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Abstract: Problem statement: Further to research works made previously and which use collectively 
the scattering formalism and bond graph technique for the modeling of a physical systems often 
working in high frequencies, we propose, in this article, a comparative study (discussion) for the 
scattering matrix realization of a high-frequency physical system. Approach: This discussion is based, 
on the one hand, on a non-causal (acausal) bond graph model which represents the starting model for the 
determination of the scattering parameters. On the other hand, we shall use a causal bond graph model 
richer in information and to which we shall apply what we called in former articles: the analytical 
procedure of the scattering parameters exploitation with the aim of showing the importance of the 
causality notion in the physical systems study by the bond graph approach, as well as the importance of 
the ways and causal loops notion. Results: We will, initially, apply this discussion, to an elementary 
transmission line; in the second place, the application is carried out on the equivalent circuit of a band 
pass filter based on localized elements often used like microwave filters in high frequencies studies. 
Conclusion: We will finish this discussion by realizing the scattering bond graph model of a quadruple 
by pointing out the procedure used for the construction of this new type of bond graph model. 
 
Key words: Transmission line, scattering bond graph model, bond pass filter, loops notion, microwave 
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INTRODUCTION 
 
 The development of the bond graph technique was 
articulated around two basic concepts which are the 
reticulation assumption and the power continuity 
principle (Mota and Mota, 2011), without forgetting the 
importance of the causality concept, which reveals the 
relations of cause for purpose (Cause with effect) 
between the various modules of the system and returns 
the bond graph model richer in information than a 
simple graph model (Birkett, 2009).  
 The profits of the causal ways and loops make it 
possible, amongst other things, to make structural 
analysis, to have an estimate on the dynamic behavior 
of the system, to determine the Inputs-outputs relations, 
whereas the scattering formalism, through its different 
properties evoked previously (Taghouti and Mami, 
2010a; Taghouti and Mami, 2009), includes explicitly 
the conservation laws and respect in an intrinsic way 

the causal relations (Buisson et al, 2000). It thus plays a 
significant role in the bond graph development and add 
the interest which Paynter (1992) grants to him which 
regards it as an alternative approach for the physical 
systems modeling. 
 We will trying, in this article, to apply the new 
modeling technique, described in former articles, which 
uses collectively the scattering formalism and the bond 
graph approach for a modeling of the physical systems 
often working in high frequencies. For that purpose 
and although these works on this new technique 
remain limited at least as regards the bond-graphic 
designers, the display of what was made in this 
domain will allow us to propose, at the beginning of 
our researches, a method based on a non-causal 
(acausal) bond graph to calculate the scattering matrix 
of the studied system. 
 Then and while basing itself on the fact that the 
concept of causality is a concept very significant in 
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modeling of the physical systems since it enables us to 
organize the relations constitutive of the elements in an 
Inputs-outputs form and to analyze the variables of 
powers effort and flow in terms of dependence, we 
propose in the continuation of this study to build the 
“Scattering Bond Graph” model by taking account of 
the causality concept contrary with what was carried 
out in the study of Professor  (Kamel and Dauphin-
Tanguy, 1996) which completely cancelled the concept 
of causality in spite of its importance. We consider, for 
the construction of this new model, as starting point the 
conventional bond graph model which will enable us to 
calculate the scattering parameters by the application of 
the analytical exploitation procedure explained in our 
previously papers and which uses the causal ways 
notions and the Masson rule applied to the transformed, 
reduced and causal bond graph model and for objective 
to apply to the found scattering matrix, which is not 
actually a transfer matrix, the procedure described in 
the previously papers (Taghouti and Mami, 2010a) in 
order to have the famous model “Scattering Bond 
Graph” of the studied system.  
 
