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Abstract: This study considered reorder point on the continuous review inventory model under 
controllable lead time with mixture of backorder price discounts and partial lost sales. We developed a 
continuous review inventory model where the lead time, the order quantity, backorder discount and 
safety factor were considered as the decision variables of a mixture of backorders and lost sales 
inventory model. The objective was to minimize the expected total annual cost with respect to related 
decision variables. The purpose model with lead time demand distribution was unknown. The author 
applies a minimax distribution free procedure to find the optimal solution and numerical example was 
included to illustrate the solution procedure of the proposed algorithms. 
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INTRODUCTION 

 
 It is important to manage inventory quantity for 
modern enterprises. Although the time condensation 
will predictably raise the cost, a customer will pay 
remuneration to the supplier who can provide its 
product faster and more firm than the competition and 
the price payment may be praiseworthy. Silver and 
Peterson[18] defined the replenishment lead time as the 
time beyond from the moment at which it is decided to 
place an order, until it is physically on the shelf to 
satisfy customer demands. While Naddor[12], Silver and 
Peterson[18] consider that lead time can be a constant or 
a random variable, it is often treated as a prescribed 
parameter and not controllable. However, lead time can 
be reduced at extra cost and shorter lead time is the 
primary driver to achieving customer satisfaction in 
successful TBM operations[1]. The benefits resulting 
from reduced lead time include lower cost, less waste 
and less obsolescence, greater flexibility to response to 
change, closely linked organization priorities to 
customers’ needs, improved service, quality and 
reliability and substantially accelerated supply system 
improvements[1]. Tersine[20] and Vollmann et al.[21] 
attributed the replenishment lead time mostly to 
manufacturing considerations and addressed some 
guidelines for its reduction. Liao and Shyu[5] suggested 
that lead time could be decomposed into n components 
each having a different crashing cost for reduction. 
Ben-Daya and Raouf[2] widespread the Liao and Shyu[5] 
model by considering both lead time and the order 

quantity as decision variables. It is related[2,4,10,13] are all 
focus on the reorder point or safety factor as a decision 
variable.  
 We solve the problem by applying the minimax 
distribution-free approach, originally disseminated by 
Gallego and Moon[3]. Moon and Choi[8] and Moon and 
Yun[9] apply distribution-free approach to solving the 
purpose models. Ouyang and Wu[15] relaxed the 
assumption on the form of cumulative distribution 
function of the lead time demand and applied the 
minimax distribution free procedure to solve the 
problem. Moon and Silver[11] and Silver and Moon[19] 
study a single period replenishment problem under the 
distribution free situation. On the other hand, this study 
considers a continuous review inventory system in 
which the lead time is controllable and can be 
decomposed into several components each having a 
crashing cost function. In addition, shortage is 
permitted and the total amount of stockout is a 
combination of backorder and lost sale. It is further 
assumed that the patient customers with outstanding 
orders during the shortage period are offered a 
backorder price discount and consequently the 
backorder ratio is proportional to the magnitude of this 
discount[16]. Since the shortage cost is explicitly 
included, the reorder point is also treated as a decision 
variable in this study[10].  
 There is a form of lead time demand that assumes a 
distribution free in the study. In this model, the 
objectives are to simultaneously optimize the order 
quantities, back order discounts, reorder points and lead 
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times such that the total expected annual costs are 
minimized. Finally, a particular case is deduced, which 
has been previously available and a numerical 
illustrative example is added.  
 

DISTRIBUTION FREE MODEL 
 
 In a distribution free model, the lead time demand 
assumption is relaxed to any distribution function by 
only assuming that the distribution function F belongs 
to the class Ω with finite mean µL and variance σ2L. 
Again, the expected total annual cost of the distribution 
free   model   can   be   expressed   as   EACD  (Q, πx, 
k, L) = OC + HC + SC + CC. While the expected 
ordering and expected crashing costs are of the same 
forms as those of the normal demand model, the 
expected shortage at the end of a cycle can be expressed 
by B(r) = E[X-r]+ and the corresponding expected total 
annual holding cost is: 
 

Q
HC h{ k L (1 )E[X r] }

2
+= + σ + − β −  

 
 The expected annual shortage cost is: 
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 Therefore, the expected total annual cost for 
distribution free model can be presented by: 
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 Since the form of the lead time demand distribution 
is not known, the minimax criterion is applied to find 
the least favorite distribution function in Ω for each (Q, 
πx, k, L) and then find the optimal values of Q*, πx

*, 
k*and L*that minimize the expected total annual cost. In 
mathematical symbolization, the problem under 
investigation can be expressed as: 

