
American Journal of Applied Sciences 6 (7): 1368-1372, 2009
ISSN 1546-9239
© 2009 Science Publications

Corresponding Author: Khalid Jaber, School of Computer Sciences, University Sains Malaysia, 11800, Penang, Malaysia
 Tel: +604-6533888 Fax: +604-6573335

1368

The Parallel Maximal Cliques Algorithm for Protein Sequence Clustering

Khalid Jaber, Nur'Aini Abdul Rashid and Rosni Abdullah

School of Computer Sciences, University Sains Malaysia, 11800 Penang, Malaysia

Abstract: Problem statement: Protein sequence clustering is a method used to discover relations
between proteins. This method groups the proteins based on their common features. It is a core process
in protein sequence classification. Graph theory has been used in protein sequence clustering as a
means of partitioning the data into groups, where each group constitutes a cluster. Mohseni-Zadeh
introduced a maximal cliques algorithm for protein clustering. Approach: In this study we adapted the
maximal cliques algorithm of Mohseni-Zadeh to find cliques in protein sequences and we then
parallelized the algorithm to improve computation times and allowed large protein databases to be
processed. We used the N-Gram Hirschberg approach proposed by Abdul Rashid to calculate the
distance between protein sequences. The task farming parallel program model was used to parallelize
the enhanced cliques algorithm. Results: Our parallel maximal cliques algorithm was implemented on
the stealth cluster using the C programming language and a hybrid approach that includes both the
Message Passing Interface (MPI) library and POSIX threads (PThread) to accelerate protein sequence
clustering. Conclusion: Our results showed a good speedup over sequential algorithms for cliques in
protein sequences.

Key words: Maximal cliques algorithm, parallel processing, protein sequence clustering, MPI, pthread

INTRODUCTION

 One of the basic applications of protein sequence
comparison is in protein sequence clustering. Protein
sequence clustering is an element of protein sequence
analysis. The results of protein sequence clustering
can be used as a basis for the prediction of new
protein sequence structure and function, or as a basis
for protein sequence classification. The two basic
steps to protein sequence clustering include
calculating distances among the protein sequences and
grouping the sequences into groups of similar
sequences based on these distances. The N-Gram-
Hirschberg technique[2] is used to calculate the
pairwise distance between a pair of sequences. The
resulting distance values are stored in a distance
matrix. We used a clustering algorithm based on a
maximal clique proposed by Mohseni-Zadeh et al.[1].
Maximal cliques are used to find a cluster in a set of
protein sequence graphs. However, we adapted the
algorithm to find cliques of different sizes using the
graphs. Relationships between protein sequences can
readily be shown on a graph. Nodes or vertices in the
graph represent protein sequences while each edge
represents a relation between two vertices. A clique is a

subset of vertices, such that all vertices in the subset are
directly connected to each other. The out-degree of
each vertex is (n-1), where n is the number of vertices
in the subset.
 The cliques algorithm is an extension of a large
scale clustering algorithm that is based on extracting
maximal cliques[1]. There are three steps involved in
finding cliques:

• Search for a Maximal Clique (MC) that is a core

cluster. Other nodes that do not meet the clique
criteria are placed in a set of Non-Cliques (NC)

• Extend the maximal cliques by finding all the
nodes related to any of the core clusters

• Find more sequences that are linked to the new
nodes just added to the core clusters in step 2

• Repeat steps 1-3 to find additional cliques

 In this study, we extend this study to find multiple
maximal cliques and we apply the Parallel Maximal
Cliques Algorithm (PMCA) on the protein sequences
taken from various protein databases. Our algorithm
has been implemented by[2] in a single-processor
computer system. The framework for clustering
protein sequences is shown in Fig. 1 and the sequential
algorithm for finding cliques is shown in Fig. 2.

Am. J. Applied Sci., 6 (7): 1368-1372, 2009

1369

Fig. 1: Steps in clustering protein sequences[2]

Fig. 2: Finding cliques in a graph[2]

The sequential implementation took a long time to
process because of the huge data volume[2]. This will
continue to pose a major challenge in the future. Our
research focuses on parallelization instead of
implementing the algorithm on a single machine. One
of the main advantages of the maximal cliques
technique is that it is inherently parallelizable. The
choice to implement the Parallel Maximal Cliques
Algorithm on a cluster was based on the fact that
workstation clusters are cheap and readily available.
Clusters can also be easily expanded and have low
maintenance costs. Moreover, development tools on
workstations are mature.
 This study offers three principal contributions.
First, we present a parallel processing design for the
Maximal Cliques Algorithm. Second, we apply this
approach to protein sequencing; and finally, we
parallelize the maximal cliques algorithm.
 This study is organized as follows. Describes the
proposed design then addresses the implementation
results and discussion. Finally we offer conclusions.

