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Abstract: Problem statement: In this study, the effects of Relativistic Restricted three-Body Problem (in 
brief RRTBP) on the equilibrium points of both triangular and collinear is considered. The approximate 
locations of the collinear and triangular points are determined. Series expansions are used to develope in µ 
and 1/c2 as small parameters. To check the validity of our solution, when ignoring 1/c2 terms we get directly 
the classical results of the restricted three-body problem. Conclusion/Recommendations: A 
MATHEMATICA program is constructed to give a numerical application of the relativistic perturbations in 
the locations of the equilibrium points of the three body problem. 
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INTRODUCTION 
 
 The three-body problem considers three mutually 
interacting masses m1, m2 and m3. In the restricted 
three-body problem, m3 is taken to be small enough so 
that it does not influence the motion of m1 and m2, 
which are assumed to be in circular orbits about their 
center of mass. The orbits of the three masses are 
further assumed to all lie in a common plane. If m1 and 
m2 are in elliptical instead of circular orbits, the problem 
is variously known as the “elliptic restricted problem” or 
“pseudo restricted problem” Szebehely (1967). 
 The history of the restricted three-body problem 
began with Euler and Lagrange continues with Jacobi 
(1836), Hill (1878), Poincare (1957) and Birkhoff 
(1915). Euler and Courvoisier (1980) first introduced a 
synodic (rotating) coordinate system, the use of which 
led to an integral of the equations of motion, known 
today as the Jacobian integral. Euler himself did not 
discover the Jacobi integral which was first given by 
Jacobi (1836) who, as Wintner remarks, “rediscovered” 
the synodic system. The actual situation is somewhat 
complex since Jacobi published his integral in a sidereal 
(fixed) system in which its significance is definitely less 
than in the synodic system. 
 Many authors hope to investigate the relativistic 
effects in this problem. But unfortunately, the Einstein 
field equations are nonlinear and therefore cannot in 
general be solved exactly. By imposing the symmetry 

requirements of time independence and spatial isotropy 
we are able to find one useful exact solution, the 
Schwarzschild metric, but we cannot actually make use 
of the full content of this solution, because in fact the 
solar system is not static and isotropic. 
 Indeed, the Newtonian effects of the planet’s 
gravitational fields are an order of magnitude greater 
than the first corrections due to general relativity and 
completely swamp the higher corrections that are in 
principle provided by the exact Schwarzschild 
solution. It is worth noting to highlight some 
important articles in this field. 
 Computed the post-Newtonian deviations of the 
triangular Lagrangian points from their classical 
positions in a fixed frame of reference for the first time, 
but without explicitly stating the equations of motion. 
Treated the relativistic (RTBP) in rotating coordinates. 
He derived the Lagrangian of the system and the 
deviations of the triangular points as well. Weinberg 
(1972) calculated the components of the metric tensor 
by using the post-Newtonian approximation in order to 
obtain the (RTBP) problem equations of motion. Soffel 
(1989) obtained the angular frequency ω of the rotating 
frame for the relativistic two-body problem.  Brumberg 
(1972; 1991) studied the problem in more details and 
collected most of the important results on relativistic 
celestial mechanics.  
 In this study, the approximate positions of the 
collinear and triangular points are determined using the 
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equations of motion of the relativistic restricted three-
body problem. The formulas are expanded in terms of µ 
and 

2

1

c
 as small parameters  

 
Equations of motion: The equations of motion of the 
infinitesimal mass in the (RRTBP) in a synodic frame 
of reference (ξ, η), in which the primary coordinates on 
the ξ -axis (-µ, 0), (1-µ, 0) are kept fixed and the origin 
at the center of mass, is given by Brumberg (1991), 
From Bhatnagar and Hallan (1997) Eq. 1: 
 
.. .

.. .

U d U
2n ( )

dt

U d U
2n ( )

dt

∂ ∂ ξ − η= − ∂ξ ∂ξ 
∂ ∂ η + ξ = −
∂η ∂η 

 (1) 

 
where, U is the potential-like function of the (RRTBP), 
which can be written as composed of two components, 
namely the potential of the classical (RTBP) potential 
Uc and the relativistic correction Ur Eq. 2: 
 
U = Uc + Ur (2) 
 
where, Uc and Ur are given by Eq. 3: 
 

2

c
1 2

r 1
U

2 r r

− µ µ= + +  (3) 

 
And Eq. 4: 
 

2
2

r 2 2

2 2

2
1 2

2

2 2

2
1 2

2

1 1 2

2

3 3
1 2

.

