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Abstract: The Load Frequency Control  problem has been a major subject in electrical power system 
design/operation and is becoming more significant recently with increasing size, changing structure 
and complexity in interconnected power systems. In practice LFC systems use simple proportional-
integral controllers. However, since the PI control parameters are usually tuned based on classical or 
trial-and-error approaches, they are incapable of obtaining good dynamic performance for a wide range 
of operation conditions and various load changes scenarios in multi-area power system. For this 
problem, in this paper quantitative feedback theory method is used for LFC control in multi-area power 
system with system parametric uncertainties. The system parametric uncertainties are obtained by 
changing parameters by 40% simultaneously from their typical values. A two-area power system 
example with a wide range of parametric uncertainties is given to illustrate proposed method. To show 
effectiveness of proposed method, a classical I type controller optimized by genetic algorithm is 
designed for LFC for comparison with QFT. The validity of the proposed method was confirmed by 
comparing it results with those of traditional methods (I controller optimized by genetic algorithm) has 
been confirmed. 
 
Key words: Load Frequency Control, robust control, quantitative feedback theory, and decentralized 

control deregulated power system 
 

INTRODUCTION 
 
     For large-scale power systems, which normally 
consist of interconnected control area, Load Frequency 
Control (LFC) is important to keep the system 
frequency and the inter-area tie power as close as 
possible the scheduled values. The mechanical input 
power to the generators is used to control the frequency 
of output electrical power and to maintain the power 
exchange between the areas as scheduled. In a 
deregulated power system, each control area contains 
different kinds of uncertainties and various disturbances 
due to increased complexity, system modeling errors 
and changing power system structure. A well designed 
and operated power system should cope with changes in 
the load and with system disturbances, and it should 
provide acceptable high level of power quality while 
maintaining both voltage and frequency within tolerable 
limits[1-5]. 
     Several strategies for Load Frequency Control of 
power systems have been proposed by researchers over 
the past decades[1-17]. This extensive research is due to 
fact that LFC constitutes an important function on 
power system operation where the main objective is to 

regulate the output power of each generator at 
prescribed levels while keeping the frequency 
fluctuations within pre-defined limits. Robust adaptive 
control schemes have been developed[4-6] to deal with 
changes in system parametric under LFC strategies. A 
different algorithm has been presented[7] to improve the 
performance of multi-area power systems. Viewing a 
multi-area power system under LFC as a decentralized 
control design for a multi-input multi-output system, it 
has been shown[8] that a group of local controllers with 
tuning parameters can guarantee the overall system 
stability and performance. The result reported in[4-8] 
demonstrates clearly the importance of robustness and 
stability issues in LFC design. In addition, several 
practical points have been addressed in[9-14] which 
include recent technology used by vertically integrated 
utilities, augmentation of filtered area control error with 
LFC schemes and hybrid LFC that encompasses an 
independent system operator and bilateral LFC. The 
applications of artificial neural networks, genetic 
algorithms, fuzzy logic and optimal control to LFC 
have been reported in[15-17]. 
     The objective of this research is to investigate the 
Load Frequency Control and inter-area tie power 
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control problem for a multi area power system taking 
into consideration the uncertainties in the parameters of 
system. A robust decentralized control scheme is 
designed using quantitative feedback theory (QFT) 
method. The proposed controller is simulated for a two 
area power system. To show effectiveness of proposed 
method, the proposed method is compare to a classical I 
type controller optimized by genetic algorithm. Results 
of simulation show the QFT controllers guarantee the 
robust performance for a wide range of operating 
conditions and have best performance in compare to 
classical controllers.   
 

