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Abstract: Problem statement: The number of spanning trees τ(G) in graphs (networks) is an 
important invariant, it is also an important measure of reliability of a network. Approach: Using linear 
algebra and matrix analysis techniques to evaluate the associated determinants. Results: In this study 
we derive simple formulas for the number of spanning trees of complete graph Kn and complete 
bipartite graph Kn,m and some of their applications. A large number of theorems of number of the 
spanning trees of known operations on complete graph Kn and complete bipartite graph Kn,m are 
obtained. Conclusion: The evaluation of number of spanning trees is not only interesting from a 
mathematical (computational) perspective, but also, it is an important measure of reliability of a 
network and designing electrical circuits. Some computationally hard problems such as the 
travelling salesman problem can be solved approximately by using spanning trees. Due to the high 
dependence of the network design and reliability on the graph theory we introduced the following 
important theorems and lemmas and their proofs. 
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INTRODUCTION 
 
 We consider finite undirected graph with no loops 
or multiple edges. Let G  be such a graph on n vertices. 
A spanning tree for a graph G is a subgraph of G that is 
a tree and contains all vertices of G. There are many 
situation in which good spanning trees must be found. 
Whenever one wants to find a simple, cheap, yet 
efficient way to connect a set of terminals, be they 
computers, telephones, factories, or cities, a solution is 
normally one kind of spanning trees. Spanning trees 
prove important for several reasons: They create a spare 
subgraph that reflects a lot about the original graph, 
they play an important role to designing efficient 
routing algorithms, some computationally hard 
problems, such as the Steiner tree problem and the 
travelling salesperson problem, can be solved by using 
spanning trees and they have wide applications in many 
areas such as network design, bioinformatics (Biggs, 
1993; Brown et al., 1996; Colbourn, 1987; Bermond et 
al., 1995; Myrvold et al., 1991). The number of 
spanning trees of G, denoted by τ(G), is the total 

number of distinct spanning subgraphs of G that are 
trees. A classic result of Kirchhoff, (Cayley, 1889) can 
be used to determine the number of spanning trees for 
G = (V, E). Let V = v1,………..,vn. To state the result, 
we define the n n×  characteristic matrix A = [aij] as 
follows: (i) aij = -1 if vi and vj are adjacent and i ≠ j, (ii) 
aij equals the degree of vertex vi if i = j and (iii) aij = 0 
otherwise. The Kirchhoff matrix tree theorem states that 
all cofactors of A are equal and their common value is 
τ(G). The matrix tree theorem can be applied to any 
graph G to determine τ(G), but this requires evaluating 
a determinant of a corresponding characteristic matrix. 
However, for a few special families of graphs there 
exists simple formulas that make it much easier to 
calculate and determine the number of corresponding 
spanning trees especially when these numbers are very 
large. One of the first such result is due to Cayley who 
showed that complete graph on n  vertices, Kn has 

n 2n − spanning trees (Cvetkovic et al., 1980) that he 
showed τ(Kn) = nn-2, n ≥2. Another result, τ(Kn) = pq-1, 
qp-1p,q ≥1, where p,qK is the complete bipartite graph 
with bipartite sets containing p and q vertices, 
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respectively. It is well known, as in e.g., (Petingi et al., 
1998; Austin, 1960; Clark, 2003; Egecioglu and 
Remmel, 1994; Porter, 2004; Lewis, 1999).  
 Let G1 and G2 be a simple graphs. We introduce 
some operations on graphs: 
 
• If G1 and G2 are vertex disjoint graphs. Then the 

join product, G1∨G2, is the super-graph of G1 + G2, 
in which each vertex of G1 is adjacent to every 
vertex of G2, (Balakrishnan and Ranganathan, 
2000). 

• The Cartesian product of two  graphs G1 and G2, 
G1× G2, is the simple graph with vertex set V(G1× 
G2) = V (V1×V2) and edge set E(G1×G2) = 
[(E1×V2)∪(V1×E1)], such that two vertices 

1 2(u ,u )and 1 2(v ,v ) are adjacent in G1×G2 iff, either 

u1 = v1 and u2 is adjacent to v2 in G1, or 1u is 

adjacent to v1 in G1 and u2 = v2, (Wilson and 
Watkins, 1990). 