.

. .

.

r 1
U ( (1 ) 3) (( )

2c 8c

3 1
( ) )

r r2c

1 1
(( ) ( ) )

r r2c

1 1 1
(1 3 7 8 )

r r r(1 )

2c 1

r r

= µ − µ − + ξ + η

 − µ µ+ η−ξ + + 
 

 − µ µ× ξ+ η + η−ξ − + 
 

  
  + − − µ − ξ − η +η

  µ − µ   −
  µ − µ  +
  
  

 (4) 

 

with: 
 

2 2
2

2 2 2 2
1 2

1
n 1 ( (1 ) 3), r ( )

2c

r ( ) , r ( 1)

= + µ − µ − = ξ + η 

= ξ + µ + η = ξ + µ − + η 

 

 
 
Fig. 1: The five Lagrangian points with (Sun-Earth 

system; as an example) 
 
Location of the libration points: From the equations 
of motion (1), it is apparent that an equilibrium solution 
exists relative to the rotating frame when the partial 
derivatives of the pseudopotential functions (Uξ, Uη, 
Uζ) are all zero, i.e., U = const. These points correspond 
to the positions in the rotating frame at which the 
gravitational and the centrifugal forces associated with 
the rotation of the synodic frame all cancel, with the 
result that a particle located at one of these points 
appears stationary in the synodic frame. There are five 
equilibrium points in the circular (RTBP), also known 
as Lagrange points or libration points. Three of them 
(the collinear points) lie along the ξ-axis: one interior 
point between the two primaries and one point on the 
far side of each primary with respect to the barycenter. 
The other two libration points (the triangular points) are 
each located at the apex of an equilateral triangle 
formed with the primaries. One of the most 
commonly used nomenclatures (and the one that we 
will use here) defines the interior points as L1, the 
point exterior to the small primary (the planet) as L2 

and the point L3 as exterior to the large primary (the 
Sun), see Fig. 1. The triangular points are designated 
L4 and L5, with L4 moving ahead of the ξ-axis and L5 
trailing ξ-axis, along the orbit of the small primary as 
the synodic frame rotates uniformly relative to the 
inertial frame (as shown in Fig. 1) 
 
Remark: All five libration points lie in the ξ-η plane, 
i.e., in the plane of motion 
 
 The libration points are obtained from equations of 
motion after setting 0ξ = η = ζ =ɺɺ ɺɺɺɺ . These points 
represent particular solutions of equations of motion 
Eq. 5: 
 

c r c rU U U U U U
0, 0

∂ ∂ ∂ ∂ ∂ ∂= + = = + =
∂ξ ∂ξ ∂ξ ∂η ∂η ∂η

 (5)  

 
 The explicit formulas are (Remembering that U = 
Uc + Ur) Eq. 6: 
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1 2

2

2
1 2

2 2

3 3
1 2

2 2

3 3
1 2

3
1 2 1

U (1 )( ) ( 1)

r r

1 1
( 3)

r rc

(1 )( ) ( 1) 1
( )

2r r

3 (1 )( ) ( 1)
( )

2 r r

1 1 1
3 (1 ) ( )

r r 2 r

( )

∂ − µ ξ + µ µ ξ + µ −= ξ− −
∂ξ

  − µ µ+ µ − µ − ξ + + 
  

 − µ ξ + µ µ ξ + µ −
 × + + η + ξ ξ
 
 

 − µ ξ + µ µ ξ + µ −
 − + η + ξ
 
 

 − µ µ
+ + − µ − µ − ξ + µ 
  

ξ + µ+
3 3

1 2

2

5 5
1 2 1 2

( 1)
( 1 3 7 )

r r

1 1 ( ) (1 )( 1)
7 3 0

r r r r

 ξ + µ −
 + − + µ + ξ
 
 

   µ ξ + µ − µ ξ + µ −  − − − η + =  
    

 (6) 

 
And Eq. 7: 
 

3 3 2
1 2

2

3 3
1 2 1 2

2 2 2 2

3 3
1 2

1 2

3 3 5
1 2 2

U (1 ) 1

r r c

1 (1 )
( 3)

r r r r

1 3 (1 )
( ) ( )

2 2 r r

1 (1 ) 1
3( ) (1 )

r r 2 2

1 1 (1 )
( 1 3 7 ) 3

r r r

∂ − µ µ=η− η− η+
∂η

   − µ µ − µ µ  × µ − µ − η + + + η 
     

 − µ µ
 + ξ + η η − ξ + η + η
 
 

− µ µ µ − µ+ + η + η + µ − µ η

  − µ µ × − + − + µ + ξ + +
 
 

2

5
1

3 3 3
1 1 2

r

1 1
2 0

r r r

 
 η
 
 

 µ − µ  + − + =
  

 (7) 

 
Location of collinear libration points: 
 
Location of L1. 
 