Calculation of the scattering matrix from a non-
causal (acausal) bond graph representation: The 
starting point of this method is the acausal bond graph 
of a physical or electrical studied system brought back 
in the elementary shape to two branches including only 
one “0-junction” and “1-junction” associated with an 
equivalent impedance and admittance in cascades 
(Kamel et al., 1993).  
 Now let us consider the series impedance and the 
parallel admittance in reduced variables as the Fig. 1a 
and Fig. 1b shows it below.  
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 The bond graph representations (Fig. 2) associated 
respectively to the Fig. 1a and b above will be as 
follows: 
 The scattering matrices Sseries (often noted Ss) and 
Sparallel (often noted Sp) associated to the two 
representations below can be written, while being based 
with the Eq. 1 and 2 and with the Kirchhoff rules, in the 
following form Eq. 3 and 4:  
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Fig. 1: (a) Series impedance in reduced variables (b) 

Parallel admittance in reduced variables 
 

 
 (a) 
 

 
 
Fig. 2: (a) The acausal bond graph associated to Fig. 1a 

(b) The acausal bond graph associated to Fig. 1b 
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 The equivalence out of wave matrixes is given 
respectively by the below expressions Eq. 5 and 6: 
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 The product of the two wave matrixes below gives 
us the total wave matrix Wsp of the system in cascade in 
the following form Eq. 7: 
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 By applying the transformations between wave 
matrixes and scattering matrixes, we can have the   total 
scattering matrix form Ssp of the system in cascade, 
such as Eq. 8: 
 

sp

zy z y 21
S

2 zy z yzy z y 2

+ − 
=  − + −+ + +  

 (8) 

 
 The determination of the scattering matrix of a 
complex physical system is made by referring to the Eq. 
8 and by the organization of the system in the 
hierarchical arborescence form allowing finding the 
elementary structure of equivalent impedance and 
admittance in cascade (stunt). Now in the case of the 
electric systems working in high frequencies, the 
organization in the hierarchical arborescence form is 
almost impossible, because, like example, we can never 
return an antenna with micro-strip lines or multi-coats 
(multilayer) antennas with distributed elements under 
the shape of serial impedance in cascade (stunt) with a 
parallel admittance. We shall discuss during this study 
the case of the characteristic impedances of these 
systems and the possibilities of returning them in the 
form of impedance and admittance in cascade (stunt). 

 
 
Fig. 3: (a) Transmission line; (b) Elementary line 

variation 
 

 
 
Fig. 4: Quadripolar representation of a linear variation 

with losses 
 
Comparison to the analytical exploitation 
procedure: Application in a transmission 
elementary line: Let us consider now the transmission 
line and its elementary variation represented like 
indicates it the following Fig. 3. 
 The electric study of the transmission lines (Beck 
et al., 1995) is possible that has to leave an equivalent 
model with localized elements and which represents a 
linear variation which the dimensions are much smaller 
than the used wavelength guided (l<<λ). Under these 
constraints, it is possible to model the line as a stake in 
cascade (stunt) of elementary quadripole (Matthaei et 
al., 1980) as indicates it the Fig. 4 below. 
 
Where:  
R = Linear electrical resistance 
L = Linear inductance 
C = Linear capacity 
G = Linear conductance 
 
 The elementary structure of the equivalent linear 
impedance and linear admittance in cascade is given by 
the following expressions Eq. 9:  
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 = +

 (9) 

 
 The normalization of these expressions compared 
to a normalization resistance (often we shall consider 
the internal resistance of the generator as normalization 
resistance by taking into accounts the condition of 
impedance adaptation) allows us to write Eq. 10 and 11: 
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 From the acausal bond graph model of Fig. 5 given 
below as well as the expression of Eq. 8, we can 
directly deduce the scattering parameters of the 
elementary line variation describes previously.  
 Thus we can write Eq. 12: 
 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( )

L2
C L

C

11

C2
C L

L

12

C2
C L

L

21

C2
C L

L

C2
C L

L

22

1 g
s s g r 1 r

1 r
S

1 r
s s r 1 g g 2

1 g

2
S

1 r
s s r 1 g g 2

1 g

2
S

1 r
s s r 1 g g 2

1 g

1 r
s s g

g 1
S

 τ + −
τ τ ⋅ + ⋅ + − + 

τ −  =
 τ + +

τ τ ⋅ + ⋅ + + + + 
τ +  

=
 τ + +

τ τ ⋅ + ⋅ + + + + 
τ +  

=
 τ + +

τ τ ⋅ + ⋅ + + + + 
τ +  

 τ + +
−τ τ ⋅ − ⋅ − 

τ −  =

( )

( )
( ) ( )C2

C L

L

r 1 r

1 r
s s r 1 g g 2

1 g




















 + +



 τ + +
τ τ ⋅ + ⋅ + + + +  τ +   

 (12) 

 
 To apply the analytical exploitation procedure 
which takes account of the causality concept, we start 
by assigning an integral causality on the bond graph 
above while supposing that the linear and reduced 
impedance and admittance have respectively the 
characteristics of an inductance and a capacity. From 
where the causal and reduced bond graph model of the 
linear variation will be like the Fig. 6 indicates it below. 