MATERIALS AND METHODS 
       
 A two-control area power system, shown in Fig. 1 
is considered as a test system[13]. The state-space model 
of foregoing system is as (1)[13].  
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 The parameters of model, defined as follow: 
 
∆   : Deviation from nominal value 
M = 2H : Constant of inertia 
D : Damping constant 
R : Gain of speed droop feedback loop   
Tt : Turbine time constant 
TG : Governor time constant 
       
 The typical values of system parameters for 
nominal operation condition are given in appendix[11]. 
The system parametric uncertainties are obtained by 
changing parameters by 40% simultaneously from their 
typical values. Based on this uncertainty, 6 different 
operating conditions are defined and shown in 
appendix. 
 Many practical systems are characterized by high 
uncertainty which makes it difficult to maintain good 
stability margins and performance properties for the 
closed-loop system. There are two general design 
methodologies for dealing with the effects of 
uncertainty: (i) adaptive control, in which the 
parameters of the plant are identified online and the 
information obtained is then used to tune the controller 
and (ii) robust  control,   which   typically    involves   a  
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Fig. 1: Block diagram of two-area power system 
without LFC 
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Fig. 2: Block diagram of two-area power system with 

controllers 
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worst-case design approach for family of plants 
(representing the uncertainty) using a single fixed 
controller. 
      In this paper a robust control method based on QFT 
is used for LFC and tie-power control. QFT is a robust 
control method developed during the last two decades 
which deals with the effects of uncertainty 
systematically. It has been successfully applied to the 
design of the both SISO and MIMO systems. It has also 
been extended to the nonlinear and time-varying cases. 
QFT often results in simple controllers which are easy 
to implement[18-21]. In this paper the goals are control of 
frequency and inter area tie-power with good damping 
of oscillation, also obtaining  a good performance in all 
operating conditions and various loads and finally 
designing a low-order controller for easy 
implementation. The structure of system with 
controllers is shown in Fig. 2.  
 

CONTROLLER DESIGN USING QFT 
 
      In this section the goals are design of G1 and G2 
simultaneously based on QFT technique, for control of 
frequency and inter area tie-power in Fig. 2. G1 Is 
controller of first area and G2 is controller of second 
area. Because two controllers must be designed 
simultaneously, therefore, there is a 2�2 MIMO system 
and the technique of design for MIMO systems is 
necessary. According to QFT method and using fixed 
point theory[21] the MIMO problem for a 2�2 system 
can be separated into 2 equivalent single-loops MISO 
systems. Each MISO system design is based upon the 
specifications relating its output and all of its inputs. 
The basic MIMO compensation structure for a 2�2 
MIMO system is shown in Fig. 3. That consist of the 
uncertain plant matrix P and the diagonal compensation 
matrix G. These matrices are defined as (2). 
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Fixed point theory develops a mapping that permits the 
analysis and synthesis of a MIMO control  system   by a  
 

 
 
Fig. 3: The MIMO control structure (2�2) system 

set   of   equivalent   MISO  control   system.  For    2�2  
system, this mapping results in  2   equivalent   systems,  
each with two inputs and one output. One input is 
designated as a desired input and the other as a 
disturbance input. The inverse of the plant matrix is 
represented by (3). 
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 The 2 effective plant transfer function are formed as 
(4). 
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Fig. 4: Open-loop system for Load Frequency Control  
 

 
 
Fig. 5: Closed-loop system for load frequency control 
 

 
 
Fig. 6: Structure of closed-loop system for control of 

the first area 
 

 
 
Fig. 7: Structure of closed-loop system for control of 

the second area 
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There is a requirement that det. P be minimum phase. 
The Q matrix is then formed as (5). 
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The matrix p�1 is partitioned to the following form:  
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Where Λ is diagonal part,  and   B   is the balance of 
p�1.  
     The system control ration relating r to y 
is [ ] PGFPGIT 1−+= . Pre multiplying  of  system   control  
ration by [ ]PGI +  yields:  [ ] PGFTPGI =+ . 
     When P is nonsingular, pre multiplying both sides of  
this equation by 1−P  yields:  [ ] GFTGP =+−1 . 

Using (6), and with G diagonal, [ ] GFTGP =+−1  can  
be rearranged as (7). 
 