Proposed design: Our purpose is to design a parallel
version of the maximal cliques algorithm for protein
sequence clustering. We will discuss the design from
many perspectives such as the parallel maximal cliques
algorithm model, hardware and software, number of
processors and lastly input and output.

PMCA models: the Parallel Maximal Cliques
Algorithm (PMCA) is implemented using a Task
Farming (or Master/Slave) model.
 The master supervises the pre-processing phase in
which the number of files (FASTA protein files) to be
placed in the structure is read. This is our project
database. Then the system reads threshold values and
clique thresholds. It extracts information from the
FASTA file and saves it as a number of structures.
Subsequently, it computes the relation between two
protein sequences (using N-Gram Hirschberg
Algorithms). Relations can be similarity values or
distance values. The distance values are stored in a
similarity matrix (Fig. 3). The relation between two
protein sequences is implemented using POSIX threads
(PThread). The similarity matrix is partitioned and
distributed into different threads. The threads are forced
to run on different processors. Threaded programs are
significantly easier to write because threaded
applications that run on a single machine can
subsequently run on multiple machines without changes.
This ability to migrate programs between different
platforms is a great advantage for threaded APIs.
 The master node’s primary responsibility is to
distribute the protein sequences (jobs) among the
slaves. The program can run on two, three and five
processors. Protein sequences are assigned to slave
nodes based on the total number of sequences (i.e., if
we have 20 sequences and 3 nodes (1 master, 2 slaves),
the master sends 10 sequences to each slave node).
 When the master node receives the results from the
slaves, it aggregates and processes the final results. In
summary, the master’s responsibilities are:

• Carry out the pre-processing phase (read FASTA

protein files, threshold value and clique threshold)
• Compute relations between two protein sequences

(using N-Gram Hirschberg Algorithms)
• Decompose the problem into smaller tasks
• Distribute the protein sequences among the slaves
• Gather results from the slaves and process final

conclusions

 The slave node’s primary responsibility is to build
a directed threshold Graph Gt that includes values
greater than a given threshold t. Subsequently the
slave sorts the graph head nodes in descending order.

Am. J. Applied Sci., 6 (7): 1368-1372, 2009

1370

It then finds all the cliques in the graph and transmits
the result to the master node.
 In summary, the slave’s responsibilities are:

• Accept task from master
• Process the task (build graph and sort it)
• Find all cliques in the graph
• Transmit results to master

Fig. 3: PMCA flow chart

MATERIALS AND METHODS

Experimental environment: The Parallel Maximal
Cliques Algorithm is implemented on the Stealth
cluster using the C programming language and a hybrid
of the Message Passing Interface (MPI) library and
POSIX threads (PThread), as mentioned previously.
The Stealth cluster consists of 5 machines where one
machine is the server node and the other four are child
node. The Stealth cluster is located at the Parallel and
Distributed Computing Lab at the School of Computer
Sciences, USM. The configuration of the Stealth cluster
is shown in Table 1.
 The cluster is interconnected by fast ethernet. One
limitation of the cluster is that it is shared by many
users around campus, so result can be unreliable when
the load of the machine is high. To get appropriate
usable result, we thus tested the program during the
middle of the night and ran our test protocol several
times before averaging the results.

RESULTS AND DISCUSSION

 The protein sequence data was taken from
experiments that examined protein sequences used
by[2]. We tested the program on four data sets extracted
from public domain databases. The first dataset
(dataset1) was used by[3] and is denoted COG 001. 0160
was taken from[4]. The first dataset consists of 114
protein sequences.
 The second dataset (dataset2) is derived from four
PFAM families. It consists of 212 protein sequences.
The third Dataset (dataset 3) consists of 319 protein
sequences from NCBI and the fourth Dataset (dataset 4)
consists of 295 families from Swiss-Prot.
 The second, third and fourth datasets were
downloaded from Protein Information Resources (PIR)
at[5]. All the data used were in FASTA format. Table 2
shows details of each dataset.

Table 1: Stealth cluster configuration
Compute nodes 1 Master node
 4 Slaves node
Hardware Master Node:
configuration Sun Fire 280R:
 2 × Sun Sparc III 900 MHc processor
 2 GB RAM
 4 network interface cards
 Other Nodes (slaves)
 Sun Fire v10
 2 × Sun Sparc III 900 MHz processor
 2 GB of RAM
 1 network interface cards connected using
 fast ethernet
Operating system Sun solaris 9
and software Sun biobox
 Sun HPS cluster tools 5.0
 MPI, Gnu C

Am. J. Applied Sci., 6 (7): 1368-1372, 2009

1371

Table 2: Datasets
Data set Source No. of protein sequence
1 COG0001_00160 114
2 PFAM1 200
3 NCBI 319
4 Swiss-prot 295