 
 
Fig. 5: The acausal bond graph model of the linear 

variation with losses 
 

 
 
Fig. 6: The causal and reduced bond graph model of 

the linear variation 
 
 The causality assignment on this bond graph 
results in an effort-flow causality seen by the system 
as indicated on Fig. 6. While referring to our old 
works (Taghouti and Mami, 2009; 2010a; 2010b), 
the analytical Inputs-outputs relations can take, then, 
the following form Eq. 13: 
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 The scattering matrix will take the following form 
Eq. 14: 
 

11 22
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 (14) 

 
 We detect, on this reduced and causal bond graph 
model, by going through the causal ways, a single 
causal loop B1 where the associated integro-differential 
operator is Eq. 15: 
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 The integro-differential operator associated with the 
determiner of the reduced bond graph model is Eq. 16: 
 

1
1

z y
∆ = −

⋅
  (16) 

 
 The operator associated with the causal way 
connecting the reduced variable ε1 with the P1 port to 
the variable ϕ1 with the same port is Eq. 17:  
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 The operator associated with the causal way 
connecting the reduced variable ϕ2 with the P2 port to 
the variable ϕ1with the P1 port is Eq. 18:  
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 The operator associated with the causal way 
connecting the reduced variable ε1  with the P1 port to 
the variable ε2 with the P2 port is Eq. 19:  
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 The operator associated with the causal way 
connecting the reduced variable ϕ2 with the P2 port to 
the variable ε2 with the same port is Eq. 20:  
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 While referring to Eq. 14, the scattering parameters 
of the S matrix according to the linear reduced 
impedance and admittance are such as Eq. 21:  
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 By replacing the linear impedance and admittance 
by their Eq. 10, we can rewrite the scattering 
parameters in the following form Eq. 22: 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( )

L2
C L

C

11

C2
C L

L

12

C2
C L

L

21

C2
C L

L

L2
C L

C

22

1 g
s s r g 1 g

r 1
S

1 r
s s r 1 g g 2

1 g

2
S

1 r
s s r 1 g g 2

1 g

2
S

1 r
s s r 1 g g 2

1 g

1 g
s s r

1 r
S

 τ + +
τ τ ⋅ + ⋅ + + − 

τ −  =
 τ + +

τ τ ⋅ + ⋅ + + + − 
τ +  

=
 τ + +

τ τ ⋅ + ⋅ + + + − 
τ +  

=
 τ + +

τ τ ⋅ + ⋅ + + + − 
τ +  

 τ −
−τ τ ⋅ + ⋅ + 

−τ +  =

( )

( )
( ) ( )C2

C L

L

1 g g

1 r
s s r 1 g g 2

1 g




















 − −



 τ +
τ τ ⋅ + ⋅ + + + −  +τ +   

  (22) 

 
 We notice that the scattering parameters found by 
the two methods present some differences with regard 
to the sign of the numerator or the denominator 
parameters, which is due to the causality assignment 
and the change number of the orientation while 
following the variables efforts and flow through the 
information bonds of the reduced and causal bond 
graph model above.  
 