  [ ] [ ]BTGFGT −+Λ= −1  (7) 
 
    This equation is used to define the desired fixed point 
mapping where each of the 4 matrix elements on the 
right side of this equation can be interpreted as a MISO 
problem. Proof of the fact that design of each MISO 
system yields a satisfactory MIMO design is based on 
the Schauder fixed point theorem[21]. 
Based on this description, in 2�2 system that we need 
to design of 2 controllers for two area, the plant matrix  
P is a 2�2 matrix and the diagonal compensation matrix 
G contains two compensators of G1 and G2.  
     Using dynamic state-space model for system 
presented in (1), one can obtain plant matrix P shown in 
Fig. 4 as an uncertain plant. According to QFT method 
and Fig. 4, the structure of control system may be 
shown as in Fig. 5.  
     P is the plant transfer function matrix  which 
contains uncertainty parameters and can be obtained 
using state space form (1) for any operating point, G1 
and G2 are cascading compensators which to be 
designed so that the variation of  ∆ω1 and ∆ω2  to 
uncertainty in the plant matrix P are within desired 
tolerances. 
      In section (II) system uncertainty and operating 
conditions in this area of uncertainty were defined. 
According to this operating points and corresponding 

plant transfer functions, the effective plant transfer 
functions, q11 and q22 defined in (5), can be obtained. 
Then according to fixed point theory, first area 
controller (G1) was designed based on the effective 
plant transfer function of q11. Similarly the second area 
controller (G2) was designed based on the effective 
plant transfer function of q22. 
 
Design of two area controllers (G1 and G2): The 
structure of control systems for the first area and the 
second area controllers are shown in Figs. 6 and 7. It 
can be seen clearly that the systems are MISO systems 
and compensator G1  will be designed based on q11 and  
compensator G2 will be designed based on q22 (based 
QFT technique and fixed point theory). 
      In QFT technique, the first design step, is plant 
uncertainty plot in Nichols diagram. This diagram is 
known as system templates.  Templates of q11 and q22  
for various operating points were obtained by using 
Matlab software[22] in some frequencies and shown in 
Fig. 8 and 9.  
      Next step is obtaining QFT tracking and disturbance 
rejection bounds. In this system, the design goal is 
driving back frequency and tie-power deviations to zero 
value and such systems are called regulatory systems. 
In fact, step change in input (demand of areas) is 
considered as disturbance and controller must reject this 
disturbance from output. So, controllers must have 
disturbance rejection property and tracking property is 
unnecessary. Therefore, we consider just disturbance 
rejection bounds for design, and the tracking models are 
unnecessary for this design. Output responses are 
acceptable if the magnitude of the output to be below  
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Fig. 9: Templates of effective plant transfer function of 
q22 

 
 

Fig. 10: Disturbance rejection bounds and loop shaping 
for 11q  

 

 
 
Fig. 11: Disturbance rejection bounds and loop shaping 

for q22 
 
the limits given by disturbance rejection models. Based 
on desired performance specification, we can obtain 
disturbance rejections bounds according to QFT method 

[18-21]. In this case, because tracking bounds are not 
considered, therefore, the disturbance rejection bounds 
or BD(jωi) were considered as composite bounds 
Bo(jω). And also, minimum damping ratios ξ  for the 
dominant roots of the closed-loop system is considered 
as ξ = 1.2, this amount, on the Nichols chart establishes 
a region which must not be penetrated by the template 
of loop shaping (Lo) for allω. The boundary of this 
region is referred to as U-contour. The U-contour and 
composite bound Bo(jω) and an optimum loop shaping 
(L1and L2)   based   on    these bounds,  are   shown   in 
Fig.  10  and  11.  The  transfer functions for L1 and L2 
is as (8). 
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 Therefore, the compensators (G1and G2) obtained as 
(9).  
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It can be observed clearly in Figs. 10 and 11, that the 
process of designing a nominal open-loop transfer 
function (loop-shaping) exactly based on QFT bounds, 
can met the design objectives.  
  