• The tensor product, or Kronecher product of two  
graphs G1 and G2, G1 ⊗ G2, is the simple graph 
with v (G1 ⊗ G2) = V1×V2 where (u1, u2) and (v1, 
v2) are adjacent in G1 ⊗ G2 iff u1 is adjacent to v1 in 
G1 and u2 is adjacent to v2 in G2, (Balakrishnan and 
Ranganathan, 2000). 

• The normal product, or the strong produc of two  
graphs G1 and G2 t, G1 �G2, is the simple graph 
with V(G1 �G2) = V1×V2 where (u1, u2) and (v1, v2) 
are adjacent in G1 �G2 iff either u1 = v1 and 2u  is 

adjacent to v2 inG2, or 1u  is adjacent to v1 in G1 and 

u2 = v2, or u1 is adjacent to v1 and u2 is adjacent to 
v2, (Balakrishnan and Ranganathan, 2000). 

• The corona 1 2G G⊙ of 1G  and G2 is the graph 

obtained by taking one copy of G1 (which has n1 
vertices) and n1 copies of G2 and then joining the ith 
vertex of G2 to every vertex in the ith copy of G2, 
(Wilson and Watkins, 1990). 

 
 The well-known matrix tree theorem (Kirchhoff 
matrix) can be used to count the number of spanning 
trees for small graphs, but this method is not feasible 
for large graphs. So we present two formulas in 
lemma1, lemma2 is to express τ(G) directly as a 
determinant rather than in terms of cofactors as in 
Kirchhoff theorem. 
 
Lemma 1: Let G be a simple graph with n vertices. 

Then, 
2

1
(G) det[D A U]

n
τ = − + , where A,D  are the 

adjacency and degree matrices of G  respectively and 
U is the n n× matrix where all its elements are ones.  

Proof: By simple calculations using the property of 
addition of two determinants, we can write det[D-A+U] 
as an addition of n  determinants each of which is the 
same as det[D-A], but by replace one of its column and 
any determinant of these is equal to n× det[D-A]. Since 
all cofactors of [D-A] are equals. Then we have: 
 

det[D A U ] n cofactor[D A ]

n cofactor[D A ] n cofactor

[D A ](n times) det[D A ]

− + = × − +
× − + …… + ×

− − + −
 

 
But: 
 

det[D A] 0− =  
 
Then:  
 

2 2det[D A U] n cofactor[D A] n (G)− + = × − = τ  
 
Therefore: 
 

2

1
(G) det[D A U]

n
τ = − +  

 
Lemma 2: Let G  be a simple graph with vertices n. 

Then, n2

1
(G) det[nI D A]

n
τ = − + , where A,D are the 

adjacency and degree matrices of G ( complement of 
G) respectively and In is the identity matrix.  
 
Proof: It is clear that nD D (n 1)I+ = −  and 

n(U A I ) A− − = .Then. 

n n nD A U (n 1)I D A I nI D A− + = − − + + = − + . Thus from 

lemma1, we have: n2

1
(G) det[nI D A]

n
τ = − + . 

 
Theorem 3: n 2

n(K ) n −τ = . 

 
Proof: Applying lemma 2, we have: 
 

n 2

n n 2
2 2

1
(K ) det(n I D A)

n
n 0 0 0

0 n 0
1 1

det n n0 0
n n

n 0

0 0 0 n

−

τ = − + =

 
 
 
  = × =
 
 
 
 

⋯

⋱ ⋮

⋱ ⋱ ⋱

⋮ ⋱ ⋱

⋯

 

 
Corollary 4: n 3

n(K e) (n 2)n −τ − = − . 
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Proof: Applying lemma 2, we have: 
 

n 2

2

2 n 2 n 3
2

1
(K e) det(n I D A)

n
n 1 1 0 0

1 n 1 0
1

det 0 0
n

n 0

0 0 0 n

1
((n 1) 1) n (n 2) n

n
− −

τ − = − +

− 
 − 
 =
 
 
 
 

= × − − × = − ×

⋯

⋱ ⋮

⋱ ⋱ ⋱

⋮ ⋱ ⋱

⋯

 

 
Corollary 5:

 

n 3
n(K e) 2n −τ =� , where nK e�  is the 

graph obtained from nK  by contracting the edge e . 
 