 The collinear points must, by definition, have        

ξ = η = 0, since 21 / c 1<<   and the solution of the 

classical (RTBP) is (Fig. 2) Eq. 8: 

 

1 2 1

1 2
2

r r 1, r ,

r r
r 1 , 1

+ = = ξ + µ
∂ ∂

= − µ − ξ =− =
∂ξ ∂ξ

 (8) 

 
 
Fig. 2: Shows the   location of L1 
 
 Using (8) Eq. 6, can be written explicitly in terms 
of r1 and r2 as Eq. 9: 
 

2 2 2
1 2

2 2 2
1 2 1 2

2 3
2 2

2
22 2

1 21 2

2 2 2 2
1 1 2

U 1
1 r

r r

1 1 1

r rc r r

1
( 3)(1 r ) (1 r )

2

3 1 1
(1 r ) 3

2 r rr r

1 1 1 1
(1 r ) (1 ) ( 1 3

2 r r r

 ∂ − µ µ
 = − µ − − −
 ∂ξ
 

  − µ µ − µ µ  + + − 
    

+ µ − µ − − µ − + − µ −

   − µ µ − µ µ
 − − − µ − + + 
    

  
 × − µ − − µ − µ − + + − + µ
 
 

2
1 2

1 1
7(1 r )) 7 0

r r




  + − µ − − − =  
  

 (9) 

 
 Then it may be reasonable in our case to assume 
that position of the equilibrium points L1 are the same 
as given by classical (RTBP) but perturbed due to the 
inclusion of the relativistic correction by quantities 
( ( )2

1 O 1/ cε ≡  Eq. 10: 
 
r1 = a1+ε1, r2 = b1 - ε1, a1 = 1- b1 (10) 
 

where, a1 and b1 are unperturbed positions of r1 and r2 
respectively and b1 is given after some successive 
approximation by: 
 

32
3 4

1

2 2
b 1 ;

3 9 27 81 3(1 )

   α α µ
 = α − − + α + α α =    − µ  

 

 
 Substituting from Eq. 10 into Eq. 9 and retaining 
the terms up to the first order in the small parameter ε1, 
we get: 
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1

2 2
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1 1

3
12 2

1 1

2
12 2

1 1

1 1

1

1

2U 1
1 b 1

1 b(1 b )

( 3) (1 b )
2 1

1 1bb c
(1 b ) b

1 1
(1 b )

2(1 b ) b

3 1
(1 b )

2 (1 b ) b

1
3 (1

(1 b ) b

 ε∂ − µ= − µ − + ε − − ∂ξ −−  

 µ − µ − − µ −
 εµ + + +    − µ µ+ +    −  

 − µ µ
 × − + − µ −
 − 

 − µ µ
 − − − µ −
 − 

 − µ µ+ + − − 
11

2
1 11

12 2
1 1

b )

1 1 1 1
(1 ) 7

2 (1 b ) b(1 b )

1 1
(6 7b 4 ) 0

(1 b ) b

µ −

  
− µ − µ − − − − −  

   + + − − µ =
  −   

 (11) 

 
Setting, 
 

 

1

1 13 3

11 1

1 12 2

11 1

1

2(1 ) 2 1
1 d , e ,

b(1 b ) b

1 1 1
f , g , h

1 bb (1 b )

−
− µ µ

+ +
−

= =
− −

  = = 
 

=
 

 
Eq. 11 -13 can be solved for ε1 to yield: 
 

(

{
( )( )

( )

( )
( )

( )

1 1 1 11

2
12

1 1 1 1

3 2
1 1 1 1

1 1 1

1 1 1

1 1 1

d 1 b (1 ) h f

1
( 3) (1 b )

c
(1 )g e (1 )h f

1 3
(1 b ) (1 )h f (1 b )

2 2

3 (1 )g e (1 b )

h 7 g e1
(1 )

2 h f (6 7b 4 )