 
RESULTS AND DISCUSION 

 
      In this section different comparative cases are 
examined to show the effectiveness of proposed QFT 
controllers. These cases have been evaluated 
extensively by time domain simulation, using 
commercially available software package[22]. To 
compare and show effectiveness of proposed method, a 
classical I type controller optimized by genetic 
algorithm (GA) is designed for LFC. The parameter of 
conventional I type controller optimized using genetic 
algorithm[23], and optimum  value  of  the  integral  gain 
setting of the controller is obtained as Ki= 1.0601. 
Therefore, I controller is as follow: 
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Fig. 12: Dynamic response at nominal load (operating 

point 1), following step change in  demand of 
he first area (∆PD1) 

 a: Frequency deviation of the first area DW1, 
b: frequency deviation of the second area DW2 
and 

 c: inter area tie-power 
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Fig. 13: Dynamic response at operating point 2, 

following step change in  demand of the first 
area(∆PD1)  
a: frequency deviation of the first area DW1, 
b: frequency deviation of the  second area DW2 
and     
c: inter area tie-power 
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Fig. 14: Dynamic response at operating point 3, 

following step change in  demand of the first 
area (∆PD2) 
a: frequency deviation of  the first area DW1,  
b: frequency deviation of the second area DW2 
and  

c: inter area tie-power 
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Fig. 15: Dynamic response at operating point 4, 

following step change in  demand of the 
second area(∆PD2)  

 a: frequency deviation of the first area DW1, 
 b: frequency deviation of the second area DW2 and  
 c: inter area tie-power 
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Fig. 16: Dynamic response at operating point 5, 

following step change in  demand of the 
second area ∆PD2  
a: frequency deviation of the first area DW1,  
b: frequency deviation of the second area 
DW2 and  
c: inter area tie-power 

 

0 1 2 3 4 5 6 7 8 9 10
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time(sec)

D
W

1(
p.

u.
)

 

 

QFT controller
optimized I controller
no controller

 
a 

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

time(sec)

D
W

2(
p.

u.
)

 

 
QFT controller
optimized I controller
no controller

 
b 

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

time(sec)

D
P

tie
(p

.u
.)

 

 

QFT controller
optimized I controller
no controller

 
c 

 
Fig. 17: Dynamic response at operating point 6, 

following step change in  demand of the 
second area ∆PD2  

 a: frequency deviation of  the first area DW1 
b: frequency deviation of the second area 
DW2  
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 c: inter area tie-power 
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Fig. 18: Dynamic response at operating point 1, 

following step change in  demand of the first 
area and 0.5 step change indemand of the 
second area  simultaneously 
a: frequency deviation of the first area DW1,   
b: frequency deviation of the second area 
DW2 and  

c: inter area tie-power 
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Fig. 19: Dynamic response at operating point 1, 

following 0.5 step change in  demand of the 
first area and step change in demand of the 
second area simultaneously 
a: frequency deviation of the first area DW1,   
b: frequency deviation of the second area 
DW2 and   



Am. J. Applied Sci., 5 (7): 818-828, 2008 
 

 827 

c: inter area tie-power 

  I controller = 
S
Ki

 = 
S

0601.1
  (10) 

 
     It should be noted that because the parameters of 
first area and second area are the same, therefore, 
foregoing I type controller optimized by GA and shown 
in (11), was used for two area with the same structure. 
Therefore:  
 

  21 GG = =
S
Ki

=
S

0601.1
 (11) 

 
Step increase in demand of the first area ∆PD1: In 
this case, step increase in demand of the first area ∆PD1 
at operating points 1-3 are applied. As the first test case, 
a step increase in demand of the first area ∆PD1 is 
applied. The frequency deviation of the first area, DW1, 
and the frequency deviation of the second area, DW2, 
and inter area tie-power signals of the closed-loop 
system are shown in Figs. 12-14. Using proposed 
method, the frequency deviations and inter area tie-
power quickly driven back to zero and QFT has the best 
performance in control and damping of frequency and 
tie-power in all responses. Also in this case, because the 
step change applied to the input of the first area, 
therefore, based on QFT technique in MIMO systems, 
the output of the second area is known as disturbance 
and must driven back to zero quickly in compare to 
output of the first area. The simulation results clearly 
show this subject and the output of the second area has 
damping with smaller amplitude and settling time in 
compared with output of the first area. Also responses 
without any controller can not be driven back to zero 
and have a steady-state error. 
      At operating point 2, with conventional I controller, 
system goes to unstable situation and controller can not 
achieve the control objectives. 
 