Table 3: Performance measures for dataset 1

No. of processor Time (sec) Speedup Efficiency

One 297.71
Two 169.26 1.75 0.87
Three 149.37 1.99 0.66
Five 146.99 2.02 0.40

Table 4: Performance measures for dataset 2

No. of processor Time (sec) Speedup Efficiency

One 355.43
Two 205.94 1.72 0.86
Three 185.48 1.91 0.63
Five 180.32 1.97 0.39

Table 5: Performance measures for dataset 3
No. of processor Time (sec) Speedup Efficiency
One 4066.01
Two 2177.31 1.86 0.93
Three 2169.12 1.87 0.62
Five 1868.74 2.17 0.43

Fig. 4: Example of input data in FASTA format from

PIR

 Each data sequence was labelled according to the
PFAM number, which denotes the family in which the
protein sequence belongs. This label assumes the
existence of a “true” cluster. For example, if the protein
sequence comes from PIR and features a PFAM
number of PF00181, then the tag of each protein
sequence in the FASTA format starts with the family
number. Figure 4 shows one such entry.
 The sequential Maximal Cliques Algorithm took
about 297.71 sec to process dataset1, 355.43 sec for
dataset 2, 4066.01 sec for dataset 3 and 1392.94 sec for
dataset 4 (Table 3-6). We implemented the parallel
version on two, three and five processors. Detailed
results are shown in Table 3-6.

Table 6: Performance measures for dataset 4
No. of processor Time (sec) Speedup Efficiency
One 1392.94
Two 840.02 1.65 0.82
Three 782.13 1.78 0.59
Five 673.03 2.06 0.41

Fig. 5: Performance results

 The purpose of executing our program on a single
processor was to assess sequential running time and to
subsequently use it as a benchmark against which to
compare parallel running times. Our subsequent results
allowed us to calculate both performance gain and
efficiency of our parallel program.
 The execution time required to process datasets 1-4
using PMCA was less than that required when using
MCA, as shown in Table 3-6. However the accelerated
PMCA operated faster when implemented on two
processor nodes. Based on the experiments and results
shown in Table 3-6 and Fig. 5. But we noted no
significant difference between the execution time on
three and five processors because inter-processor
communication time increased and this negatively
impacted MPI, which is highly communication-
dependent.

CONCLUSION

 As the volume of biological data continues to
increase exponentially, parallel systems are urgently
needed to help scientists accelerate their analyses. This
can be achieved by enhancing the protein sequence
clustering algorithm. The parallel maximal cliques
algorithm is the most widely-used method for protein
sequence clustering, which constitutes the basic method
for discovering relations between proteins.
 In this research, we have applied parallel methods
to improve the computational time required to identify
clusters in large biological protein data sets. The
parallel maximal cliques algorithm has been
parallelized on two levels. The first level used POSIX

Am. J. Applied Sci., 6 (7): 1368-1372, 2009

1372

threads (PThread). At this level, the similarity matrix
was partitioned and distributed to different threads. The
threads were force to run on different processors. The
Message Passing Interface (MPI) is the second level of
parallelism. MPI is used as the message passing library
to allow inter-processor communication. We conclude
by hybridizing the two levels of parallelism.
 Our results from running the parallel algorithm
have shown good acceleration and efficiency in two-
processor tests. However, we observed no significant
difference between the execution time on three vs. five
processors, because the time devoted to communication
between processors increased and this exposed the main
weakness of MPI, which is highly dependent on
message parsing. In the future, we hope to run the
experiments on GPGPU (general-purpose computing on
graphics processing units) to obtain more conclusive
results with large data sets.

ACKNOWLEDGMENT

 We would like to thank Najwa Abu Bakar at
Universiti Sains Malaysia for fruitful collaboration
opportunities. This research was funded by grant titled
“ Parallel Graph-based Algorithm for Protein
Tertiary Structure Matching ”[01-01-05-SF0431] .

REFERENCES

1. Mohseni-Zadeh, S., P. Brezelec and J.L. Risler,

2004. Cluster-C, an algorithm for the large-scale
clustering of protein sequences based on the
extraction of maximal cliques. Comput. Biol.
Chem., 28: 211-218.

 http://www.ncbi.nlm.nih.gov/pubmed/15261151
2. Abdulrashid, N.A., 2008. Enhancement of

hirschberg algorithm using N-gram and parallel
methods for fast protein homologous search. PHD
Thesis, School of Computer Sciences, University
Sains Malaysia.

3. Kim, S. and J. Lee, 2006. BAG: A graph theoritic
sequence clustering algorithm. Int. J. Data Min.
Bioinform., 1: 178-200.

 http://www.ncbi.nlm.nih.gov/pubmed/18399070
4. Bioinformatics, Aprial 2008.

http://bio.bioinformatics.indiana.edu/sunkim/BAG/
5. Protein Information resource, 2008.

http://pir.georgetown.edu/