Discussion and comment: The causality assignment on 
a bond graph model does not depend solely on the type 
of elements but also on the total structure of junction. In 
fact, the causality is more informative than the concept of 
impedance and admittance (Birkett, 2009) which loses of 
its interest on a bond graph model replaced by the 
concept of elementary transmittance obtained starting 
from the profits of the ways and the causal loops.  
 Moreover, with regard to the extraction of the 
scattering parameters method by the analytical 
exploitation procedure describes in our previously 
works (Taghouti and Mami, 2010a), where we 
presented the four relations related to the various types 
of causality, making it possible to determine the S 
matrix. The problem arises when one deals with 
situation where causality on the bond of entry, the bond 
of exit or even on the two bonds is not single. In this 
case, the choice of the type of causality determines 
which relations to be used (Taghouti and Mami, 2009; 
2010a; 2010b). 
 However, it would be more judicious, to facilitate 
and reduce calculations, to choose the case of the 
obligatory causality imposed by the inductive and 
capacitive elements constituting the studied system and 
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if is not the case, choosing us causality making 
revealing a minimum number of ways and causal loops 
as in the case of the example of the elementary line 
variation of the previously Fig. 6.  
 Otherwise, in the method of the acausal bond graph 
which allows us, after a hierarchical reorganization, to 
obtain an impedance series and a parallel admittance in 
cascades about it (Redfield and Krishnan, 1993) and by 
looking at the Ohm’s law given by the Eq. 23 above for 
the calculation of impedance, we note that a causality 
entering effort (or outgoing flow) was implicitly taken 
into account resulting in a derived causality for elements 
I and one integral causality for the elements CL: 
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U Z I U s I

1
U I

s


 = ⋅= ⋅ ⇒ = τ ⋅ ⋅

 = ⋅

τ ⋅

  (23) 

 
 Reciprocally, in the calculation of admittance, in 
fact the “I” elements are in integral causality whereas the 
“C” elements are in derived causality. This being well 
cavity, independent from the effective causality which 
would have the bond graph model in integral causality. 
 

MATERIALS AND METHODS 
 
Realization procedure of the scattering bond graph: 
We propose, during this article, a new type of relation 
enters the scattering formalism and the bond graph 
approach while combining both procedures described 
during our research works (Taghouti and Mami, 2010b; 
Taghouti and Mami, 2009; ), by leaving from a reduced 
and causal bond graph model (Amara and Scavarda, 
1991) to reach a particular type of bond graph model 
called “ Scattering bond graph” who makes to appear 
explicitly the various of power waves (Kamel and 
Dauphin-Tanguy, 1996; Kamel et al., 1993). 
 Contrary to the scattering formalism often used in 
problems of waves distribution (optics, hyper-
frequency) (Wake, 1998), a bond graph model is an 
unified representation by numerous domains of the 
physics and like the scattering bond graph is 
associated with a classic bond graph model, we tried, 
in this article, to preserve our studies in the frequency 
field while choosing to work like beginning, on high-
pass filters with localized or distributed elements 
(Taghouti and Mami, 2009; 2010a; 2010b) 
considering the realization of this type of bond graph 
amounts changing field of study while passing from 
the frequency field to the temporal field. 

Scattering bond graph of a quadripole: The most 
general form of the scattering matrix “S” of a 
quadripole is given by the Eq. 24 and 25 below: 
 

( )
11 n 11 12 n 12
n 0 n 0
21 n 21 22 n 22
n 0 n 0

b s b b s b1
S

d s b s b b s b

 + + + +
=  + + + + 
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 (24) 

Where: 
 

( ) n n 1
n n 1 0d s a s a s a−

−= + + +⋯  (25) 

 
 The S matrix presented above is a 2-2-matrix 
having a particular form whatever the complexity of the 
expressions of the equivalent series impedance or 
parallel admittance if we work by an acausal bond 
graph model (Kamel and Dauphin-Tanguy, 1996; 
Kamel et al., 1993).  
 Indeed, if the system does not have any active 
source, then the quadripole is known as reciprocal, 
moreover, if the system is supposed without loss the S 
matrix is orthogonal.  
 The number of dynamic components present in the 
studied physical system is given by the “n” degree of 
d(s) denominator. Indeed, “n” will indicate the number 
of I and C elements in integral causality if one started 
from a bond graph model, whereas the elements which 
are in derived causality do not play a part in the 
dynamics of the system.  
 