Step increase in demand of the second area ∆PD2: In 
this case, a step increase in demand of the second area 
∆PD2 at operating conditions 4-6 are applied. The 
frequency deviation of the first area DW1 and the 
frequency deviation of the second area DW2 and inter 
area tie-power signals of the closed-loop system are 
shown in Figs. 15-17. Using proposed method, the 
frequency deviations and inter area tie-power quickly 
driven back to zero and QFT has the best performance 
in control and damping of frequency and tie-power in 
all responses. 
 
Step increase in demand of the first area and the  
second area simultaneously: 
Case 1: In this case, a step increase in demand of the 
first area ∆PD1 and 0.5 step increases in demand of the 
second area ∆PD2 simultaneously are applied at 

operating condition 1. The system outputs are shown in 
Fig. 18. Using QFT method, the frequency deviations 
and inter area tie-power quickly driven back to zero in 
compared to optimized I controller.  
 
Case 2: In this case, a 0.5 step increase in demand of 
the first area ∆PD1 and step increases in demand of the 
second area ∆PD2 simultaneously are applied in 
operation condition 1. The system outputs are shown in 
Fig. 19. Using QFT method, the frequency deviations 
and inter area tie-power quickly driven back to zero in 
compare to optimized I controller.  Also responses 
without any controller can not be driven back to zero 
and will have a steady state error. 
 

CONCLUSION 
 
      In this research a new method for Load Frequency 
Control using QFT method in a two area power system 
has been proposed. Design strategy includes enough 
flexibility to setting the desired level of stability and 
performance, and considering the practical constraint 
by introducing appropriate uncertainties. The proposed 
method was applied to a typical two generator power 
system with system uncertainty parametric and various 
loads conditions. Simulation results demonstrated that 
the designed controller capable to guarantee the robust 
stability and robust performance such as precise 
reference frequency tracking and disturbance 
attenuation under a wide range of parameter uncertainty 
and area load conditions. Also, the simulation results 
show that the proposed method is robust to change in 
the parameter of the system and has good performance 
in compare to conventional I controller in all of the 
operation conditions.  
 

APPENDIX 
 
      The typical values of parameters of system for 
nominal operating condition are as follow 
 

1;1;425.0

545.0;120;4.2

20;08.0;03.0

122121

122121

212121

−=====
=====

======

aKKBB

TKKRR

TTTTTT

PP

PPGGTT
 

 
Where, the footnote 1 indicates the first area parameters 
and footnote 2 indicate the second area parameters. It 
should be note that, the parameters of two areas are 
equal. By changing parameters by 40% from their 
typical values the system uncertainty obtained. In this 
uncertainty area, 6 different operating conditions are 
defined as follow: 
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Operating point 1 
0083.01667.0545.0

08.003.04.2

1112

111

===
===

DMT

TTr GT  

Operating point 2 
0116.02334.0763.0

042.0112.036.3

1112

111

===
===
DMT

TTr GT  

Operating point 3  
005.01.0327.0

048.0018.44.1

1112

111

===
===

DMT

TTr GT  

Operating point 4 
0116.01334.03815.0

072.0039.64.2

1112

111

===
===

DMT

TTr GT  

Operating point 5 
005.02334.0654.0

1040.0027.68.1

1112

111

===
===

DMT

TTr GT  

Operating point 6 
0011.01467.0479.0

1.00195.3

1112

111

===
===

DMT

TTr GT  

 
For any operating point, the parameters of the second 
area are equal to parameters of the first area and 
operating point 1 is nominal operating condition. 
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