Proof: Immediately from the fact that:  
 

(G) (G e) (G e)τ = τ − + τ �  
 
Theorem 6: Let G  be a graph constructed by 
removing m distinct edges from nK ,n 2m≥ . Then:  
 

n 2 m2
(G) n (1 )

n
−τ = −  

 
Proof: Straightforward induction using properties of 
determinants. 
 
Theorem 7: n 3

n(K e) (n 2)n −τ + = + . 

 
Proof: Applying lemma 2, we have: 
 

n 2

2

2 n 2 n 3
2

1
(K e) det(n I D A)

n
n 1 1 0 0

1 n 1 0
1

det 0 n 0
n

0

0 0 0 n

1
((n 1) 1) n (n 2) n

n
− −

τ + = − + =

+ − 
 − + 
 
 
 
 
 

= × + − × = + ×

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱ ⋱

⋯

 

 
Theorem 8: Let Hn be a graph constructed by removing 
n distinct edges from 2nK . Then: 

 
2n 2 n 1 n

n(H ) 2 n (n 1)− −τ = × × −  

 
Proof: Applying lemma 2, we have: 
 

n 2 2

1 1
(H ) det(2n I D A) det

(2n) (2n)
τ = − + =  

2n 1 1 0 0

1 2n 1 0

0 0 2n 1 1 0

1 2n 1 0

0 0 2n 1 1 0

1 2n 1 0

0 0

0 1 0

2n 1 1

0 0 1 2n 1

− 
 − 
 −
 

− 
 −
 

− 
 
 
 
 

− 
 − 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋱ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋯ ⋯ ⋯ ⋮

⋮ ⋮ ⋱ ⋯ ⋯ ⋮

⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋱ ⋱ ⋱ ⋮ ⋱

⋱ ⋱ ⋱ ⋮ ⋱ ⋱

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 

 
 Straightforward induction using properties of 
determinants. We have: 
 

2 n 2n 2 n 1 n
n 2

1
(H ) ((2n 1) 1) 2 n (n 1)

(2n)
− −τ = × − − = × × −  

 
Theorem 9: Let G  be a graph constructed by 
removing a star graph 1,2K from nK . Then: 

 
n 2 1 3

(G) n (1 )(1 )
n n

−τ = − −  

 
Proof: Apply lemma 2, we have: 
 

2 2

1 1
(G) det(n I D A) det

n n
τ = − + =  

n 2 1 1 0

1 n 1 0

1 0 n 1 0 0

0 0 n 0

0 0 0 0

0 0

0 n

− 
 − 
 −
 
 
 
 
 
 
 

⋯ ⋯ ⋯

⋱ ⋮ ⋱ ⋱

⋮ ⋱

⋱ ⋱

⋮ ⋯ ⋱

⋮ ⋮ ⋱ ⋱

⋮ ⋮ ⋱ ⋱

 

2

n 2 1 1 n 0
1

det 1 n 1 0 det 0 n
n

1 0 n 1 n

−   
   = − ×   
   −   

⋯

⋱

⋮ ⋱

 

n 3 2 n 2
2

1 1 3
n (n 1)(n 3n) n (1 ) (1 )

n n n
− −= × × − − = × − × −  

 
Corollary 10: Let G  be a graph constructed by 
removing a star graph Kl,m from Kn, n≥m+1.. Then: 
 

n 2 m 11 m 1
(G) n (1 ) (1 )

n n
− − +τ = − −  

 
Proof: Straightforward induction using properties of 
determinants. 
 
Lemma 11: Biggs (1993)  let G  be a k-regular graph 
with n vertices and m edges. Then: 
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m n 1 m n 1( L (G ) ) 2 k (G )− + − −τ = × × τ  

 
where, L(G) is the line graph of G . 
Theorem 12: Let nT  be the line graph of nK . Then: 

 

2 2

n n

1 1
(n 3n 2) (n 3n 2) n 22 2

(T ) (L(K ))

2 (n 1) n
− + − − −

τ = τ =

× − ×
 

 
Proof: The line graph L(G) of a graph G  is 
constructed by taking the edges of G as vertices of 
L(G) and joining two vertices in L(G) whenever the 
corresponding edges in G have a common vertex. Also 
if G  is regular of valency k , its line graph L(G) is 
regular of valency2k 2− . It is easy to show that 

nL(K ) is the triangle graph nT which can be described 

by saying that the 
1

n(n 1)
2

−  pairs of numbers from the 

set {1,2,....,n}, two vertices being adjacent whenever the 
corresponding pairs have just one common member. 

