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Abstract: Problem statement: Flexible Printed Circuit or FPC, one of automotive electronic parts, 
has been developed for lighting automotive vehicles by assembling with the LED. The quality 
performances or responses of lighting vehicles are relied on the circuit width of an FPC and the etched 
rate of acid solution. According to the current operating condition of an FPC company, the capability 
of the manufacturing process is under the company requirement. The standard deviation of FPC circuit 
widths is at higher levels and the mean is also worse than specifications. Approach: In this process 
improvement there was four sequential steps based on the designed experiments, steepest descent and 
interchangeable linear constrained response surface optimization or IC-LCRSOM. An investigation 
aims to determine the preferable levels of significant process variables affecting multiple responses. 
Results: The new settings from the IC-LCRSOM improved all performance measures in terms of both 
the mean and the standard deviation on all process patterns. Conclusion: From this sequential 
optimization the developed mathematical model has tested for adequacy using analysis of variance and 
other adequacy measures. In the actual investigation, the new operating conditions lead to higher levels 
of the etched rate and process capability including lower levels of the standard deviation of the circuit 
widths and etched rate when compared.  
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INTRODUCTION 
 
 Flexible Printed Circuits (FPC) play a major role in 
all electronics industries. Nowadays, the market requires 
increasingly complicated and sophisticated electronic 
parts in terms of specifications (Tong et al., 2004). 
Therefore, quality excellence is very critical in the 
manufacture of flexible printed circuits. A collection of 
designed experiments and mathematical programming 
techniques have been applied for quality improvement in 
automotive electronic parts. Here, a case study on quality 
improvement of FPC through the systematic approach is 
presented. FPC is usually applied to mechanically 
support and electrically connect electronic components. 
This study particularly interests to improve the quality of 
the FPC which assembly with the LED for the lighting 
automotive vehicles.   
 The emission light and optical properties are 
mainly relied on the relationship of the etched rate of 
acid solution and circuit width, one of the key failure 
and break down to LED of lighting vehicles. The 

principles of the upward acid spray and the use of 
additives to reduce the etching ability are necessary for 
successful implementations (Coombs, 2007). So to 
validate on processing and to sustain finished goods 
with the permanent prevention, the precisely etched 
condition should be optimized. On characteristics of the 
FPC, the circuit width can be categorized into Top (T) 
and Bottom (B) circuit lines (Fig. 1). These are the 
varieties on the horizontal etching.  
 Currently, the circuit width of the FPC is at higher 
levels of standard deviation at 0.0017 and 0.0026 
millimeters (mm) on the top and bottom circuit widths, 
respectively. The average values of both circuit widths are 
at lower levels when compared to the target of 0.10 mm. 
According to the current process capability study, the 
sigma level of the FPC manufacturing process is not very 
satisfactory. Therefore, this etching process should be 
investigated in order to reach the optimal operating 
condition. For the preferable responses, this improvement 
applies four steps of experimental designs and analyses to 
find out the suitable levels of process variables.  
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Fig. 1: Crossed section of the circuit width 
 

MATERIALS AND METHODS 
 
 In an optimization, process variables can be both 
controllable and uncontrollable when applied to 
industrial experiments. The experiments are run by 
controlling the current levels of the uncontrollable 
process variables and then performing all or some of 
the combinations of the controllable process variable 
levels in a context of designed experiments with or 
without replications. Then, a new operating condition 
of the uncontrollable process variables is chosen and 
the sequential procedures are repeated. The objective of 
various industrial experiments is to determine the levels 
of the designed process variables that optimize a 
response via these general three steps.  
 The first is a screening experiment. Its objective is 
to reduce the many candidate process variables to a 
relatively few potentially important process variables 
that influence the process response. This also allows 
experiments in the following steps to be more efficient 
and use fewer experimental runs. The second step of 
steepest ascent (descent) is to bring useful information 
from the previous step to move through the 
experimental region in an attempt to get closer to the 
maximum (minimum). In some cases the process 
variables and related process limitations form the 
mathematical programming models such as the Linear 
Constrained Response Surface Optimization Model 
(LCRSOM). The last one is an optimization or process 
mapping. After a success to obtain a small region 
around the optimum a mathematical model of the 
system that approximates the true second-order 
response function is then formed to approximate 
curvature near the optimum by using statistical analysis 
of the experimental results. The model can be used to 
determine optimal operating conditions on the design 
process variables (Luangpaiboon et al., 2010). 
 
