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Abstract: Problem statement: The rotary inverted pendulum system was a highly nonlinear model, 
multivariable and absolutely unstable dynamic system. It was used for testing various design control 
techniques and in teaching modern control. The objectives of this study were to: (i) Develop a real 
rotary inverted pendulum which derived the mechanical model by using Euler-Lagrange and (ii) 
Design controller algorithm for self-erecting and balancing of a rotary inverted pendulum. Approach: 
Research shown a convenient way to implement a real-time control in self-erecting a pendulum from 
downward position and balancing the pendulum in vertical-upright position. An Energy based on PD 
controller was applied in self-erecting of the pendulum while LQR controller was applied to balance 
the pendulum. Results: Results of both control techniques from computer simulation and experiment 
were given to show the effectiveness of these controllers. Conclusion: Both simulations and 
experiments were confirmed the control efficiency of the method. 
 
Key words: Real-time control, linear quadratic regulator controller, energy based on PD controller, 

balancing, self-erecting 
 

INTRODUCTION 
 
 The Rotary Inverted Pendulum (RIP) is a 
challenging problem in the area of control systems. It is 
made to verify the performance and demonstrating the 
effectiveness of control algorithm techniques. This RIP 
is a simple structure, multi-variable and unstable non-
minimum phase system subjected to many nonlinear 
characteristics. It has a pendulum attached to a rotary 
arm instead of a moving cart. The advanced of this 
system is that there is no end point, which makes it 
convenient for experimentation especially during 
velocity control of the arm speed. Some research on the 
balancing of rotary inverted pendulum has been done 
using the linear control theory[1], Control law based on 
energy control[3], with the use of a balancing sequence, 
which allows rising up the pendulum from its stable 
equilibrium position. Zhong and Rock[10] used a linear 
quadratic regulator  to optimize the control gains used 
in the feedback controller. For the single inverted 
pendulum a simple bang-bang method as described by 
Astrom and Furuta[4] can be applied. This method 
regulates energy content in the system. Energy is added 
to the system with a stepped signal until the desired 
energy level is achieved. Other methods of swing-up 
control are outlined[5,6,8,9]. Iraj HassanZadeh and Saleh 

Mobayen proposed PSO-based controller for balancing 
rotary inverted pendulum[2]. 
 This study needs to propose an energy based 
control[4] to swing up a pendulum from downward 
position to steady state upright position, which is 
derived from the exact nonlinear mathematical model 
of rotary inverted pendulum. And then uses the LQR 
control technique was a main of controller to stabilize 
the rotary inverted pendulum such that the a pendulum 
is always to maintain it upright position and to maintain 
the arm position in horizontal plane by using a state 
feedback control to move unstable poles of a linear 
system to stable ones.  
 All experiments have been done in simulations on 
the mathematical model of rotary inverted pendulum 
and in real-time[7] experiments on the real rotary 
inverted pendulum system, which made in AIT Lab. 
 
Modeling of rotary inverted pendulum: The rotary 
inverted pendulum system consists of a controller, an 
arm, a pendulum, an actuator (a dc motor) and two 
increment rotary encoders. The controller makes the 
pendulum stand at upright position on the rotary arm by 
moving the arm supported on the base. The motor 
provides power to rotate the arm. The encoders detect 
the pendulum and arm angular position. 
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Fig. 1: Reference frames and parameters of rotary 

inverted pendulum 
 
 A schematic picture of the rotary inverted 
pendulum is supported Reference frames and some 
parameters as shown in Fig.  1.  
 
 The variables 1,θ 1θ& and 1θ&&  are angular position, 

velocity and acceleration of the rotary arm, link 1. 

