected because 

it fairly represents a characteristic urban setting with a 

mixture of man-made and natural features (academic 

buildings, roads, trees and green areas). Figure 1 shows 

the study area within the campus. AISA-Classic is an 

airborne hyperspectral imaging spectrometer designed 

and built by Spectral Imaging Ltd (Specim), Finland. 

The image consists of 20 spectral bands with a spectral 

range of 400-970 nm in the visible and near-infrared 

spectrum of the electromagnetic energy with a spatial 

resolution of 1m and spectral resolution of 2.9 nm. The 

image was acquired in 2004 by Aeroscan Precision (M) 

Sdn Bhd. The LiDAR data were acquired in 2009 using 

Riegl LiDAR sensor and cannon III camera on-board 

aircraft flying at an altitude of approximately 5000 m 

above MSL. The LiDAR data have an average point 

density of 2.3 points/m2.  

2.2. Data Preprocessing 

2.2.1. Imaging Spectroscopy Data Processing 

Data processing was done in ENVI 4.8. Figure 2 

shows the data processing workflow. The area of interest 

was subset and pre-processing commenced with 

atmospheric correction using the Internal Average 

Relative Reflectance (IARR) empirical approach. IARR 

uses the average pixel radiance for the scene and 

calculates the ratio of the spectrum for all pixel radiance. 

This process removes the atmospheric disturbances that 

affect the data during acquisition. Image to image 

registration was carried out using the LiDAR derived 

image to correct for geometric effects. Thereafter, 

Minimum Noise Fraction (MNF) transformation was 

carried out to reduce noise and spectral dimensionality in 

the data and to determine the inherent dimensionality. 

Unlike Principal Component Analysis (PCA), MNF 

orders the transformed image according to their noise 

fraction. The first 10 bands were found to have less noise 

and were selected for further processing. 
The Optimum Index Factor (OIF) is a statistical 

method for selecting most suitable or favorable three 
band combinations by ranking the band subset 
according to their information content. OIF was 
necessary because of the constraint imposed by the HSI 
technique to use three or less bands at a time (Dong et al., 
2009). OIF was performed in R-programming and 
bands (2-3-10) were found to be the best (Fig. 3b). 
Subsequently, unsupervised classification (K-mean 
algorithm) was used for classification and the accuracy 
estimated using confusion matrix that produces overall 
accuracy of 84.6% and kappa coefficients of 0.71. 

2.3. LiDAR Data Processing 

The two products, DSM and LiDAR intensity 

images, derived from the x y z point cloud were 

processed using the ENVI Toolkit, BCAL LiDAR. 

First, the DSM that includes not only the bare earth, 

but also the elevation of all other features above the 

earth’s surface was created (Fig. 4a). The DSM was 

resampled to 1m resolution and used for geometric 

correction of the imaging spectroscopy. LiDAR intensity 

is usually generated from the specific reflectance 

properties of the transmitted short near-infrared laser 

pulse (Brook et al., 2010; Hofle et al., 2012; Trinder 

and Salah, 2011). The intensity image created from 

the LiDAR data was noisy, characterized with pepper 

and salt appearance, hence, convolution and 

morphological filtering was employed to reduce the 

noise before fusion (Fig. 4b). 
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Fig. 1. The study area covering part of Universiti Putra Malaysia (UPM) main campus extracted from Google Earth 
 

 
 

Fig. 2. Data processing workflow 
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 (a) (b) 
 

Fig. 3. Hyperspectral data of the study area (a) CIR composite (b) Selected OIF 3 best bands 
 

 
 (a) (b) 
 

Fig. 4. LiDAR derived products (a) DSM (b) filtered LiDAR intensity image 
 

2.4. Data Fusion  

All data fusion techniques combine data from 

multiple sensors at different levels: decision, feature and 

pixel (Dong et al., 2009) in order to achieve improved 

accuracy, identification and extraction of features better 

than it could be achieved using a single sensor. The 

complexity inherent in feature extraction in urban areas 

motivates us to fuse imaging spectroscopy and LiDAR data 

so as to exploit the hyper-spatial, hyperspectral and the 

spatial geometrical configuration for accurate and complete 

mapping of the terrain characteristics. Dong et al. (2009) 

explicates the popular fusion an algorithm, among which is 

the HSI used in this study. HSI algorithm transforms 

color images from the Red-Green-Blue (RGB) into HSI 

color space (Krzywinski, 2011). The Intensity (I) band 

defines the total sensitivity (brightness) of the scene to 

all visible colors and ultraviolet light. The band is 

represented as a series of shades from white to black, 

thus, looks like a panchromatic image. The HSI fusion 

processes replace the intensity band with a high-

resolution image (like DSM) and perform a reverse 

transformation of the new intensity band (DSM and 

LiDAR intensity in this case) with the hue and saturation 
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bands producing the HSI fused image. Hue expresses the 

more important wavelength of the pixel and saturation 

measures the color concentration. The RGB color space 

is converted to HSI using the expression in Equation 1-3: 
 

2

1
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2H Arccos
(R G) (R B)(G B)

− −

=

− − − −

 (1) 
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I

3

+ +
=  (3) 

 
where, RGB represents the red, green, blue colour image 

(Krzywinski, 2011). 