Designed Experiments (DE): Investigation of the 
Flexible Printed Circuit (FPC) process is relatively hard 
due to the complexity and number of process variables 
and multiple responses. Simple designed experiments 
can take long computational times to explore a complex 
process and the results mostly depend on the skill and 

experience of the experimenter. Designed experiments 
can determine and quantify how the interaction of two 
or more process variables affects the FPC process 
responses. It is also easier and faster with the designed 
experiments to demonstrate their relationships. A 
completely randomized design is one where the 
treatments are assigned completely at random so that 
each experimental unit has the same chance of 
receiving any one treatment (Brase and Brase, 2011). 
 Data obtained from the designed experiments can 
be analyzed using Analysis of Variance (ANOVA). 
ANOVA collects statistical models which compare 
means by subdividing the overall observed variance 
into different combinations. ANOVA shows whether 
model variance is statistically significant when 
compared to the experimental variance. Moreover, 
designed experiments with center design points will 
detect nonlinearity. Then, if nonlinearity is detected, 
other tests can be performed to determine which process 
variables are responsible for the nonlinearity. In most 
cases, other tests are not needed. A sequential strategy 
allows the organization to spend money on these extra 
tests only when they are needed (Ireson and Coombs, 
1988).  
 
Steepest Descent Method (SDM): The steepest 
descent method is one of the simplest and the most 
fundamental minimization methods for unconstrained 
optimization. Since it uses the negative gradient as its 
descent direction, it is also called the gradient method. 
After a first-order model has been formed, the 
regression coefficients from this linear model are used 
to determine the coordinates of related process 
variables along the path. Through the feasible 
experimental region the movement of process variables 
along the steepest descent path is proportional to the 
magnitude of the regression coefficient, with the 
direction based on the sign of the coefficient. The path 
of steepest descent moves a specific distance away from 
the center of designed process variables in the direction 
of the minimal response. The minimization procedure 
of the linear function uses Lagrange multipliers by 
taking the partial derivatives with respect to each 
process variable. 
 
Interchangeable Linear Constrained Response 
Surface Optimization Models (IC-LCRSOM): The 
response surface methodology or RSM is the 
combination of mathematical and statistical aspects to 
optimize the response. It is an empirical modeling 
technique devoted to the evaluation of relations existing 
between a group of controlled experimental process 
variables and the observed results of one or more 
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selected criteria (Iqbal and Khan, 2010). Many 
statistical techniques are used to solve multiple 
response problems such as overlaying the contours plot 
for each process response, constrained optimization 
problems and the desirability approach. In this research, 
a linear constrained response surface optimization 
model is recommended due to its simplicity, availability 
in the software and provides flexibility in giving 
importance for the specific response. Solving such 
multiple response optimization problems using this 
technique involves using a technique for combining 
multiple responses into interchangeable linear models. 
The multiple regression model of each response will be 
set as the objective and remaining regression models 
will turn to be merely the constraints. The outcomes 
from all the models will be overlaid and the preferable 
levels of process variables are then determined. 
 In this study, the interchangeable linear constrained 
response surface optimization model (IC-LCRSOM) is 
proposed to set up a relationship of the linear 
constrained responses and influential process variables. 
Originally, linear programs are problems that can be 
expressed in a canonical form (1). 
 

TMinimizeC M

subjecttoAX B

andX 0

≥
≥

  (1) 

 
where, X represents the vector of process variables (to 
be determined), C and B are vectors of (known) 
coefficients and A is a (known) matrix of coefficients 
of problem constraints. The expression to be maximized 
or minimized is called the objective function (CTX in 
this case). The constraints Ax ≥ B specify a convex 
polytope over which the objective function is to be 
optimized (Luangpaiboon, 2011). 
 

RESULTS 
 
 Due to the poor knowledge on process variables 
influence on multiple quality performance measures, 
the tests were carried out using a sequential 
experimental strategy.  The studied objective functions 
or process responses consist of the etched rate (RER), 
the circuit width difference from the target on the top 
(RTCW) and on the bottom (RBCW). There is no exact 
customers’ specification on the etched rate, but the 
minimal standard deviation is the most preferable. The 
target on both circuit widths is at 0.1 mm. This strategy 
aims to perform a number of experimental design tests 
that enable a determination of process variables which 
have significant effects on the process and 