Appling lemma11 taking k n 1= − , 
1

m n(n 1)
2

= − , we 

have: 
 

2 21 1
(n 3n 2) (n 3n 2) n 22 2

n n(T ) (L(K )) 2 (n 1) n
− + − − −τ = τ = × − ×  

 
Lemma 13: Let nA (x) be n n× matrix such that: 
 

n

x 1 1 1

1 x 1

1 1
A (x)

1

x 1

1 1 1 x

 
 
 
 

=  
 
 
  
 

⋯ ⋯

⋱ ⋮

⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱

⋯ ⋯

 

 
Then: 
 

n 1
nd e t( A ) ( x n 1) ( x 1) −= + − −  

 
Proof: From the definition of the circulant 
determinants, we have: 
 

j

n
2 3 n 1

n j j j j
j 1

n

j 1, 1

2 3 n 1
j j j j

1

n 1

det(A (x)) (x .......... )

(x 1 1 ....... 1)

(x .......... )

(x n 1) (x 1) .

−

=

= ω ≠

−

=−

−

= +ω + ω + ω + + ω

= + + + + ×

+ ω + ω + ω + + ω

= + − × −

∏

∏

������������	

 

Lemma14: If A B
H

B A

 
=  
 

 and AB = BA. Then 

det(H) = det(A+B). det (A-B). 
 
Proof: Using the fact that 

1

1

A B d e t( A ).d e t( D C A B )
d e t

C D d e t( D ). d e t( A B D C )

−

−

 −  =   −  

, where A,B 

are non singular, Marcus M. [12]. We have   

1A B
det det(A ).det(A BA B)

B A
− 

= − 
 

 

                         2 2det(A B ) det(A B).det(A B)= − = + − . 
This formula gives some sort of symmetry in some 
matrices which facilitates our calculation of 
determinants. 
 
Theorem 15:

 

n 2 n 1
2 n(K K ) n (n 2)− −τ × = × + . 

Proof: Applying lemmas 2. We have: 
 

2 n 2 2

1 1
(K K ) det(2n I D A) det

(2n) (2n)
τ × = − + =  

n 1 0 0 0 1 1

0 n 1 0 1 0 1

0

n 1 0 1 0 1

0 0 n 1 1 1 0

0 1 1 n 1 0 0

1 0 1 0 n 1 0

0

0 1 n 1 0

1 1 0 0 0 n 1

+ 
 + 
 
 

+ 
 +
 

+ 
 + 
 
 

+ 
 + 

⋯ ⋯ ⋯ ⋯

⋱ ⋮ ⋯ ⋮

⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋮ ⋱ ⋮

⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋮

⋱ ⋮ ⋱ ⋱

⋯ ⋯ ⋯ ⋯

 

 
Using lemma14, we get: 
 

2 n(K K )τ × =  

2

n 1 1 1 1 n 1 1 1

1 n 1 1 1 n 1 1
1

det det1 1 1
(2n)

n 1 1 n 1 1

1 1 1 n 1 1 1 n 1

+ + − −   
   + − + −   
   ×
   

+ + −   
   + − − +   

⋯ ⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋱ ⋱

⋯ ⋯ ⋯

 

 
 Applying lemma13 with x n 1,= + for the first 
determinant and properties of determinants for the 
second, yields:  
 

n n 1 n 1 n 2
2 n 2

1
(K K ) 2n 2(n 2) (n 2) n

(2n)
− − −τ × = × × + = + ×  

 
Theorem 16: n 2 n 1

2 n(K K ) n (n 1)(n 2)− −τ ⊗ = − − . 