Q 0,L 0 F
min max EACD (Q, x, k, L)
> > ∈Ω

π   

 
 Gallego and Moon[3] proved that the following 
inequality holds for any F ∈ Ω: 
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 Substituting r = µL + kσ L  into the model, the 
problem can be reduced to minimize: 
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 Taking the partial derivatives of EACD (Q, πx, k, 
L) with  respect  to  Q, πx, k and L in each time interval 
(Li, Li−1], we obtain: 
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 However, for fixed Q, k and πx, EACD(Q, πx, k, L) 
is concave in L∈(Li, Li−1], since: 
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 For fixed L∈(Li, Li−1], the determinant of Hessian 
matrix of EACD(Q, πx, k, L) is positive definite at (Q*, 
πx

*, k*) as proved in Appendix. Setting equation (5) to 
zero and solving for πx, it follows that: 
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 Setting Eq. 4 to zero and substituting (9) into (4) to 
solve for Q, it follows that: 
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 Solving for k by setting Eq. 6 to zero and 
substituting (9) into (6), we have: 
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 The following algorithm is developed to find the 
optimal values of the order quantity, backorder price 
discount, safety factor and lead time for the problem 
under study. 
 
Step 1: For i = 0, 1, 2, …, n 
 
(i) Set kio = 0 
(ii) Substitute kio into (10) to evaluate Qio 
(iii) Utilize Qio to determine kin from (11). Let kio = kin 
(iv) Repeat (ii) and (iii) until no change occurs in the 

values of Qi and ki. Denote the resulting solutions 
by Qi and ki 

(v) For i = 0, 1, 2, …, n, use equation (3) to compute 
the expected total annual cost EAC(Qi, πxi, ki, Li) 

 
Step 2: Set EACD(Q*, πx

*, k*, L*) = Min{EACD(Qi, 
πxi, ki, Li), i = 0, 1, 2, …, n}. 
 
Step 3: Q*, πx

*, k*, L*) is a set of optimal solutions. 
 

NUMERICAL EXAMPLE 
 
 Consider an inventory system with the following 
data: D = 600 units/year, A = $200 per order, h = $20 
per unit per year, �0 = $150 per unit, � = 7 unit/week 
and the lead time has three components with data 
shown in Table 1[16], except that the probability 
distribution of the lead time demand is unknown. Apply 
the proposed algorithm to solve the problem for the 
upper bound of the backorder ratio �0 = 0.95, 0.80, 
0.65, 0.50, 0.35 and 0.20. The results are summarized in 
Table 2.  
 Next, compare the performance of distribution-free 
approach against those of normal distribution. For 
example, consider the results with β0 = 0.5. Let (QN, 
�x

N, kN, Li
N) = (121,77.0157,1.88,4) denote the optimal 

solution set obtained in the normal distribution case[13] 
and EACN(•N) be the associated cost where N 
represents the normal distribution. On the other hand, 
let (QU, �x

U, kU, Li
U) = (146, 77.43, 2.49, 3) denote the 

optimal solution set found in the general distribution 
case where U denote the distribution free case with 
associated cost EACN(•U) and EACN(•U) is the annual 
expected cost of using (QU, �x

U, kU, Li
U) when the real 

demand distribution is normal. Then the additional cost 
of   EACN(•U)-EACN(•N) = EACN(146,  77.43,  2.49,  
 
Table 1: Lead time data of the examples 
Lead time component I 1 2 3 
Normal duration Ti (days) 20 20 16 
Minimum duration ti (days) 6.0 6.0 9.0 
Unit fixed crashing cost ai ($/day) 0.4 1.2 5.0 
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Table 2: Summary of the results for example (Li in weeks) 
 The proposed model    The Pan and Hsiao[16] model (k = 0.85)  Savings 
 ------------------------------------------------------------------------ ----------------------------------------------------------- (%)((2) 
β0 Q* �x

* k* Li
* EAC(•)(1) Q* �x

* Li
* EAC(•)(2) -(1))/(2) 

0.95 144 77.39 2.32 3 3684.90 208 77.95 3 3964.73 7.06 
0.80 144 77.40 2.38 3 3714.58 212 77.99 3 4019.26 7.58 
0.65 145 77.42 2.43 3 3743.47 216 78.03 3 4073.15 8.09 
0.50 146 77.43 2.49 3 3771.61 219 78.08 3 4126.41 8.60 
0.35 146 77.44 2.54 3 3799.06 223 78.12 3 4179.07 9.09 
0.20 147 77.45 2.60 3 3825.86 226 78.16 3 4231.15 9.58 

 
Table 3: Summary of computational results 
 EACU EACN EACN EACN EACN(•U) 
�0 (QU, �x