determination of the optimum. In order to achieve this, 
the research was conducted by four steps.  
 The first is to identify the influential process 
positions that have a significant influence on the 
objective functions of the top and bottom circuit widths. 
The next step is to develop designed experiments in 
order to obtain the new levels of significant process 
variables affecting the etched rate. Under controlled 
levels of etched rate, the third is to develop the 
mathematical model and verification of its adequacy to 
move toward the optimum via the path of steepest 
descent based on the circuit width. Finally, it is an 
analysis of the new operating condition via the effects 
of different paths of steepest descent on various 
objective functions in forms of IC-LCRSOM in order to 
find the optimal working range via the overlaid 
mapping process. 
 In the first step, a completely randomized design or 
one-way Analysis of Variance (ANOVA) was applied 
to analyze the process responses on circuit widths. The 
experimental designs were performed to determine the 
statistically significant process conditions or the 
capability of measurement system which consist of the 
pattern and sheet positions. The process positions and 
feasible ranges are provided in Table 1. In this study, 
the numerical results shown that on both circuit widths 
the significant process is the pattern position at the 95% 
confidence interval (Table 2). The pattern position is 
then applied as the designed position in the next step. 
 In the second step, according to the results from 
the first step both circuit widths are unbalanced at 
each level of pattern position, so the second step aims 
to analyze the etched rate (RER). A two level 
experimental design with additional two centre design 
points was performed to determine the statistically 
significant process variables of A, B and C (an 
attribute). The levels of process variables (A, B, C) on 
the centre design points are (45, 3.0, -1) and (45, 3.0, 
1). Low and high levels including centre design points 
are selected cover values of feasible ranges in a 
production line (Table 3). Note that all levels as 
shown in this research are all coded. At the 95% 
confidence interval all sources of variation and their 
P-Value were shown in Table 4.  
 According to the results from the analysis of 
variance, A is the most important influential process 
variable, closely followed by B. There was no 
significant on all interaction effects including the main 
effect of an attribute process variable of C. From the 
main effect plot, appropriate levels of process variables 
A and B are set at 60 and 3.1, respectively. When the 
new operating condition has been applied, there is no 
improvement on the sample mean of  etched  responses.  
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Table 1: Process positions and their feasible ranges 
Position Level 
Pattern  MT, Cen1, Cen2, OP 
Sheet  S1-S15 

 
Table 2: ANOVA for base line analysis 
 P-Value  
 ----------------------------------------------- 
Position RTCW RBCW 
Pattern  0.000 0.000 
Sheet  0.881 0.954 

 
Table 3:  Process variables and their feasible and tested levels on the 

etched rate analysis 
  Tested levels 
Process Feasible --------------------------------- 
variable level Low High 
A 30-60 30.0 60.0 
B 2.0-4.0 2.9 3.1 
C Attribute -1.0 1.0 

 
Table 4: ANOVA with all main and interaction effects 
Sources P-Value for RER 
A 0.001 
B 0.029 
C 0.371 
A*B 0.791 
A*C 0.675 
B*C 0.169 
A*B*C 0.201 
Centre point 0.162 

 
Table 5: Process variables and their feasible and tested levels for 

circuit width analysis 
  Tested level 
Process Feasible ------------------------------------------- 
variable level Low Center High 
B 2.0-4.0 2.9 3.1 3.3 
D 3.0-4.0 3.4 3.5 3.6 

 

 
 
Fig. 2: Box-Whisker Plot of RER 
 
However, its sample standard deviation decreases from 
2.033-1.365.  

 The method of multiple regression analysis at the 
significance level of 5% is then applied for statistically 
significant process variables to determine the most 
preferable fitted equation of associated process 
variables of A and B on the response of the etched rate. 
According to the obtained experimental results the 
developed model is statistically accurate and can be 
used for further analyses. The fitted first order model in 
terms of actual process variables is shown Eq. 2: 
 
Expected RER = 63.14-0.1708A-13.875B             (2) 
 
 From the fitted model, design points are typically 
carried out one at a time on the path of steepest descent. 
After a setting in the process variables is determined, 
there are some steps along the path with the step size of 
0.2 before the response of etched rate starts to 
deteriorate. The preferable levels of process variables A 
and B are 60 and 3.8, respectively. When the new 
operating condition has been applied, the new etched 
rate is improved with the sample standard deviation of 
1.124. In summary, the etched rate has been continually 
improved with the P-Value of 0.000 (Fig. 2).  
 In the next step the process variable of A is then 
fixed at the suitable level of 60 to maintain the 
preferred level of etched rate from the previous step. 
The remaining variable of B, associated with the 
etching process, returns to be merely a process variable 
when focused on the responses of both circuit width. 
Another experiment with B and the additional process 
variable of D is then carried out. The low and high 
levels including centre design points are selected cover 
values of feasible ranges in a production line to 
investigate the response or the circuit width difference 
from the target as shown in Table 5. 
 Regression coefficients were calculated using the 
least-square method. Their estimated values including 
the most preferable fitted equation of associated process 
variables of B and D at the 95% confidence interval are 
listed in Table 6 and 7 for all studied objective 
functions or response on the top (RTCW) and bottom 
(RBCW), respectively. The relationships of the process 
variables and the responses in terms of the paths of 
steepest descent are then determined via the fitted linear 
multiple regression lines as follow Eq. 3 and 4:  
 
