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Abstract: Problem statement: Most of synchronous generator applied in power system is the salient 
pole type. Most of previous researches use non-salient model to evaluate the critical clearing time. 
Thus the results of critical clearing time of power system may be error. Approach: Thus this paper 
investigate the critical clearing time of power system with synchronous machine. The mathematical 
model of non-salient pole and salient pole synchronous machine model in power system are 
symmetrically derived. The critical clearing time of both models are tested and compared on various 
cases. Results: The critical clearing time of the power system with synchronous including saliency is 
slightly higher that of non saliency model. Conclusion: It is found from simulation results that even 
swing curve of both models is obviously different. Their critical clearing times are slightly different.  
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INTRODUCTION 
 
 From the energy utilization point of view, 
electricity is still being regarded as mighty means of 
energy carrier. Nowadays, the demand of electricity has 
dramatically increased and a modern power system 
becomes a complex network of transmission lines 
interconnecting the generating stations to the major 
loads points in the overall power system in order to 
support the high demand of consumers. The 
complicated network causes the stability problem. 
Currently, power engineers are much more concerned 
about stability problem due to blackout in Northeast 
United States, Scandinavia, England and Italy 
(Kumkratug, 2010; Osuwa and Igwiro, 2010; Santos et 
al., 2010). They have proposed many methods to 
improve stability of power system such as load 
shedding, Flexible AC Transmission System (FACTS), 
(Al-Husban, 2009; Darabi et al., 2008; Kumkratug, 
2011; Magaji and Mustafa, 2009; Taher et al., 2008; 
Zarate-Minano et al., 2010). 
 The evaluation of Critical Clearing Time (CCT) 
of power system is one of the most important 
research areas for power engineers because it 
indicates the robustness of the faulted power system. 
The dynamic behavior of synchronous generator 
plays very important role to determine the CCT of 
power system. There are two type of synchronous 
machine; salient pole and non-salient pole. Many 
previous researches use synchronous generator 

excluding saliency. Thus it is very interesting to 
investigate the effect of salient pole of generator 
whether it affects on the CCT or not.  
 This paper investigated the critical clearing time of 
the system equipped with different types of 
synchronous generator. The mathematical model of 
non-salient pole and salient pole synchronous machine 
model in power system are symmetrically derived. The 
critical clearing time of both models are tested and 
compared on various cases. 

 
MATERIALS AND METHODS 

 
Mathematical model: Figure 1a shows the single line 
diagram of power system. First consider the non-salient 
pole model of generator equipped in power system as 
can be shown in Fig. 1b. Here XL is the equivalent 
reactance of each transmission line. The generator is 
represented by a synchronous voltage in quadrature axis 
( qE′ ) behind direct transient reactance (dX′ ). The Vb is 

the voltage at infinite bus. Fig. 1c is the equivalent 
reactance circuit of Fig. 1b. Here X1 is equivalent 
circuit of transmission line L1 and line L2 whereas X2 is 
equivalent circuit of transmission line L3 and line L4. 
The dynamic equation for evaluating critical clearing 
tine is given by Eq. 1 and 2: 

 

δ = ωɺ  (1) 



Am. J. Applied Sci., 9 (2): 227-230, 2012 
 

228 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 1: Single machine infinite bus system (a) schematic 

diagram (b) equivalent circuit (c) net series 
reactance diagram 

 

 
 
Fig. 2: Phasor diagram 
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 The δ, ω and Pm in (1)-(2) are the rotor angle, 
speed, mechanical input power and moment of inertia, 
respectively of synchronous machine.  
 The output electrical power of synchronous 
machine (Pe) excluding saliency is given by Eq. 3:  
 

q b
e

d

E V
P sin

X

′
= δ
∑

 (3) 

 
 Here ∑Xd is the net equivalent reactance of the 
system in direct axis and given by Eq. 4: 

d d t 1 2X X X X X′∑ = + + +  (4) 

 
 Here let consider the synchronous machine in 
salient pole type. Figure 2 shows the phasor diagram of 
power system with synchronous machine including 
saliency.  
 Here I is the generator current at terminal and it is 
consist two component; direct axis and quature axis as 
given by Eq. 5 and 6: 
 

qI Icos= θ  (5) 

