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Abgtract: Problem statement: In this study, the effects of Relativistic Reg#it three-Body Problem (in
brief RRTBP) on the equilibrium points of both tiular and collinear is considered. The approximate
locations of the collinear and triangular points determined. Series expansions are used to devielpp
and 1/8 as small parameters. To check the validity ofsmlmtion, when ignoring 13¢erms we get directly
the classical results of the restricted three-bgopblem. Concluson/Recommendations A
MATHEMATICA program is constructed to give a nunoatiapplication of the relativistic perturbations i
the locations of the equilibrium points of the thtedy problem.
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INTRODUCTION requirements of time independence and spatialopgtr
we are able to find one useful exact solution, the

The three-body problem considers three mutually>chwarzschild metric, but we cannot actually mase u
interacting masses snm, and m. In the restricted of the full cor_1tent of tr_ns solgtlon, b_ecause ictfehe
three-body problem, gris taken to be small enough so Solar system is not static and isotropic.
that it does not influence the motion of, mnd mm, Indeed, the Newtonian effects of the planet's
which are assumed to be in circular orbits aboatrth gravitational fields are an order of magnitude grea
center of mass. The orbits of the three masses afBan the first corrections due to general relafivnd
further assumed to all lie in a common plane. J{fand  completely swamp the higher corrections that are in
my, are in elliptical instead of circular orbits, theoblem  principle provided by the exact Schwarzschild
is variously known as the “elliptic restricted pla” or ~ solution. It is worth noting to highlight some
“pseudo restricted problem” Szebehely (1967). important articles in this field.

The history of the restricted three-body problem Computed the post-Newtonian deviations of the
began with Euler and Lagrange continues with Jacoldriangular Lagrangian points from their classical
(1836), Hill (1878), Poincare (1957) and Birkhoff positions in a fixed frame of reference for thetfitime,
(1915). Euler and Courvoisier (1980) first introddca  but without explicitly stating the equations of oot
synodic (rotating) coordinate system, the use oftiwh Treated the relativistic (RTBP) in rotating cooraties.
led to an integral of the equations of motion, know He derived the Lagrangian of the system and the
today as the Jacobian integral. Euler himself dii n deviations of the triangular points as well. Weirgpe
discover the Jacobi integral which was first givien  (1972) calculated the components of the metricaens
Jacobi (1836) who, as Wintner remarks, “rediscavere by using the post-Newtonian approximation in ortter
the synodic system. The actual situation is somewhabtain the (RTBP) problem equations of motion. &off
complex since Jacobi published his integral indergial  (1989) obtained the angular frequeneyof the rotating
(fixed) system in which its significance is defait less  frame for the relativistic two-body problem. Brueng
than in the synodic system. (1972; 1991) studied the problem in more detaild an

Many authors hope to investigate the relativisticcollected most of the important results on relstivi
effects in this problem. But unfortunately, the &&in  celestial mechanics.
field equations are nonlinear and therefore cannot In this study, the approximate positions of the
general be solved exactly. By imposing the symmetrycollinear and triangular points are determined gisive
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equations of motion of the relativistic restrictduatee-
body problem. The formulas are expanded in terms of
and = as small parameters

c

Equations of motion: The equations of motion of the
infinitesimal mass in the (RRTBP) in a synodic feam
of reference §, n), in which the primary coordinates on
the& -axis (44, 0), (14, 0) are kept fixed and the origin
at the center of mass, is given by Brumberg (1991),
From Bhatnagar and Hallan (1997) Eq. 1:

: -_0U d 0U
&-2mn= k3 E(E) 1 Fig. 1: The five Lagrangian points with (Sun-Earth
. U d aU @) system; as an example)
n+2nE—f — =)
on dt dn

Location of the libration points: From the equations
of motion (1), it is apparent that an equilibriuoiigion
where, U is the potential-like function of the (RBH),  exists relative to the rotating frame when the iphrt
which can be written as composed of two componentsierivatives of the pseudopotential functionsg, (U,
namely the potential of the classical (RTBP) patnt Uy) are all zero, i.e., U = const. These points apoad