 
Proof: Applying lemmas 2. We have: 
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2 n 2

1
(K K ) det(2n I D A)

(2n)
τ ⊗ = − + =  

            
n

2

n

n 1 1

1 I

1

1 1 n1
d e t

n 1 1(2 n )

1

I 1

1 1 n

 
 
 
 
 
 
 
 
 
 
 
 
 

⋯

⋱ ⋮

⋱

⋯

⋯

⋱ ⋮

⋮ ⋱

⋯

  

 
     Using lemma14, we get: 
 
     2 n(K K )τ ⊗ =  

2

n 1 1 1 1 n 1 1 1 1

1 n 1 1 1 n 1 1
1

det det1 1 1 1 1 1
(2n)

n 1 1 n 1 1

1 1 1 n 1 1 1 1 n 1

+ −   
   + −   
   ×
   

+ −   
   + −   

⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋮ ⋱ ⋱

⋯ ⋯

 

 
 Applying lemma13 with x n 1,n 1= + − respectively,   
we have: 
 

n n 1
2 n 2

n 2 n 1

1
(K K ) 2n 2(n 1)(n 2)

(2n)

n (n 1)(n 2)

−

− −

τ ⊗ = × × − −

= − −
 

 
Theorem 17:

 

2n 2
2 n(K K ) (2n) −τ =� . 

 
Proof: Applying lemma 2, we have: 
 

2 n 2 2

1 1
(K K ) det(2n I D A) det

(2n) (2n)
τ = − + =�  

2n 0 0 0 0

0 2n 0 0

0

2n 0

0 0 2n 0 0

0 0 2n 0 0

0 0 2n 0

0

2n 0

0 0 0 0 2n

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⋯ ⋯ ⋯ ⋯ ⋯

⋱ ⋮ ⋮ ⋯ ⋯ ⋮

⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋯ ⋱ ⋱ ⋮

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋮ ⋯ ⋯ ⋮ ⋱ ⋮

⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋮

⋱ ⋯ ⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯ ⋯ ⋯

 

n n 2n 2
2n2

1
(2n) (2n) (2n) (K )

(2n)
−= × = = τ  

 
Theorem 18:

 

2(n 2)
2 n(K K ) n −τ =⊙ . 

 
Proof: Applying lemma 2, we have: 
 

2 n 2 2

1 1
(K K ) det(2n I D A) det

(2n) (2n)
τ = − + =⊙  

 

n 1 0 0 0 1 1

0 n 0 1 1

0

n 0

0 0 n 1 1

0 1 1 n 1 0 0

1 1 0 n 0

0

n 0

1 1 0 0 n

+ 
 
 
 
 
 
 
 

+ 
 
 
 
 
 
 
 

⋯ ⋯ ⋯ ⋯

⋱ ⋮ ⋯ ⋯ ⋮

⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋯ ⋱ ⋱ ⋮

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋮ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋮

⋮ ⋱ ⋯ ⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯ ⋯ ⋯

 

 
Using lemma14, we get: 
 

2 n(K K )τ =⊙

2

n 1 1 1 1 n 1 1 1

1 n 1 1 1 n 1 11
det det

1 1 1(2n)

n 1 1 1 n 1

+ + − −   
   + − − −   ×
   −
   

+ − − −   

⋯

⋮ ⋱

⋱ ⋮ ⋮ ⋱ ⋱

⋮ ⋯ ⋱ ⋯

 

 
 Applying lemma13 with x n 1= + for the first 
determinant and properties of determinants for the 
second, yields:  
 

n n 2 2(n 2)
2 n 2

1
(K K ) 2n 2n n

(2n)
− −τ = × × =⊙  

 
Theorem 19:

 

m 1 n 1
n,m(K ) n m− −τ = . 

 
Proof: Apply lemma 2, we have: 
 

n,m 2 2

1 1
(K ) det((n m)I D A) det

(n m) (n m)
τ = + − + =

+ +
 

m 1 1 1 0 0

1

1 1 m 1 0 0

0 0 n 1 1 1

1

1

0 0 1 1 n 1

+ 
 
 
 
 

+ 
 +
 
 
 
 
 + 

⋯ ⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋯ ⋮

⋮ ⋱ ⋱ ⋮ ⋯ ⋯ ⋮

⋱ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋯ ⋯ ⋮ ⋱ ⋮ ⋮

⋮ ⋯ ⋯ ⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯

 

 
Using lemma14, we get: 
 

n,m(K )τ =  

2

m 1 1 1 n 1 1 1

1 11
det det

1 1(n m)

1 1 m 1 1 1 n 1

+ +   
   
   ×
   +
   

+ +   

⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋮ ⋱ ⋮ ⋱

⋯ ⋯
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 Applying lemma13 with x n 1= + and 
x m 1= + respectively, we have: 
 

n,m 2

n 1 m 1 n 1 m 1

1
(K )

(n m)

(n m) m (n m) n m n− − − −

τ = ⋅
+

+ × × + × =
 

 
 Specially, 2n 2

n,n(K ) n −τ = . 