 
And: 
 

dI Isin= θ  (6) 

 
 The synchronous voltage in quadrature axis is 
given by Eq. 7: 
 

q b d dE V cos X I′ = δ +∑  (7) 

 
 The output power of generator is given by Eq. 8: 
 

e bP V Icos= θ  (8) 

 
 From the (5), (6) and (8), the output power of 
generator is given by Eq. 9 and 10: 
 

e b q dP V (I cos I sin )= δ + δ  (9) 

 
 From Fig. 2: 
 

b q qV sin X Iδ =∑  (10) 

 
 Here ∑Xq is the net equivalent reactance of the 
system in quadratur axis and given by Eq. 11: 
 

q q t 1 2X X X X X∑ = + + +  (11) 

 
 From (7) and (10), the Id is given by Eq. 12: 
 

q b
d

d

E V cos
I

X

′ − δ
=

∑
 (12) 

 
 The output power of synchronous generator 
including saliency is given by Eq. 13: 
 

d q2b
e b

d d q

X XE V
P sin V sin 2

X X X

′ −′
= δ + δ
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 (13) 
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Fig. 3: Power curve of synchronous machine 

 
 It is well known that the power curve (Pe-δ) 
provides very important information of analyzing the 
critical clearing time of power system. Figure 3 
shows the swing curve of the sample system as 
shown in Fig. 1a.  
 The system parameters are: 

 
H=5, Xt = 0.1 pu, dX′ =0.25 pu, Xq=0.6 puXL1=0.5 pu, 

XL2=0.5 pu, XL3=0.5 pu, XL4=0.5 pu, Pm=0.8 pu, 

qE′ =1.22 pu, Vb=1 pu 

 
 It can be seen from the figure that the at output 
electrical power 0.8 pu the rotor angle of non-salient 
pole is 31.64 degree whereas for the salient pole is 
45.35 degree. The maximum value of the output power 
for salient pole is higher than that of non-salient pole. 
 The derived equation will be further investigate 
and compared the critical clearing time by 
implementing in MATLAB/SIMULINK.  
 

RESULTS 
 
 Consider the diagram of sample system is shown in 
Fig. 1a. It is considered that three phase fault appears at 
line 2 near bus i and the fault is cleared by opening both 
circuit breakers. Figure 4 shows the rotor angle of the 
system with clearing time (tcl) for 170 m sec.  
 Based on the simulation, the critical clearing time 
of the system with synchronous generator of non-salient 
pole is around 174-175 m sec where that of the salient 
pole is 175-176 m sec. Figure 5 shows the swing curve 
of the system with tcl = 175 m sec.  

 
 
Fig. 4: Swing curve of the system for tcl = 170 msec 
 

 
 
Fig. 5: Swing curve of the system for tcl = 175 msec 
 

DISCUSSION 
 
 There are three interesting simulation results on 
this investigation. First, the swing curve of salient pole 
and non-salient pole are obviously different. With tcl = 
170 m sec, the maximum generator rotor angle (δmax) of 
non-salient pole type is around 121.19 whereas the 
salient pole type is around 127.71. Second, the time of 
maximum rotor angle (tmax) of salient pole is less than 
that of non-salient pole as can be seen in Fig. 3. Third, 
the critical clearing time of different types of 
synchronous generator model are slightly different.  
 

CONCLUSION 
 
 This paper investigated the critical clearing time of 
the system equipped with different types of 
synchronous generator. The mathematical models are 
symmetrically derived. There are three interesting 
simulation results on this paper. First, the maximum 
generator rotor angle of salient pole and non-salient 
pole are significantly different. Second, the time of 
maximum rotor angle (tmax) of salient pole is less than 
that of non-salient pole. Third, the critical clearing time 
of different types of rotor pole are insignificantly 
different. It can be confirmed that with critical clearing 
time evaluation, the mathematical model of 
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synchronous generator in non-salient is not only 
simpler but also able to be applied for the system with 
salient pole.  
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