The advantages of the HSI include easy 

implementation, time efficiency, improvement of the 

spatial resolution and producing near human-eye color 

perception image output (Dong et al., 2009). However, 

limitation of HSI to three or less images and distortion of 

spectral information are the major drawbacks of the 

method. In this study, imaging spectroscopy and DSM as 

well as imaging spectroscopy and LiDAR intensity image 

were fused. The results are presented in Fig. 5. Further, the 

fused data were classified and the classification accuracy 

assessed. This produced overall accuracy of 90.2% and 

kappa coefficients of 0.82 for the former and 27.8% and 

0.0988 for the later. Despite the poor result obtained from 

intensity fused data, visually the data reveals some useful 

information that could have not been obtained from the 

respective single sensor. In addition to the 2D visualization, 

the fused data draped on DSM also provides a clue to 

uncover some urban spatial pattern and distribution. 

2.5. Data Classification 

Data classification involves the representation of 

remote sensing image pixels (digital numbers) into land 

cover classes. Supervised and unsupervised classification 

algorithms are the commonly used hard classifiers. In 

both cases, the algorithms group the DN into themes 

based on their spectral similarities. For the supervised 

classification, prior knowledge of the study area, 

adequate definition of land cover classes and careful 

selection of training samples are required. However, 

where timely decision making is a priority (like during 

emergency situation), it may be tedious and, therefore, 

ineffective hence, the use of unsupervised classification 

for this study. We classified four urban features: buildings, 

pavement, trees and grass from the fused data. 

Unsupervised classification is simple and fast without the 

need for expert knowledge, training sites or ancillary data, 

meanwhile accuracy may be compromised. 

3. RESULTS 

Remote sensing systems contain quantitative 

information about the urban environment. So, combining 

information from different sensors can strategically help in 

assessing the efficiency of complete urban feature 

extraction. Most especially in the phase of today’s dynamic 

and complex urban scenarios, time is critical to database 

updating for timely decision making. This study assesses 

the effectiveness of unsupervised classification for urban 

feature extraction from fusion of imaging spectroscopy and 

LiDAR data through analysis of the following results: fused 

imaging spectroscopy with DSM and intensity image 

described (Fig. 5), qualitative assessment of fused imaging 

spectroscopy and DSM (Fig. 6), classification results (Fig. 

7) and 3D view of the classified data to reveal spatial 

configuration of the study area (Fig. 8). 

4. DISCUSSION 

The fused DSM and LiDAR (Fig. 5) reveal some 

important information that highlight the potentials of 

fusion. Looking at LiDAR intensity on its own provide 

vital information. Likewise fusion of intensity with 

imaging spectroscopy give distinct characteristic of 

pavement (Fig. 5b). Hartfield et al. (2011) attributes this 

to the homogenous reflection property of road in the 

SWIR returns of the laser pulse. Qualitatively, LiDAR 

intensity is quite useful for visualization of urban features 

in agreement with (Arroyo et al., 2010). However, this 

study indicates that image intensity is not an appropriate 

input for pixel-based classification, though it demonstrate 

it could be useful for road extraction. Similar to LiDAR 

intensity, fusion with DSM (Fig. 5a) improves 

identification of urban features better than in the 

individual sensor data (Fig. 6). Every tree crown stands 

out clearly such that it is even possible to count individual 

tree in the image. Also, the distortion of the building edges 

(which could be due to sensor-platform movement) was 

corrected in the fused image (Fig. 6a, c). From the 

imaging spectroscopy, one can clearly see the jagged 

edges of the buildings which are corrected for in the DSM 

fused data with well defined edges (Fig. 6a and 6b). 