 
Corollary 20:

 

2n 4 2
n,n(K e) n (n 1)−τ − = × − . 

 
Proof: Applying lemma 2, we have: 
 

n,n 2 2

1 1
(K e) det(2n I D A) det

(2n) (2n)
τ − = − + =  

n 1 1 1 0 0

n 1 0 0

1

1 1 n 1 0 0

1 0 0 n 1 1

0 0 1 n 1

1

0 0 1 1 n 1

 
 + 
 
 

+ 
 
 

+ 
 
 
 + 

⋯ ⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋮ ⋱ ⋱ ⋮ ⋯ ⋯ ⋮

⋱ ⋯ ⋯

⋯ ⋯

⋯ ⋮ ⋮ ⋮

⋮ ⋯ ⋯ ⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯

 

 
Using lemma14, we get: 
 

n,n(K e)τ − =

2

n 1 1 1 n 1 1 1

1 1 n 11
det det

1 1(2n)

1 1 n 1 1 1 n 1

+ −   
   +   ×
   
   

+ +   

⋯ ⋯

⋱ ⋮ ⋮

⋮ ⋱ ⋮ ⋱

⋯ ⋯

 

 

 Applying lemma13 with x n 1= + for the first 
determinant and properties of determinants for the 
second, yields:  
 

n n 2 2 2n 4 2
n,n 2

1
(K e) 2n 2n (n 1) n (n 1)

(2n)
− −τ − = × × × − = × −  

 
Theorem 21: 2(n 2) 2

n,n(K e) n (n 2n 1)−τ + = + − . 

 
Proof: Applying lemma 2, we have: 
 

n,n 2 2

1 1
(K e) det(2n I D A) det

(2n) (2n)
τ + = − + =  

n 2 1 1 1 0 0

1 n 1 1 0 0

1

n 1 1

1 1 n 1 0 0

1 0 0 n 2 1 1

0 0 1 n 1 1

1

n 1 1

0 0 1 1 n 1

+ − 
 + 
 
 

+ 
 +
 

− + 
 + 
 
 

+ 
 + 

⋯ ⋯ ⋯ ⋯

⋱ ⋮ ⋯ ⋯ ⋮

⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋯ ⋱ ⋱ ⋮

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋮ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋮

⋮ ⋱ ⋱ ⋯ ⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯ ⋯ ⋯

 

 
Using lemma14, we get: 
 

n,n(K e)τ + =

2

n 1 1 1 1 n 3 1 1 1

1 n 1 1 1 n 1 1
1

det det1 1 1 1 1 1
(2n)

n 1 1 n 1 1

1 1 1 n 1 1 1 1 n 1

+ +   
   + +   
   ×
   

+ +   
   + +   

⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋮ ⋱ ⋱

⋯ ⋯

 

 
 Applying lemma13 with x n 1= + for the first 
determinant and properties of determinants for the for 
the second, yields: 
 

n n 2 2
n,n 2

2(n 2) 2

1
(K e) 2n 2n (n 2n 1)

(2n)

n (n 2n 1)

−

−

τ + = × × + −

= + −
 

 
Theorem 22:

 

2 2n 2n 1 n 2n 1 2(n 1)
n,n(L(K )) 2 n n− + − − −τ = × × . 

 
Proof: It is easy to show that n,nL(K ) is the n nK K× .  

Appling lemma11 taking k n= and 2m n= . 
We have: 
 

2 2n 2n 1 n 2n 1 2(n 1)
n,n n n(L(K )) (K K ) 2 n n− + − − −τ = τ × = × ×  

 
Theorem23:  
 

m 1 n 1
1 n,m(K K ) (n m 1) (n 1) (m 1)− −τ + = + + × + × + . 