2,θ 2θ&  and 2θ&&  are angular position, velocity and 

acceleration of the pendulum, link 2. J1 and J2 represent 
moments of inertia of the two respective links about 
their center of mass. l1 and l2 are distances from center 
of rotation of the links to center of mass of the 
respective links. m1 and m2 are the masses of links 1 
and 2 respectively. g is the gravitation acceleration and 
g = 9.81 m s−2. L1 and L2 are the lengths of links 1 and 
2, respectively. The variables C1 and C2 are the viscous 
damping coefficients of the bearings on which the links 
rotate.  Derivation of mathematical equation describing 
dynamics of the rotary inverted pendulum system is 
based on Euler-Lagrange equation of motion: 
 

i
i i i

d L L W
Q

dt q q q

 ∂ ∂ ∂− + =  ∂ ∂ ∂ &
 (1) 

 
Where: 
q(t) = The angular position vector 
q(t)&  = The angular velocity vector 
Qi = The external force or load vector 
L = The Lagrangian 
W = The loss energy 

 
 
Fig. 2: Position control using position and rate 

feedbacks 
 
 In the Euler-Lagrange equation, the Lagrangian, L, 
is defined as: 
 

total totalL(q,q) T V= −&  (2) 
 
Where: 
Ttotal = Total kinetic energy of the rotary inverted 

pendulum system 
V total = Total potential energy of the rotary inverted 

pendulum system 
 
 From Fig. 2, the total kinetic energy of the system 
is the sum of kinetic energy of the rotary arm and the 
pendulum: 
 
Ttotal = Tlink1+Tlink2 (3) 
 
 The kinetic energy of link 1, the rotary arm is: 
 

2 2 2
link1 1 1 1 1 1

1 1
T m l J

2 2
= θ + θ& &  (4) 

 
l1 = 0, since the center of mass of the arm is balanced at 
the original point, thus: 
 

2
link1 1 1

1
T J

2
= θ&  (5) 

 
 Similarly, the kinetic energy of links 2 is 
determined as: 
 

2 2 2
link2 2 2 2 1 1 2 2 2 2 2 2

1 1
T J m [(L l cos ) (l sin ) ]

2 2
= θ + θ + θ θ + θ θ& & & &  (6) 

 
 The total potential energy for the system is the sum 
of potential energy of the rotary arm and the pendulum: 
 
V total = Vlink1+Vlink2 (7) 
 
V total = 0+m2gl2cosθ2 (8) 
 
 The total loss energy of the system is the sum of 
loss energy of the rotary arm and the pendulum: 
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2 2
1 1 2 2

1 1
W C C

2 2
= θ + θ& &  (9) 

 
 From Eq. 2, the Lagrangian is determined as: 
 
L = Tlink1+Tlink2-V total (10) 
 
 Substitution of Eq. 5, 6, 8 and 9 into Eq. 10 yields: 
 

2 2 2 2 2
1 1 2 1 1 2 2 2 2

2
2 1 1 2 2 2 2 2 2 2 2 2

1 1 1
L J m L (m l J )

2 2 2

m L l cos (l sin ) m gl cos

= θ + θ + + θ

+ θ θ θ + θ θ − θ

& & &

& & &

 (11) 

 
 Euler-Lagrange equation of the motion of each 
variable, thus becomes: 
 

e
1 1 1

d L L W

dt

 ∂ ∂ ∂− + = τ ∂θ ∂θ ∂θ 
& &

 (12) 

 

2 2 2

d L L W
0

dt

 ∂ ∂ ∂− + = ∂θ ∂θ ∂θ 
& &

 (13) 

 
 Substitution of Eq. 11 into Eq. 12-13 and solving 
of Euler-Lagrange equation yields: 
 

2
1 2 1 1 2 1 2 2 2

2
2 1 2 2 2 1 1 e

[J m L ] (m L l cos )

(m L l sin ) C

+ θ + θ θ

− θ θ + θ = τ

&& &&

& &
 (14) 

 
2

2 1 2 2 1 2 2 2 2

2 2 2 2 2

(m L l cos ) (J m l )

(m l gsin ) C 0

θ θ + + θ

+ θ + θ =

&& &&

&
 (15) 

 
 To simplify the equations, some parameters are 
defined as shown in Table 1. 
 