U, kU, Li
U) (•U) (•U) (•N) /EACN(•N) 

0.95 (144, 77.39, 2.32, 3) 3684.90 3083.65 2932.15 1.052 
0.80 (144, 77.40, 2.38, 3) 3714.58 3063.23 2937.62 1.043 
0.65 (145, 77.42, 2.43, 3) 3743.47 3079.66 2942.81 1.047 
0.50 (146, 77.43, 2.49, 3) 3771.61 3095.93 2947.72 1.050 
0.35 (146, 77.44, 2.54, 3) 3799.06 3112.02 2952.40 1.054 
0.20 (147, 77.45, 2.60, 3) 3825.86 3127.95 2956.85 1.058 

 
3)-EACN(121,    77.0157,   1.88,   4) = $3095.93-
2947.72 = $148.21 is the largest amount that one would 
be willing to pay for the knowledge of the distributional 
form of lead time demand. This quantity can be 
regarded as the Expected Value of Additional 
Information (EVAI)[3]. 
 The results for β0 = 0.95, 0.80, 0.65, 0.50, 0.35 and 
0.20 in Table 3 reconfirm the robustness of distribution 
free approach that has been proven in recent related 
studies[10]. 
 

CONCLUSIONS 
 
 This research studies distribution free model 
having both mean and variance known and finite. We 
consider the impact of safety factor on the continuous 
review inventory model involving controllable lead 
time and backorder price discount with mixture of 
backorder and partial lost sales. The objective is to 
minimize the expected total annual cost by 
simultaneously optimizing order quantity, backorder 
price discount, safety factor and lead time. Algorithms 
are developed to find the optimal solutions for the 
model and example are provided to illustrate the 
procedures of the algorithms. We may obtain one 
conclusion when the upper bound of the backorder ratio 
β0 increases, backorder ratio β and safety factor and 
total expected annual cost decreases. If the buyer 
permits seller bigger backorder price discount, will be 
allowed to promote the service level and to reduce total 
expected annual cost. 
 

APPENDIX 
 
 The Hessian matrix H of EACD(Q, πx, k, L) for a 
given value of L is: 
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 Next, we proceed to evaluate the principal minor of 
H  at  point  (Q*, πx

*, k*).  The  first  principal  minor of 
H is: 
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 The second principal minor of H is: 
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 By substituting πx

* from (9) and (k/(1 + k*2)1/2) 
from (11), the third principal minor of H is: 
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For �k* ∈ [0, ∞) and 0 < β0 ≤1, G(k*) is positive. Hence, 
we have 33H > 0.  
 Therefore, from (13) to (15), it is concluded that 
the Hessian matrix H is  positive define at point (Q*, 
πx

*, k*). 
NOTATION AND ASSUMPTIONS 

 
The following notation is used throughout the study. 
 
L = Length of lead time (decision variable) 
Q = Order quantity (decision variable) 
πx = Backorder price discount offered by the 

supplier per unit (decision variable) 
k = Safety factor (decision variable) 
r = Reorder point 
π0 = Gross marginal profit per unit 
D  = Average demand per year 
A = Fixed ordering cost per order 
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h = Inventory holding cost per unit per year 
µ = Average demand rate in units/day 
β = Backorder ratio 
β

0
 = Upper bound of the backorder ratio 

φ = Standard normal distribution 
� = Standard normal cumulative distribution 

function 
SS = Safety stock 
B(r) = Expected shortage of a cycle 
R(L) = Total crashing cost of a cycle 
 
The assumptions made in the study are listed below: 
• The reorder point r = expected demand during lead 

time + safety stock, that is, r = DL + kσ L , where 
k is safety factor 

• The lead time L has n mutually independent 
components. The ith component has a normal 
duration Ti and a minimum duration ti, i = 1, 2, …, 
n and a crashing cost per unit time ai. The ai′s are 
arranged such that a1 ≤ a2 ≤ … ≤ an. The lead times 
are crashed one component at a time starting with 
the one of least ci and so on 

• Let Li denote the length of lead time with 
component 1, 2, …, i crashed to their minimum 
values, then Li can be expressed as Li = n

jj 1
T

=
−�  

i

j jj 1
(T t ).

=
−�  Thus, the lead time crashing cost 

R(L) per replenishment cycle is given by R(L) = ai 
(Li−1 − L) + i 1

j j jj 1
a (T t )

−

=
−� , for L ∈ (Li, Li−1]

[16] 

• The backorder ratio β is variable and is in 
proportion to the backorder price discount offered 
by  the  supplier  per  unit πx, thus, β = β0πx / π0, for 
0 < β0 ≤ 1, 0 ≤ πx ≤ π0

[16] 
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