 
Proof: Applying lemma 2, we have: 
 

1 n,m 2

1
(K K ) det[(n m 1) I D A]

(n m 1)
τ + = + + − +

+ +
 

        

2

1
(n m 1) det

(n m 1)

m 2 1 1 0 0 0

1

1 1 m 2 0 0

0 0 n 2 1 1

1

1

0 0 1 1 n 2 0

0 n m 1

= + + ×
+ +

+ 
 
 
 
 

+ 
 +
 
 
 
 
 +
 

+ + 

⋯ ⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮

⋮ ⋱ ⋱ ⋮ ⋯ ⋯ ⋮ ⋮

⋱ ⋯ ⋯ ⋮

⋯ ⋯ ⋯ ⋮

⋮ ⋯ ⋯ ⋮ ⋱ ⋮ ⋮ ⋮

⋮ ⋯ ⋯ ⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
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2

1
(n m 1) det

(n m 1)

m 2 1 1 n 2 1 1

1 1 n 2
det

1 1

1 1 m 2 1 1 n 2

= + + ×
+ +

+ +   
   +   ×
   
   

+ +   

⋯ ⋯

⋱ ⋮ ⋮

⋮ ⋱ ⋮ ⋱

⋯ ⋯

 

 
Applying lemma 13 with x m 2= + and x n 2= + , 
respectively, we have: 
 

m 1 n 1
1 n,m(K K ) (n m 1) (n 1) (m 1)− −τ + = + + × + × +  

 
          Specially, 2n 2

1 n,n(K K ) (2n 1) (n 1) −τ + = + × + . 
 
Corollary24:

 

2n 4
n,n 1 n 1,n 1(K e) (2n 1)n (K K )−

− −τ = − = τ +� . 
 
Theorem 25:

 

2n 2 2n 2
2 n,n(K K ) 2n (n 1) (n 2)− −τ × = × + × + . 

 
Proof: Applying lemma 2, we have: 
 

2 n,n 2 2

1 1
(K K ) det(4n I D A) det

(4n) (4n)
τ × = − + =

n 2 0 1 0 1 0 1 1 1

0 n 2 0 1 0 1 0 1

1 0 n 2 0 1 0 1

0 1 0 0

1 1 1

1 0 n 2 0 0 1

1 0 n 2 1 1 0

0 1 1 n 2 0 1 0 1

1 0 0 n 2 0

1 1 0 n 2

0 1 0

1

0 1 n 2 0

+
+

+

+
+

+
+

+

+

⋯ ⋯ ⋯ ⋯ ⋯

⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋯ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋯ ⋯ ⋮ ⋮ ⋱ ⋱ ⋱

⋮ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱

1 1 0 0 n 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱

 

 
Using lemma14, we get: 
 

2 n,n 2

n 2 1 2 1 2

1 n 2 1

2 1 n 2 2
1

(K K ) det 1
(4n)

2

n 2 1

1 n 2

n 2 1 0 1

1 n 2 1

0 1 n 2

det 1

0

1 n 2 1

0 1 n 2

+ 
 + 
 +
 

τ × = × 
 
 

+ 
 + 

+ − − 
 − + − 
 − +
 

− 
 
 

− + − 
 − + 

⋯ ⋯

⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱

⋯ ⋯ ⋯

⋱ ⋱ ⋱ ⋮

⋱ ⋱ ⋱ ⋮

⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱

⋮ ⋯ ⋯ ⋯

 

 Straightforard induction using properties of 
determinants. 
We have:   
 

2n 2n 2
2 n,n 2

2n 2 2n 2

1
(K K ) 8n 4(n 1)(n 2)

(4n)

2n (n 1) (n 2)

−

− −

τ × = × × + +

= × + × +
 

 
Theorem 26:

 

4n 2 2n 2 2n
2 n,n(K K ) 2 n (n 1)− −τ = × × +� . 

 
Proof: Apply lemma 2, we have: 
 