Torque control of DC motor:  A permanent dc motor 
generates a dc back-emf, Ea that is proportional to the 
rotor speed as follow as: 
 

a v r v 1E K K= ω = θ&  (16) 
 
Table 1: Definition of parameter in the model 
Constant Value 

h1 
2

1 2 1J m L+  

h2 m2L1l2 

h3 
2

2 2 2J m l+  

h4 m2l2g 

h5 t

a

K

R
 

h6 t v

a

K K

R
 

 The electromagnetic torque produced is directly 
proportional to the rotor current: 
 

e t a v aK I K Iτ = =  (17) 

 
 In steady state, voltage equation describing the 
motor is: 
 
Va = RaIa+Ea (18) 
 
 From Eq. 18, finding current, Ia, thus: 
 

a a a v r
a

a a a a

V E V K
I

R R R R

ω= − = −  (19) 

 
 Substitute Eq. 19 into Eq. 17, yield as following: 
 

t a t v r t a t v 1
e

a a a a

K V K K K V K K

R R R R

ω θτ = − = −
&

 (20) 

 
where, Va is the applied dc voltage. The developed 
electromagnetic torque of a permanent dc motor can be 
readily expressed. The two main considerations in 
choosing a motor are needs for high torque and high 
speed. The torque is necessary for the rotary arm to 
change direction of rotation quickly in order to keep the 
two pendulums balanced. And high speed is needed 
such that the rotary arm can move faster than the 
pendulums can fall. The linear dynamic model is used 
for designing controller, which can be put into state 
space representation. When combining the derived 
mathematical model of nonlinear model and model of 
motor to complete set of mathematical equation of 
rotary inverted pendulum system for control voltage, Va 
and rearrangement of Eq. 16-18 based on parameters in 
Table 1. The nonlinear equations of motion are: 
 

1 1 2 2 2 1 1 5 a 6 1h h cos C (h V h )θ + θ θ + θ = − θ&& && & &  (21) 
 

2 1 3 2 4 2 2 2h h h sin C 0θ + θ + θ + θ =&& && &  (22) 
 
 To linearize, the model, the following 
approximations are applied: 
 

2cos 1,sin , 0θ ≈ θ ≈ θ θ ≈&  (23) 
 
 The linearized model, thus, becomes: 
 

1 1 6 1 1 2 2 5 ah (h C ) h h Vθ + + θ + θ =&& & &&  (24) 
 

2 1 3 2 2 2 4 2h h C h 0θ + θ + θ + θ =&& && &  (25) 
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Table 2: Definition of parameters in H−1matrix 
Constant Value 

d1 311 ha

det(H) det(H)
=  

d2 12 2a h

det(H) det(H)

−=  

d3 
−

=21 2
a h

det(H) det(H)
 

d4 22 1a h

det(H) det(H)
=  

 2
1 3 2det(H) (h h h )= −  

 
 By using the parameters defined in Table 2, the 
rotary  inverted pendulum can be expressed as: 
 

1 1 6 1 1 2 4 2 2 2 2 1 5 ad (h C ) d h C d d h Vθ = − + θ − θ − θ +&& & &  (26) 
 

2 3 6 1 1 4 4 2 2 2 2 3 5 ad (h C ) d h d C d h Vθ = − + θ − θ − θ +&& & &  (27) 
 
 The state and output equations for the inverted 
pendulum system are: 
 

1 1

1 51 11 6 1 2 4 2
a

22

3 6 1 4 4 2 2 3 522

1

1
a

2

2

00 1 0 0

d h0 d (h C ) d h C
V

0 0 0 1 0

0 d (h C ) d h d C d h

1 0 0 0
y V

0 1 0 0

 θ θ    
      θ θ− + − −      = +       θθ      
  − + − −    θ   θ   

θ 
 θ    = +    θ    
 θ 

&

&& &

&

&&&

&

&

 (28) 

 
 By defining the state variables as followings: 
 

1 1x = θ (arm position), 2 1x = θ& (arm velocity), 

3 2x = θ (pendulum position), 4 2x = θ& (pendulum 

velocity).  
 