ε = − + +µ+ −µ −µ

− µ −µ − −µ −

+ −µ +µ −µ −µ

+ −µ − − −µ −µ −µ −

+ −µ +µ −µ−

 − − − − µ −µ   
+ + − − µ    

 (12) 

 
 Expanding b1, d1, e1, f1, g1 and h1 in order of µ 

retaining terms up to order 3( )
3

µ
. Then substituting back 

into Eq.s 10 and 8 we get the location for the first 
libration point ξo,L1  

 
 
Fig. 3: Shows the   Location of L2 
 

1 2

3 3
1

4 5

23 3

7 8

33 3

1 2 4

3 3 3
2

5

23

0,L
1 26

1 {( ) ( ) ( )
3 3 3 9 3

58 11 4
( ) ( ) ( )

81 3 243 3 9 3

3544 34030 2561
( ) ( ) ( ) ...}

6561 3 6561 3 729 3

1 1 5 4 2425
{ ( ) ( ) ( ) ( )

3 3 9 3 3 3 486 3c

1729 6395 398335
( ) ( ) (

486 3 2187 3 336366 3

µ µ µξ = − + − −

µ µ µ+ −

µ µ µ− − − +

µ µ µ µ− − + − +

µ µ µ− − +
7

3

8

33

)

422957 8374501
( ) ( ) ...}

59049 3 354294 3

µ µ+ − +

 (13) 

 

 In this equation terms that are not factored by 21 / c  
represent the location of ξo,L1 in the classical RTBP 

while the terms that factored by 21 / c  represent the 
correction due to the inclusion of the relativistic terms. 
 
Location of L2: The L2 point locates outside the small 
massive primary of mass µ. We now drive an 
approximate location for this point.  At the L2 point 
we have (see Fig. 3) Eq. 14: 
 

11 2

1 2
2

r r 1, r ,

r r
r 1, 1

− = = ξ + µ
∂ ∂

= ξ + µ − = =
∂ξ ∂ξ

 (14) 

 
 The procedure is similar to Eq. 10 with little 
modification according to the location of ξo,L2 as:  
 

1 2 2 2 2 2 2 2r a , r b , a 1 b= + ε = + ε = +  

 
 With a2 and b2 are the unperturbed positions of r1 
and r2 respectively, where b2 is by: 
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2
3 4

2

3

2 2
b 1 ,

3 9 27 81

3(1 )

 α α
 = α + − − α + α
 
 

 µα =  − µ 

 

 
 As is done in the calculation of the location of ξo,L1 
we can similarly calculate the location of ξo,L2 as Eq. 15: 
 

2

1 2

3 3

4 5

23 3

7 8

33 3

1 2

3 3
2

4 5

23 3

0,L
1 28

1 {( ) ( ) ( )
3 3 3 9 3

50 34 40
( ) ( ) ( )

81 3 243 3 81 3

5542 7505 162625
( ) ( ) ( ) ...}

6561 3 2187 3 59049 3

1 1 5 4
{ ( ) ( ) ( )

3 3 9 3 3 3c

1084 886 8843
( ) ( ) ( )

486 3 243 3 2178 3

12796
(

19683

µ µ µξ = + + −

µ µ µ+ + −

µ µ µ+ − + +

µ µ µ+ − − −

µ µ µ+ + −

−
7 8

33 3
2872 1915435

) ( ) ( ) ...}
3 59049 3 354294 3

µ µ µ+ − +

 (15) 

 
Location of L3: The L3 point lies on the negative  ξ-
axis. We now derive an approximate location for this 
point. At the L3 point we have (Fig. 4) Eq. 16:  
 

 
2 1 1

1 2
2

r r 1, r ,

r r
r 1 , 1

− = = −ξ − µ
∂ ∂= − µ − ξ = = −
∂ξ ∂ξ

 (16) 

 
 The procedure is similar to Eq. 10 with little 
modification according to the location of ξo,L2 as:  
 

1 3 3 2 3 3 3 3r a , r b , a b 1= + ε = + ε = −  
 
where a3 and b3 are the unperturbed values of r1 and r2 
respectively and b3 is given after some successive 
approximation by: 
 

4
3

7 23 25921
b 2 1

12 144 2985984
 = − µ + µ + µ 
 

 

 
 As is done in the calculation of the location of ξo,L1, 
we can similarly calculate the location of ξo,L3 as Eq. 17: 
 