U, and the relativistic correction,Bq. 2: to the positions in the rotating frame at which the
gravitational and the centrifugal forces associatéth

U=U-+U, 2) the rotation of the synodic frame all cancel, witie
result that a particle located at one of these tpoin

where, U and U are given by Eq. 3: appears stationary in the synodic frame. Therefiage

equilibrium points in the circular (RTBP), also kmo

as Lagrange points or libration points. Three afnth
+B 3) (the collinear points) lie along thgaxis: one interior
point between the two primaries and one point an th
far side of each primary with respect to the banyee

And Eq. 4: The other two libration points (the triangular psjnare
each located at the apex of an equilateral triangle
2 1 . formed with the primaries. One of the most
—_ 2
U =—Ma-p)=-3+—(€+n) commonly used nomenclatures (and the one that we
2¢ 8¢ will use here) defines the interior points ag the
2, 1, point exterior to the small primary (the planet)las
*+n- E) )+ Cz Lo and the point k. as exterior to the large primary (the

Sun), see Fig. 1. The triangular points are desarha
o, ™ 1-pu  p L, and Ls, with Ly moving ahead of th&-axis and ks

X((€+n) +(n-¢) )‘E -t (4) trailing £-axis, along the orbit of the small primary as
v the synodic frame rotates uniformly relative to the

1 {1 1}(1 -7 81 yonp? inertial frame (as shown in Fig. 1)

P e AT n

_pa-p| A Remark: All five libration points lie in thef-n plane,

i.e., in the plane of motion
202 £+1_H
r2

rl The libration points are obtained from equatiofis o
motion after settingé =i =¢ =0. These points

represent particular solutions of equations of oroti

with: Eq. 5:
IR PN N e auzauC+aUr=O auzau0+%=0 5
n—1+2C2(u(1 H)—3), r=4€+n°) E oF o ©an o on (%)

L =V(E ) 2n?, nL=yE+u-17+n’

The explicit formulas are (Remembering that U =
U.+ U) Eq. 6:
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U ¢ A-WE+W) _pE+R-Y)
% K rl

+i{(u—u2 -3)¢ +(1_—“+£J
02 h r,

x{(l—u)(z+u)+u(z+u—1)

3
rl 2

_3) @@ MEHUTD | g2y
2 1y r;

rl 2

+ 3[1_—“+£]—1u(1—u){——1(5+u)
r 2 r?

3
rl r.2

+[(E+u) (E+p- 1)]( Leaus )

}+§1(n2+52)2

5 5

nn I r,

_7[3_1J_m2[u(z+u)+ (1-W)E+u-1)

-

And Eq. 7:

ou 1- 1
Moy, d
on K rToc

X{(u-uz—s)m( s rﬁ}(( W, “3}
+ 2@ 40— (52+n2)[(1 H, “]

w3l u)n+u(l W)

1 2

[[——+—]( 1+31+7E)+:{(1 ), “]n

rl r2 rZ rl

+i_2 £+ﬂ
A

Location of collinear libration paints:

n+— u(l Mn

=0

Location of L;.

n

4

< — k!
/ MC le— 2
< §t+ra= 1

“— > S

(6) Fig. 2: Shows the location of L

Using (8) Eq. 6, can be written explicitly in tesm
ofrpand g as Eq. 9:

ouU 1-p M
—=1-u-r -
wore )

WL [Hug] i 1
cllh N oo

# (1=K -3 R 5) 45 (R )

_ _ 9)
SN Y (1—;1—r2)2+3[—1 “+£]
2 2 r? A

*A-p-r) SR u){ —+[—1+—]( 1+ 3

1 rl r.2

T 5)- 7[1_1”}:0
r.l r2

Then it may be reasonable in our case to assume
that position of the equilibrium points, lare the same
as given by classical (RTBP) but perturbed duehto t
inclusion of the relativistic correction by quaigs
(e, 50(1/02) Eq. 10:

(7)

rn=ate, L=b-&,a=1-b (10)

where, a and h are unperturbed positions afand p
respectively and bis given after some successive
approximation by:

The collinear points must, by definition, have
&E=n=0, since1/?<<1 and the solution of the a a2 2

classical (RTBP) is (Fig. 2) Eq. 8:

r+r, =1, L =&+H,
or, or,
r2:1_|‘1_al a_El aE =1

3
b,=a 1-9 02 e, 24 R -
3 9 27 81 3(EN )

Substituting from Eq. 10 into Eg. 9 and retaining
(8) the terms up to the first order in the small paremg,
we get:
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U
—=1-p-b +¢,-
P

1-p (1_
1-by)y
(H-p*-3) Q-p-by)

S NES

1-b) b,
1 :
+E (-p-b)

2, J
1

1-b

b

1

](1—u-b1)2 (11)

Eq. 11 -13 can be solved forto yield:
=d, (-1 b+p+ @p) h-pf,
- {w-12-3 a-u-n)
C
+@-wg +pe )( Ep)h-uf)
+2@-n-B) (N -RT) k-
+3(0-Wg+re) (Fp-b)

_h1_7 %
—%u(l—u){ (a-2)
+

(h1+f1)(6_7b1_ @)jl}
Expanding b di, &, f;, g and h in order ofp

12)

retaining terms up to ordé:i-)? Then substituting back

into Eq.s 10 and 8 we get the location for thet firs
libration pointg,, ;

A
Ll

¢ / M n_y
k< 1+1; =1 »
< 1 N
e e g »
Fig. 3: Shows the Location obL
EOLl_l {(“)3+ ‘3) -5 -
e s
81( 3)3 YT 243 Zg %
3544,1,7 3403 u 256
6561( 3) 656](.% ;“)3 ok (13)
1 N p 2425,
3>3+ Sy 2,
_1729 p., 6395, 3983351
486 ( 3)3 2187( 222 " 33636?1);
8
42295747 837450
59049 (_3)»3 3542948p£

In this equation terms that are not factoredLby?
represent the location d,, ; in the classical RTBP

while the terms that factored b;//c2 represent the
correction due to the inclusion of the relativigeems.

Location of L,: The L, point locates outside the small
massive primary of masg.. We now drive an

approximate location for this point. At the point
we have (see Fig. 3) Eq. 14:
n-r,=1 L=&+H,
or, _ or (14)
=f+u-1 Z1- 22
r,=§+u 9t ot

The procedure is similar to Eqg. 10 with little
modification according to the location &f, , as:
r1:a2+82' r‘2:b2+‘°'2' a2: :H_ bZ

With & and b are the unperturbed positions ef r
and p respectively, where,his by:

662



Am. J. Applied Sci., 9 (5): 659-665, 2012

2
o182
3 9

fsto]

As is done in the calculation of the locationégf;
we can similarly calculate the location&f,, as Eq. 15:

¥

B
3(1-p)

oL, :1+{(£)§ +1(ES)E - 28

9
My, 34 40 K2
81(3) 243 3 %
. 5542 (u 7505, u 1626251
6561 3) 2187( 5904 (15)
2
1 p = 5 mWe 4
+ )3 — )3 — (1)
et 394 3 33
+1084(E) 886 884?1
486 " 3 243 217
12796 u 2872 1915435p,3 )
19683 3 59049 3) 35429 )3.

Location of L3 The L; point lies on the negative-
axis. We now derive an approximate location fos thi
point. At the L; point we have (Fig. 4) Eq. 16:

rlz_E_ul
on_
0¢

or, __ (16)

0¢

The procedure is similar to Eq. 10 with little
modification according to the location &, as:

8= by~ !

where g and R are the unperturbed values gfand p
respectively and pis given after some successive

approximation by:
4
v

S

As is done in the calculation of the locatiorégf,
we can similarly calculate the location&f,; as Eq. 17:

n=a;+e;, hL=byte,,

23 2304
144

25921
298598

by =

5 1127 7889 ,
={1-—pu-
€o,L, ={ e 2073éJ 24883
698005 , 7
_ iy 17
398131 b { 4{1 1 (17)
3227 51037 5
+ 1) +..}
41472 49766
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n