RESULTS 
 
 Now let us consider the equivalent circuit of a 
band-pass filter based on localized elements like the 
Fig. 7 shows it below.  
 The conventional and causal bond graph model of 
this filter intercalated between the two input-output 
ports P1 and P2 is given by the Fig. 8. 
 We know that in such circuit the two parallel and 
series inductive and capacitive elements, like the Fig. 
8 indicates it above, can be replaced by an 
impedance series and a parallel admittance without 
modifying the dynamic behavior of the system. To 
apply the analytical exploitation procedure to the S 
scattering matrix, we simplify the model above in a 
transformed, causal and reduced bond graph model 
as indicates it the following Eq. 26 Fig. 9.  
 
Where:  
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Fig. 7: Equivalent Circuit of the band-pass filer 
 

 
 
Fig. 8: Conventional and causal bond graph model of 

the band-pass filter 
 

 
 
Fig. 9: Reduced and causal bond graph model of the 

studied filter 
 
 The parameters of the scattering matrix will be thus 
in the following forms: 
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 (27) 

DISCUSSION 
 
 This matrix is not a true transfer matrix (contrary to 
the wave matrix), we will precede it like that, at least 
from an input-output point of view, connecting, in a 
symbolic form, the incident and reflected waves. 
With this intention, we will apply the results of the 
previously works (Taghouti and Mami, 2009;  2010a; 
2010b) which makes it possible to build a bond 
graph model starting from a transfer function or 
matrix (Kamel and Dauphin-Tanguy, 1996; Kamel et 
al., 1993).  
 The S matrix is not in an adequate form since the 
degree of the numerator is equal to that of the 
denominator. The step to be followed thus consists in 
carrying out the Euclidian division of each term of the 
matrix numerator by the common denominator d(s) 
what gives a new matrix noted S” having a degree to 
the numerator equal to that of the denominator d(s) 
decreased by one.  
 The new form of the scattering matrix, after the 
Euclidian division, will be in the following form Eq. 28: 

 

DS S M′= +  (28) 

 
MD = Represent the direct transmission matrix.  
 
 The terms of the constant matrix MD are a function 
of the respective coefficients of the numerators and the 
common denominator thus represent the quotients of 
Euclidian division of the each term of the scattering 
matrix by its common denominator (Kamel and 
Dauphin-Tanguy, 1996; Kamel et al., 1993).  
 It will, thus, take the following form Eq. 29:  
 

11 12
D

21 22

q q
M

q q

 
=  
 

 (29) 

  
 The second stage consists in seeking for the new 
scattering matrix “S’” the development in alpha-beta 
and building the corresponding bond graph model by 
using the procedure of realization of a bond graph 
model in the multivariable case like we explained in the 
previously papers.  
 The direct part comes to be grafted on this bond 
graph using a suitable number of bonds from 
information connecting the entries to the various exits. 
 We represent the scattering bond graph model in the 
case of a direct diagonal matrix by the following Fig. 10.
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Fig. 10: The scattering bond graph model of the 

quadripole 
 
This particular type of bond graph, consists of two 
identical direct chains (the S matrix of any quadripole is 
square and has dimension two) modeling the 
dynamic part (Kamel and Dauphin-Tanguy, 1996) 
related to the common denominator d(s) and having 
for entries two effort sources representing the 
incidental waves wr1 et wr2.  
 The total structure of the bond graph model 
remains same whatever the degree of the common 
denominator. Only the number of I and C elements, 
related to the number of αi and thus with the degree of 
d(s), changes. This being, obviously, in accord with the 
preceding remark on n degree of d(s).  
 The variables of exit, representing the reflected 
waves wr1 et wr2, are obtained using detectors 
judiciously placed to collect information on the level of 
the adequate port. 
 

CONCLUSION 
 
 In this study, we reminded and explaining briefly, 
with some improvements, a procedure which uses 
collectively and in a clarify way the scattering 
formalism and the bond graph approach for the 

modelling of a physical system by bringing to light the 
power waves and their distributions on a particular type 
of graph bond often called “Scattering Bond Graph”. 
 The procedure described in this study, has allows 
us to have a temporal representation with dynamic 
elements which can have a physical interpretation 
(performance) and a better analyze of energy 
phenomena. 
 This procedure gave us, by means of a graphic 
representation, an access to the various power waves, 
contrary to the scattering matrix which remains a 
formal model difficult to interpret. 
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