 The linearized model of the rotary inverted 
pendulum results in: 
 

1 1

2 2
a

3 3

4 4

1

1
a

2

2

x x 00 1 0 0

x x0 0.4915 14.6564 0 2.93
V

x 0 0 0 0 x 0

0 1.4744 93.0191 1 8.78x x

1 0 0 0 0
y V

0 0 1 0 0

      
      −      = +
      
      − −         

θ 
 
θ     = +     θ    
 θ 

&

&

&

&

&

&

(29) 

Controller design: 
Self-erecting pendulum by energy based on PD 
controller: The self-erecting controller is used to swing 
the inverted pendulum up to the upright position when 
the pendulum is far from the upright position; for 
example, when the pendulum falls down by gravity. 
The self-erecting controller brings the pendulum 
upright close to the unstable point of equilibrium. 
Swinging up controller calculates the total system 
energy based on the kinetic energy of both links and the 
potential energy of the pendulum.  
 The control law function for input of the system is 
given by: 
 

swing a ref tot 2 2u V E E cos= − θ θ&  (30) 

 
 In this case the energy equation is: 
 

2 2 2 2 2
tot 1 1 2 1 1 2 2 2 2

2
2 1 1 2 2 2 2 2 2 2 2 2

1 1 1
E J m L (m l J )

2 2 2

m L l cos (l sin ) m gl cos

= θ + θ + + θ

+ θ θ θ + θ θ − θ

& & &

& & &

 (31) 

 
Eref = gm2l2 (32) 
 
When: 
Etot = Total energy in stable position of motion 

pendulum 
Eref = Total energy in upright stable equilibrium 

position 
 
 The dc motor is placed under position control for 
the deriving force. Many schemes can be applied to 
provide a driving force at a suitable trajectory in the 
manner that energy is gradually added to the system to 
bring the pendulum to the inverted position. In this 
study, the design is based on a rate feedback and a 
position feedback given by: 
 

a P 2 1 D 1V (s) K [ (s) (s)] K= θ − θ − θ&  (33) 
 
 This feedback loop is shown in Fig. 2. The 
applying the Mason’s gain formula, the overall transfer 
function becomes: 
 

o P m
2

i D m m P m

K a

s (K a b )s K a

θ
=

θ + + +
 (34) 

 
Where: 
 

2
m 1 m

m m
a eq eq a eq

K C K
a and b

R J J R J
= = +   (35) 
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Table 3: Parameters of the rotary inverted pendulum system 
Parameter Value Parameter Value 

m1 (kg) 0.830 J1 (kg m−2) 0.00208 
m2 (kg) 0.100 J2 (kg m−2) 0.00100 
L1 (m) 0.600 g (m s−2) 9.81000 
L2 (m) 0.300 Ra (Ω) 28.6000 
C1 (N.m.s) 0.000 kv (Vs) 0.16800 
C1 (N.m.s) 0.000 Kt = Km (N.m A−1) 1.68000 
l1 (m) 0.300 τe (N-m) 0.09810 
Jeq (kg m−2) 0.002   
L2 (m) 0.100 Va (V) 60.0000 

 
 From the standard second order transfer function as 
expressed by: 
 
θ ω

=
θ + ζω + ω

2

o n

2 2

i n n
s 2 s

 (36) 

 
 The second-order response peak time tp, is given 
by: 
 

p 2
n

t
1

π=
ω − ζ

 (37) 

 
 Thus, we have: 
 

ω ζω −
= =

2

n n m
P D

m m

2 b
K ,K

a a
 (38) 

 
       Parameters of the designed rotary inverted 
pendulum system are identified and found as shown in 
Table 3. These values are then used in the state space 
model to obtain a numerical representation for the 
purpose to design the controller.  
 In self-erecting controller, positive feedback based 
on the pendulum angular position and velocity creates a 
trajectory with growing amplitude. To design a closed-
loop controller for the arm  position which has  the 
following specifications: The Percent Overshoot (PO) 
should be less than 10% and time to first peak should 
be 150 ms.  Then: 
 
tp = 0.15s, Kp = 78.24 and KD = 4.48 (39) 
 
Balancing controller design:  During the self-electing 
of the pendulum, a robust state controller may be 
appropriate to catch the pendulum at the upright 
position. To switch between swinging up and balancing 
algorithm, the normalized energy of the pendulum Etot 
in  Eq. 31 is to be calculated and compare with the 
design energy of the pendulum Eref in Eq. 32. The 
Linear Quadratic Regulation (LQR) is used for the 

calculation of the optimal gain matrix K such that the 
state feedback law: 
 
ubalancing =  -Kx (40) 
 