 2 n,n 2 2

1 1
(K K ) det(4n I D A) det

(4n) (4n)
τ = − + =�  

2n 2 0 1 0 1 0 0 1 0 1

0 2n 2 0 1 0 0 0 0 1 0 1

1 0 2n 2 0 1 0 1

0 1 0 0 0 0

1 1 1 1

1 0 2n 2 0

1 0 2n 2 1

0 0 1 0 1 2n 2 0 1 0 1

0 0 0 1 0 0 2n 2 0

1 0 0 0 1 0 2n 2

0 1 0 0

1 0

0 1

+
+

+

+
+

+
+

+

⋯ ⋯ ⋯ ⋯

⋱ ⋱ ⋱

⋱ ⋮ ⋱ ⋱⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱⋱ ⋱ ⋱

⋯ ⋱ ⋱⋱ ⋮ ⋱ ⋱⋱ ⋱ ⋱

⋮ ⋯ ⋯ ⋮ ⋮ ⋱ ⋱⋱ ⋱ ⋱

⋮ ⋯ ⋯ ⋮ ⋮ ⋱ ⋱⋱ ⋱ ⋱

⋯ ⋯ ⋯ ⋯

⋱ ⋯ ⋱⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱⋱ ⋱ ⋱

⋱ ⋱⋱ ⋱ ⋱ ⋱ ⋱⋱ ⋱ ⋱

⋱ ⋱⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱⋱ ⋱ ⋱

⋱ ⋱⋱ ⋱ ⋱ ⋱ 2n 2 0

0 2n 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 +
 + 

⋱ ⋱ ⋱⋱

⋮ ⋱ ⋱ ⋱⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱⋱

 

 
Using lemma14, we get: 
 

2 n,n 2

2n 2 0 2 0 2

0 2n 2 0

2 0 2n 2 2
1

(K K ) det 0
(4n)

2

2n 2 0

0 2n 2

2n 2 0 0 0

0 2n 2 0

0 2n 2

det

2n 2 0

0 0 2n 2

+ 
 + 
 +
 

τ = × 
 
 

+ 
 + 

+ 
 + 
 +
 
 
 
 

+ 
 + 

⋯ ⋯

⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱

� ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱

⋯ ⋯ ⋯

⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱

⋯ ⋯ ⋯ ⋱

 

 
 Straightforward induction using properties of 
determinants.  
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We have:

 

4n 2 2n 2 2n
2 n,n(K K ) 2 n (n 1)− −τ = × × +�  

 
Theorem 27:

 

4n 4 2
2 n,n(K K ) (n 1) (2n 1)−τ = + × +⊙ . 

 
Proof: Applying lemma 2, we have: 
 

2 n,n 2 2

1 1
(K K ) det((4n 2) I D A) det

4(2n 1) 4(2n 1)
τ = + − + =

+ +
⊙  

2n 2 0 0 0 0 1 1 1

0 n 2 0 1 0 1 1

0 0 n 2 0 1 1

1 0 0

0 1

0 n 2 0

0 1 0 n 2 1 1

0 1 1 1 2n 2 0 0 0 0

1 1 0 n 2 0 1 0

1 0 0 n 2 0

1 0

n

+
+

+

+
+

+
+

+

+

⋯⋯ ⋯ ⋯⋯ ⋯

⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋯ ⋯ ⋯⋯ ⋱

⋯⋯ ⋯ ⋯ ⋯

⋯ ⋱⋱ ⋱ ⋮ ⋯ ⋯

⋱ ⋱ ⋱⋱ ⋱ ⋮ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱⋱ ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱⋱ ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ 2 0

1 1 0 1 0 n 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + ⋯ ⋯ ⋯⋯ ⋯ ⋮ ⋱ ⋱

 

 
Using lemma14, we get: 
 

2 n,n 2

2n 2 1 1 1

1 n 3 1 2 1

1 1 n 3
1

(K K ) det 2
4(2n 1)

1

n 3 1

1 1 n 3

2n 2 1 1 1

1 n 1 1 0 1

1 1 n 1

det 0

n 1 1

1 0 1 n 1

+ 
 + 
 +
 

τ = × +  
 

+ 
 + 

+ − − − 
 − + − − 
 − − +
 
 
 
 

+ −
 − − + 

⋯ ⋯ ⋯

⋯ ⋯

⋱ ⋱ ⋱ ⋱

⊙ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋮ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱

⋯ ⋯ ⋯

⋯ ⋯

⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⋮ ⋮ ⋱ ⋱ ⋱

⋮ ⋯ ⋯




  
 Straightforward induction using properties of 
determinants.  
We have: 
 

2n 2 3
2 n,n 2

2n 2 4n 4 2

1
(K K ) 2(n 1) (2n 1)

4(2n 1)

2(n 1) (2n 1) (n 1) (2n 1)

−

− −

τ = × + × +
+

× + × + = + × +

⊙
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