3 4

3

5 2

2

3 5

0,L
5 1127 7889

{ 1
12 20736 248832

698005 1 3 7
...} {

3981312 4 16c
3227 51037

...}
41472 497664

ξ = − − µ − µ − µ

− µ − − − µ + µ

+ µ + µ +

   (17) 

 
 
Fig. 4: Shows the   Location of L3 
 
Location of the Triangular Points L4,5: Since 

21/ c 1<<   and the solution of the classical restricted  

three-body problem is  r1 = r2 = 1, then it may be 
reasonable in our case to assume that the positions of 
the equilibrium points L4,5 are the same as given by 
classical restricted  three-body problem but perturbed 
due to the inclusion of the relativistic correction by 

quantities ( ( )2
1,2 O 1/ cε ≡ )Eq. 18: 

 

1 1 2 2r (1 ), r (1 )= +ε = +ε  (18)  

 
 Substituting in the second set of  (7) and (8) and 
solving for ξ and η up to the first order in the involved 
small quantities ε1 and ε2, we get: 

 

1 2

1 2

1 2
( )

2

3 3
( ) .

2 3

− µ ξ = ε − ε + 

 
η = ± + ε + ε 
   

 (19) 

 
 Substituting the values of r1, r2, ξ and η into 
equations: 
  

c cr rU UU U U U
0 , 0

∂ ∂∂ ∂ ∂ ∂= + = = + =
∂ξ ∂ξ ∂ξ ∂η ∂η ∂η

 

 
 Evaluating the included partial derivatives and 
retaining the terms up to the first order in the small 
parameters ε1, ε2 and also the first order terms in the 
relativistic correction, we obtained Eq. 20:  

 

1 2 2

1 2

2

3
(1 ) (1 2 )

8c
(1 ) 0,(1 )

7
(1 ) 0.

8c

− µ ε −µε − µ − µ 
− µ = − µ ε +µε 

− µ − µ =


  (20)  
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Which represent two simultaneous equations in ε1 and 
ε2 . Their solutions are being Eq. 21: 
 

1 2

2 2

1
(2 3 )

8c
1

(1 )(5 3 )
8c

ε =− µ + µ 


ε = − − µ − µ


 (21)  

 
 Substituting the values of ε1 and ε2 into Eq. 19, 
yields the coordinates of the triangular points Eq. 22: 
 

4,5 2

2

4,5 2

0,L

0,L

(1 2 ) 5
(1 )

2 4c

3 1
(1 (6 6 5))

2 12c

− µ ξ = + 


η =± − µ − µ +


 (22) 

 
The classical limit: To check our solution, when 

ignoring 21 / c terms we get directly the classical results 
of the restricted three-body problem as:  
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3

3

4 5

0,L
5 1127

1
12 20736

7889 698005
...

248832 3981312

ξ = − µ− µ

− µ − µ −
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Numerical results and concluding remarks: We have 
used the above mentioned analysis and the explicit 
formulas obtained to design a computer program using 
MATHEMATICA software. We have plotted the 
locations of the equilibrium points L1, L2, L3, versus the 
whole range of the mass ratio µ ∈ [0, 0. 5].  

 
 

 
Fig. 5:  Location of the Equilibrium point L1 versus the 

mass ratioµ . 
 

 
 
Fig. 6: Location of the Equilibrium point L2 versus the 

mass ratioµ . 
 
In Fig. 5-8, [Lic, i = 1, 2, 3] denotes for the position of 
the equilibrium points without the relativistic 
contribution, i.e within the classical problem of the 
restricted three bodies, while [LiR, i = 1, 2, 3] denotes 
for the position of the equilibrium points including the 
relativistic contribution.  
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Fig. 7:  Location of the Equilibrium point L3 versus the 

mass ratioµ 
 

 
 
Fig. 8: Location of the Equilibrium points L1, L2, L3 

versus the mass ratioµ . 
 
In Fig. 5 the difference LiR-L1c seems to be constant 
beyond µ ≥ 0.05. In Fig. 6 the difference L2R - L2c 
increases with increasing the mass ratioµ.  In Fig. 7 the 
difference L3R - L3c increases with increasing the mass 
ratio µ within the domain   0 ≤ µ ≤ 0.35  and decreases 
with increasing µ within the domain 0.35 ≤ µ ≤ 0.5. Fig. 
8 represents an assembly plot of the all collinear 
equilibrium points. 

 We may see that, in most of these cases, the 
positions of L3 and L2 are much more affected by the 
influence of the relativistic terms than that of the 
equilibrium point, L1  
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