 The minimizes the cost function is defined as: 
 

T T

0

1
J (x Qx u Ru)dt

2

∞

= +∫  (41) 

 
 The subject to the state dynamics is defined as: 
 
x Ax Bu= +&  (42) 
 
 Using MATLAB, the LQR balancing controller for 
the rotary inverted pendulum is designed based on the 
required weighting matrices: 
 
Q = diag ([60, 0.1, 60, 0.1]) and R = 1 (43) 
 
 Resulting in the optimal gain: 
 
K = [7.746, 3.6278, -4.4714, -0.0469] (44) 
 

MATERIALS AND METHODS 
 
     The overall architecture of the rotary inverted 
pendulum system with real time control by xPC Target 
is shown in Fig.  3. 
 A block diagram of the control system design is 
shown in Fig. 4. The self-erecting controller is base on 
energy based control and balance controller is a LQR 
controller. 
 As shown in Fig. 3, there are two PCs: Host and 
target PCs. The host PC with MS-Windows XP OS 
runs matlab, simulink, real-time workshop (RTW), xPC 
target and C/C++ compiler. The simulink is used to 
model dynamic of the physical system and controllers. 
RTW and C/C++ compiler convert simulink blocks into 
C code and build a target that is then download to the 
target PC through TCP/IP connection. The target PC 
with MS-Dos in real time, booted from floppy disk runs 
executable code generated from host PC.  
 We describe the physical hardware and software 
environment that used to implement the self-erecting or 
swing-up and balancing control for the rotary inverted 
pendulum. To design LQR and Energy based on PD 
controller, the state weighing matrix, Q, is designed in 
such the way that the closed loop response meets the 
following specifications: Arm Regulation:  |θ1|<120°,  
Pendulum Regulation: |θ2|<3° and  Control input limit: 
Vm<±10V. 
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Fig. 3: Schematic architecture and real experiment 

control of rotary inverted pendulum 
 

 
 
Fig. 4: Implementation block diagram of rotary 

inverted  pendulum 
 
 Thus the controller should regulate the arm about 
zero degree within 120° and balance the pendulum 
about the upright position within 3°. A control switch is 
shown in Fig. 4. Its purpose is to track the pendulum 
angular position, θ2 and switch between the self-
erecting and the balancing modes. This control switch 
is enable when θ2 is in neighborhood of zero, within 
±3° and as long as |θ2| < 25°. Thus, we are started 
constructing the implement diagram for closed-loop 
system the uses the self-erecting controller and 
balancing   controller   is  shown   in  Fig.  3  as:   Two 

 
 
Fig. 5: Experimental building the interface between 

rotary inverted pendulum to controller 
 
encoder are used to measure the angular position of 
the dc motor, θ1 and the pendulum position θ2. We use 
two observers to reconstruct the state variables 1θ&  and 

2θ&  which are not directly measured. These are the 

derivatives of θ1 and θ2. Because cannot implement a 
pure derivative, we use the low-pass band-limited 

observer 
50s

s 50+
 and 

500

s 500+
 to θ1 and θ2. As shown in 

Fig. 5. 
 Implement model diagram of rotary inverted 
pendulum as shown in Fig. 6. Get analog output block 
from MF624 library. These model diagram, we can 
selected a manual mode for move the pendulum to the 
vertical upright to balancing control mode or selected 
the switch to swing-up mode. 
 The desired position is determined by the following 
control law.  This positive feedback based on the 
pendulum angle and its velocity creates a trajectory 
with growing amplitude. As shown a block diagram in 
Fig. 7. 
 The control switch is shown in Fig. 8. Its purpose 
is to track the pendulum angle, θ2 and facilitate 
switching between the self-erecting and balancing 
mode. This controller is to be enabled when θ2 is in 
neighborhood  of  zero, within ±3° and for as long as 
|θ2|<25°. 
 The desired position is determined by the following 
control law.  This positive feedback based on the 
pendulum angle and its velocity creates a trajectory 
with growing amplitude experimentally, obtain of the 
Kp = 7.85, KD = 0.65. In simulations, the state-
controller gain vector, K from Eq. 44 is used to balance 
a pendulum, where all pendulum frictions are 
considered to be negligible. For the simulation results 
for the self-erecting and balancing controller for rotary 
inverted pendulum shows in Fig. 9. 
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Fig. 6: Experiment actual plant by simulink xPC Target 
 