Again, the fusion process eliminate shadow effects due to 

illumination angle and cloud,and provide better 

discrimination of the roof materials (Fig. 6e and f) better 

than from the imaging spectroscopy data only.
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 (a) (b) 
 

Fig. 5. Fused data (a) imaging spectroscopy + DSM (b) imaging spectroscopy + LiDAR intensity 
 

 
 

Fig. 6. Qualitative assessment of the fused data and imaging spectroscopy: (a) imaging spectroscopy, (b) classification of ‘a’, (c) 

fused data, (d) classification of fused data, (e) 3D view of imaging spectroscopy data and (f) 3D view of the fused data 
 

 
 (a) 
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(b) 

 

Fig. 7. Result of classification. (a) Classified imaging spectroscopy (left) and classified DSM fused data (right) (b) classified 

intensity fused data (bottom) 
 

 
 

Fig. 8. 3D visualization (a) Classified Imaging spectroscopy (b) fused DSM and imaging spectroscopy 
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Table 1. Classification accuracy assessment result 
 Imaging spectroscopy IS + DSM IS + Intensity 

Overall accuracy 84.60% 90.20% 27.8000% 

Kappa coefficient 0.71 0.82 0.0988 

 

Classification of the fused datasets highlight some 

significant information. Obviously, DSM fused data 

perform better than fused LiDAR intensity in terms of 

identification and extracted of urban features. In the 

classified DSM fused data, trees and grasses are 

distinctively classified into their respective feature 

classes without much misclassifications (Fig. 7a-right) 

contrary to classified imaging spectroscopy data with 

pronounced misclassification (Fig. 7a-left). Another 

interesting observation is the classification of buildings 

with well-defined outline. Moreover, the effect of 

shadow in the imaging spectroscopy (around the 

buildings, trees and shadow caused by the cloud in north-

east of (Fig. 3a) result into misclassification. This effect 

is improved with fusion. Meanwhile misclassifications 

still exist but not as much as it is in single sensor data.  

For the fused LiDAR intensity, the classification 

perform poorly in feature extraction (Fig. 7b). This 

reflects the extent of spectral distortion (Hartfield et al., 

2011; Mao et al., 2009) caused by the low accuracy of 

the LiDAR intensity and undersampling. Since HSI 

fusion methodology replaces the intensity (I) band with a 

higher resolution panchromatic image, LiDAR intensity 

cannot be assumed to be suitable because the reflected 

intensity is not calibrated and the laser footprint size is 

much more smaller than the sampling (Mao et al., 

2009). Hence, may not meet the required resolution for 

the fusion technique and therefore produces noisy 

classification result. Aside from this factor, Yu et al. 

(2009) noted that pixel-based classifiers are not 

designed for classification of multi-sensor data of 

different accuracies because of their reliance on 

statistical representation.  

Quantitatively, the classification accuracy estimated 

by confusion matrix indicates better result with respect to 

the imaging spectroscopy and DSM fused data as shown 

in Table 1 with an increase in the overall accuracy from 

84.6 to 90.2% and the kappa coefficient from 0.71 to 

0.82. On the contrary, low accuracy of fused intensity 

data with a value of 27.8% and kappa coefficient of 

0.0988 calls for future investigations. 

3D visualization of the fused image is a useful for the 

identification of different urban features and land scape 

form. It can be seen in Fig. 8 that features are better 

discriminated in the classified fused data (Fig. 8b) when 

draped on the digital terrain model compared to the 

classified imaging spectroscopy only (Fig. 8a). The 

geometric component of LiDAR data impressively 

enhances the visualization of the shape and size of features 

which can be used as cues to urban feature extraction. It 

can be noticed that different roof shapes and structure, 

vegetation height and crown are clearly distinguishable. 

5. CONCLUSION 

In this study, hyperspectral and LiDAR data were 

fused to characterize four urban features: buildings, 

paved surfaces, trees and grasses from the fused data. 

The study highlights promising applications the fusion of 

the two dataset can be applied to. Fusion improves 

visually and statistically the identification, interpretation 

and extraction of urban features. Features like roads, 

trees, buildings can clearly be discriminated from fused 

data. The advantages include enhancement of data 

quality, visualization, improved 3D modelling and the 

potential to differentiate metallic from non-metal roof 

types. Though unsupervised classification gives good 

result, it is, however,not optimal for detailed level 

feature extraction from fused imaging spectroscopy and 

LiDAR data. Nevertheless, accuracy of the fused data 

improved compared to hyperspectral data only. From the 

fused data, four urban features: buildings, paved surfaces, 

trees and grasses were extracted from the fused data. The 

study signals optimism in 3D urban landscape mapping 

fromthe geometric properties provided by LiDAR.More 

research needs to be focused on multi-sensor data 

integration algorithms, classification methods and the 

development of new techniques to exploit information 

from LiDAR intensity. Meanwhile, the following factors 

may affect the quality of result obtained in this study: 

low spatial resolution of LiDAR data and time interval 

between data acquisition. Improvement in these 

weaknesses will definitely improve the accuracy of 

fusion and the resulting classification.  
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