¢

m=l-p
L .
< ~—h~£ \

« . —>

A 4 \ 4

my =t

3

Fig. 4: Shows the Location ogL

Location of the Triangular Points L4,5: Since
1/¢¢<<1 and the solution of the classical restricted
three-body problem is ;r= 1, = 1, then it may be
reasonable in our case to assume that the positibns
the equilibrium points ks are the same as given by
classical restricted three-body problem but pesdr
due to the inclusion of the relativistic correctidy

quantities €, , 50(1/02) )Eq. 18:

n=@+g), n=(+e,) (18)
Substituting in the second set of (7) and (8) and
solving for§ andn up to the first order in the involved

small quantitieg; ande,, we get:
E=(g ¢,

LS

Sy (ee)
Substituting the values of,rr, & and n into
equations:

1-2
> )

(19)

0U _dU , aU; _

U_ g, ayy
"on on  on

Evaluating the included partial derivatives and
retaining the terms up to the first order in theaBm
parameters,, €, and also the first order terms in the
relativistic correction, we obtained Eq. 20:

(L-W)e,~he, ~—— (1~ 21)
8c
(1-p)=0,(1~p)e, +pe,

7
—u(- =0.
8C2u( M)

(20)
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Which represent two simultaneous equations;iand g

€, . Their solutions are being Eq. 21: 1R

£ = p(2+3) &
tose 0.8

(21)

1
g, = —E(l—u)(S— 1) \
0.6 AN
Substituting the values af; and ¢, into Eq. 19, \

yields the coordinates of the triangular points Ezj. \\Lﬂ
04 AN

_a-20,, 5 | NN
€L, =5 ~@+—)
\/2— 4 (22) 02 \

ﬂO,L415:i73(1_é(6I12— 81+ 5)) Q\
: ™\
\

The classical limit: To check our solution, when

ignoring 1/ c?terms we get directly the classical results 0 01 02 03 04 05
of the restricted three-body problem as:

p

Fig. 5: Location of the Equilibrium point;lversus the

1 2 mass ratigt .
UL, 1,uo 26,4, 58
G+ -—E)-— _
g, =1-1 3 33 9 81 g
oL~ 4 5 -
(E); +£(E;_f'(ﬂ 2 M
3’ 2439 T / ] e
7 8 12 \
3544 p.- 3403(2;1 -~ 2560, S
- (3)3— —%3— =)+
6561 6561 729 3 g
S 1us 28 L1
S LN T H L
=1 +(D)3+=(5)3 ——(=
€o,L, = (3) 3(3) 9( 3)
50 1 . 34 p- 40, . 554241
Ky [T Ky2 %lu S
+2(2)3 + ()3 ——— ()’ + )3
81( 3) 243( 12 8£ \)3 656 )3 1 \
7505 : 16262 L:\
_ Hys Hys
2187( Q 5904;E % -}
5 1127 N
=1- —y— 0.9
fo.L, =1 o oo7ad! \
_ 7889 . _ 698005 . . | w
248832 398131 0 0.1 02 03 0.4 05
E —(1_2’1) —+\/73 . . A .
Olys™ 5 r1O,L41,5‘—_2 Fig. 6: Location of the Equilibrium point,lversus the

mass ratiq .

Numerical results and cpncludmg re”!a”‘s We have . In Fig. 5-8, [L., i = 1, 2, 3] denotes for the position of
used the abqve mentlor_1ed analysis and the EXpl,'C’the equilibrium  points  without the relativistic
formulas obtained to design a computer programgusingontribution, i.e within the classical problem dfet
MATHEMATICA software. We have plotted the regtricted three bodies, whileigli = 1, 2, 3] denotes
locations of the equilibrium points,LLo, Ls, versus the  for the position of the equilibrium points includirthe
whole range of the mass rafid [0, 0. 5]. relativistic contribution.
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E We may see that, in most of these cases, the
v positions of I3 and L, are much more affected by the
influence of the relativistic terms than that ofeth
equilibrium point, Ly

2 v—— —
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