 
 

Fig. 7: Experimental simulink diagram for Self-erecting controller design 
 

1

Enable

<

Relational

Operator1

<=

Relational

Operator

R2D

Radians

to Degrees

AND

Logical

Operator

In1 Out1

Enabled

Subsystem

3

Constant

1

Alpha reached -5 to +5

25

Alpha

Threshold

|u|

Abs

1

theta2

 
 

Fig. 8: Experimental diagram for control switch 
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 (a) (b) 
 

   
 (c) (d) 
 

 
(e) 

 
Fig. 9: Results of simulation of self-erecting and balancing of rotary inverted pendulum. (a): Simulation result of 

arm position angle (θ1); (b): Simulation result of arm velocity angle (1θ& ); (c): Simulation result of pendulum 

position (θ2); (d): Simulation result of pendulum velocity angle ( 2θ& ); (e): Simulation result of voltage control 

 
 

RESULTS 
 
 Simulation and experimental results are discussed 
in this section. Fig. 9 and 10 show the position and 
velocity versus time and control voltage versus time for 
the rotary inverted pendulum. The simulation results are 

shown in Fig. 9a-e. The arm is rotated alternately 
between 0 and 50° to increase the energy of the system 
quickly to move the arm to its maximum allowed angle 
of circular of arm. In this self-erecting mode, energy 
based PD controller takes 4.5 sec for 5 swings which is 
effectively employed in the control system to obtain 
maximum swing in short time. 
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 (a) (b) 
 

   
 (c) (d) 
 

 
(e) 

 
Fig. 10: Results of experiment of self-erecting and balancing of rotary inverted pendulum. (a): Experiment result of arm 

position angle (θ1); (b): Experiment result of arm velocity angle (1θ& ); (c): Experiment result of pendulum position  
angle (θ2); (d): Experiment result of pendulum velocity angle ( 2θ& ); (e): Simulation result of voltage control 

 

    
 

Fig. 11: The real-time control experiment of self-erecting and balancing of rotary inverted pendulum 
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 The amplitude of pendulum angle becomes larger 
until it is close to the upright position, then the 
balancing mode by LQR controller is used to stabilize 
and maintain the pendulum in the upright position, even 
when the disturbance is applied to the arm position. The 
robustness of the rotary inverted pendulum is 
successfully realized by the proposed LQR controller. 
 From the real-time experiment as shown in Fig. 
10a-e, the pendulum swings into the upright position in 
5 more swings as it does in simulation. This happens 
because the pendulum friction was not considered. 
After reaching the upright position, the closed loop 
system is stable. But the pendulum oscillates around the 
equilibrium point at small amplitude. 
 

DISCUSSION 
 
In many paper used a rotary inverted pendulum as 
example for studying on controller design in 
optimization problem. In this study problem, we 
propose a controller for a real-time experiment of the 
system to compare with benchmark system previously 
studies control professionals where the arm is driven by 
motor. This approach appears to have worked very well 
for system studied here. Further study on this system 
would bring significant benefits to robotics and control 
professionals. 
 

CONCLUSION 
 
 This study presents the simulation and 
experimental implementation and results of energy 
based PD control and LQR optimal controller applied to 
the self-erecting and balancing of a rotary inverted 
pendulum. In the both cases, computation load is using 
the complete optimal control problem. In the real-time 
control case with MATLAB, xPC-Target is used as the 
real-time computation platform and 0.001 sec sampling 
rate is achieved. The real-time experiments have been 
very impressive even during the activity of defects or 
after changing the designed the arm position. The 
results from both simulations and experiments 
confirmed the control efficiency of the method. 
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