Expected RTCW = 0.05392-0.0162B+0.0075D (3) 
 
Expected RBCW = 0.1279-0.0342B-0.0035D (4) 
 
 The method of steepest descent is then applied to 
determine the most preferable levels of associated 
process  variables  to  the  responses of RTCW and RBCW.  
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(a) 

 

 
(b) 

 
Fig. 3: Estimated Contour Plots of RTCW (a) and RBCW (b) 
  
Table 6: Regression analysis including its significant coefficients 

and ANOVA table on RTCW 
Predictor Coef SE Coef T P-value 
Constant 0.05392 0.007415 7.27 0.018 
B -0.0162 0.000968 -16.78 0.004 
D 0.00750 0.001936 3.87 0.061 
Source DF SS MS F P-value 
Regression 2 0.000045 22×10-6 148.33 0.007 
Residual  2 0.0000003 15×10-7   
Total 4 0.000045    
 
Table 7: Regression analysis including its significant coefficients 

and ANOVA table on RBCW 
Predictor Coef SE Coef T P-value 
Constant 0.1279 0.04287 2.98 0.096 
B -0.0342 0.005598 -6.12 0.026 
D -0.0035 0.01120 -0.31 0.784 
Source DF SS MS F P-value 
Regression 2 0.000188 94×10-6 18.77 0.05 
Residual  2 0.000010 5×10-6   
Total 4 0.000198    
 
Table 8: RTCW and RBCW via the SDM 

B D RTCW RBCW 
2.9 3.4 0.032 0.0150 
3.3 3.4 0.026 0.0040 
2.9 3.6 0.034 0.0170 
3.3 3.6 0.027 0.0006 
3.1 3.5 0.030 0.0110 
3.3 3.5 0.025 0.0010 
3.5 3.5 0.022 0.0050 
3.7 3.5 0.019 0.0140 

 
 
Fig. 4: SDM Performance on RBCW  
 
The actual step size is determined by the experimenter 
with a consideration of other practical’s or the process 
knowledge. These experiments will be terminated when 
there  is  an  increase  in  responses  from  the  last  step. 
Eventually the experiments arrived to the vicinity of 
the optimum. From all the design points of current and 
previous conditions, the estimated relationship of the 
process variables of B and D and the responses, 
categorized by top and bottom circuit widths, are 
shown in Fig. 3.  
 The mathematical programming model is then 
formulated to minimize the desired response of the 
circuit width difference from the target. For the top 
circuit width, the preferable levels of process variables 
B and D are 3.7 and 3.5, respectively. For the bottom 
circuit width, the preferable levels of process variables 
B and D are 3.3 and 3.5, respectively (Table 8). Both 
new operating conditions from the steepest descent are 
different, but a higher level of the circuit width affects 
the short circuit defect more seriously on the FPC 
process. The latter is then used to implement.  
 After an implementation of the new operating 
condition (B and D are 3.3 and 3.5, respectively), the 
sample mean on the top circuit width is improved from 
0.074-0.075 mm and the sample standard deviation 
from 0.0017-0.0012 mm. The sample mean on the 
bottom circuit width is improved from 0.097-0.099 mm, 
the sample standard deviation from 0.0026-0.0024 mm 
and Cpk increases from 0.85-1.19 (Fig. 4). 
 In the final step, the experiments aim to analyze 
both top and bottom circuit widths by using 
interchangeable Linear Constrained Response Surface 
Optimization (IC-LCRSOM). All equations (2-4) from 
previous  steps  were  used  to generate the proper 
levels of process variables on all responses via the 
overlaid mapping process. The new levels of process 
variables  A,  B and  D are 60, 3.4 and 3.5, respectively.  
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Fig. 5:  IC-LCRSOM Performance on RBCW  
 
When the new operating condition has been applied to 
the FPC process, the sample mean on the top circuit 
width is improved from 0.074-0.077 mm and the 
sample standard deviation from 0.0017-0.0012 mm. 
The sample mean on the bottom circuit width is 
improved from 0.097-0.102 mm and the sample 
standard deviation from 0.0026-0.0021 mm. Cpk 
increases from 0.85-1.25 (Fig. 5). 
 

DISCUSSION 
 
 The current operating condition from the 
manufacturing process of FPC affects the width of both 
top circuit and bottom circuit including the etched rate 
differently. It is quite hard to design the experiments to 
successfully approach the optimum. Moreover, some 
design points ended prematurely. Currently the 
operating condition brings the top circuit width with 
some distant from target whereas the bottom circuit 
width close to target. The quality performances of FPC 
are slightly hard to measure. It should be noted that 
sequential steps are needed to carry out. This study 
performed designed experiments to enhance and retain 
the performance measure of etched rate and continue to 
improve the circuit width on both top and bottom via 
the conventional designed experiments, steepest descent 
and IC-LCRSOM.  
 During implementations of the steepest descent and 
IC-LCRSOM the outcomes rely heavily on the 
assumption of no interaction between influential 
process variables. The normalized regression 
coefficient will then be used to move the designs points 
with some preset step length. This would allow the 
experimenter to make great moves in the influential 
process variable toward a region where the optimum 
lies. When leaping along this path, it is useful to have a 
rule for deciding when to stop conducting design points 
along the path of steepest descent. A good rule of 
thumb is to continue experimenting along the path of 

steepest descent until some consecutive runs have 
resulted in an increase in the response. 
 Often times, due to constraints and multiple 
responses, it is not feasible to optimize the process via 
the conventional steepest descent. It would be virtually 
impossible to successfully run one design point at a 
time because of the interaction effects among the 
responses. We have introduced the mathematical model 
involving some limitations on the process variables to 
handle the different process responses. After defining 
how to determine all paths via multiple regression 
analyses, we propose a framework of overlay mapping 
for carrying out the solution. Each method has its own 
advantages and disadvantages. The best method will 
depend on the particular designed experiments, the 
starting design points used, the shape of the actual 
response surfaces, experimenters’ experience and 
results from previous experiments.   
 

CONCLUSION 
 
 The influence of the operating process variables on 
the FPC manufacturing process has been studied using 
four experimental steps based on the concepts of 
designed experiments, steepest descent and IC-
LCRSOM. Focusing on the last two concepts, empirical 
models have been developed. They allowed 
experimenters to determine a correlation between 
influential process variables and performance indicators 
or responses, such as etched rate, top and bottom circuit 
width. The designed experiments are performed and 
then the steepest descent analysis and interchangeable 
linear constrained response surface optimization models 
are applied to investigate the preferable levels of 
significant process variables in order to improve the 
quality of both top and bottom circuit widths. Both of 
experimental models bring the preferable responses of 
both circuit widths. Though, the experimental results 
from the SDM seem to be worse. For further research it 
is very desirable to enhance its procedures by varying 
step length which enable fast convergence and possess 
the monotone property.  
 The mathematical model of IC-LCRSOM, that 
have been developed, can be used for the selection of 
operating process variables’ proper values in order to 
obtain the more desired values of key performance 
indices when compared (Table 9). Especially, the 
sample mean on the top circuit width is close to the 
target and there is an increase in Cpk on the bottom 
circuit width and decrease in the sample Standard 
Deviation (SD) from customer requirement from all 
process patterns (Fig. 6). After an actual 
implementation of the new operating condition from the 
IC-LCRSOM, the experimental results on top and 
bottom circuit widths were statistically significant at the 
5% significance level.  



Am. J. Applied Sci., 9 (5): 772-778, 2012 
 

778 

 
 
Fig. 6: Box-Whisker plot on RBCW  
 
Table 9: Key Performance Indices (KPI) on circuit width  

Circuit width Condition Mean SD Cpk 
Top Current 0.074 0.0017 -3.03 
 SDM 0.075 0.0012 - 
 IC-LCRSOM 0.077 0.0012 - 
Bottom Current 0.097 0.0026 0.85 
 SDM 0.099 0.0024 1.19 
 IC-LCRSOM 0.102 0.0021 1.25 

 
 Observe that only first order information on the 
responses has been used. Therefore, an interesting topic 
for future research is an elaboration of a higher order 
mathematical model for a multiple response 
optimization. It is also suggested that the company 
extend this systematic approach to different machine 
and combinations, so that the optimal settings can be 
applied to all machine and combinations. 
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