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Abstract: Two new beam finite-elements to be used for the transverse displacement analysis of 
slender beams with transverse cracks are presented where the derivations are based on a simplified 
computational model. The beam stiffness matrixes are presented in symbolic forms for beams with a 
single transverse crack and a hinge at one of the nodes. Since in the derivations the corresponding 
interpolation functions were implemented, the transverse displacements within the finite element can 
be afterwards obtained by introducing the discrete values of nodal displacements and rotations into 
presented analytical solutions. A numerical example concludes the material and shows that, although 
with considerably less computational effort than with 2D finite element meshes, the presented beam 
finite elements yield results that exhibit excellent agreement with the results from the huge 2D FE 
meshes. Due to the fact that the number of parameters describing the cracked beam structure is thus 
reduced to its minimum it can be expected that these elements could be efficiently implemented in 
inverse identification of cracks. 
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INTRODUCTION 

 
 Cracks are doubtlessly one of the most 

unfavourable and negative effects that might appear on 
a structure during its utilization. They should be 
detected as soon as possible as they may significantly 
decrease the global stiffness over the local reduction of 
flexural rigidity. Since in inverse identification of 
cracks only a limited amount of measured data is 
available, it is thus usually not possible to obtain the 
information of crack directly but as a result of some 
gradual and systematic computational model 
modifications. In order to make the computational 
model more adaptable and thus allow a faster analysis 
process, it is reasonable to neglect all the irrelevant 
information from the computational model. Therefore, 
in simplified model of a beam with a non-propagating 
crack the information about stresses could be ignored.  

A simplified computational model for transverse 
displacement computations of a cracked beam, 
originally presented by Okamura et al.[1] meets all the 
requirements stated above. The transverse crack was 
introduced as a rotational linear spring with stiffness Kr 
connecting the uncracked parts of the element modeled 
as elastic sections. Okamura’s computational model has 
also already been experimentally implemented 
regarding inverse identifications based on the 
structure’s dynamic response. By using controlled 
forced vibrations and measured displacements at two 
selected points the location of the crack has been 

identified on a cantilever[2]. This approach was also 
verified experimentally. Implementing measured 
eigenfrequencies only, the location of the crack has 
been experimentally identified on a single beam with 
free ends[3]. In both approaches the differential equation 
of motion was solved, and the location of the artificially 
introduced crack was identified over the rotational 
spring stiffness value Kr instead of the crack depth d 
itself.   

The research interest was further oriented towards 
a numerical solution for transverse displacements’ 
computation implementing beam finite elements. In the 
first step, the stiffness matrix of a beam finite element 
with a single transverse crack and clamped ends, 
SCBFE, was given in symbolic form[4]. The derivation 
of this element implemented static interpolation 
functions. Further progress was achieved when for a 
static finite element with an arbitrary number of 
transverse cracks, a numerical procedure was presented 
for the numerical computation of stiffness matrix[5]. 
Furthermore, the effect of transverse displacements due 
to axial tensile loads on single-sided transversely 
cracked elements was also studied on single element 
structures[6-9]. 

The unfavourable (especially from the inverse 
identification point of view) problem of the increasing 
number of static beam finite elements along each 
structural element in dynamic analysis, has been solved 
by dynamic finite element of a slender beam with a 
single transverse crack, DSCBFE, derived by 
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implementing dynamic interpolation functions, yielding 
frequency dependent stiffness and mass matrixes[10]. 

The already presented solutions allowed modeling 
of the hinges at supports only where the effect of a 
hinge was achieved by preventing transverse 
displacements. For hinges at structural elements' joints 
or within the structural elements, additional standard 
uncracked beam finite elements had to be implemented, 
unfavourably increasing the computational model.  
 

MATERIALS AND METHODS 

 
Mathematical formulation and derivation steps: The 
derivation of both new beam finite elements is based on 
the mathematical model of transversely cracked beam 
as given by Okamura et al.[1]. The uncracked parts of 
the element are modeled as elastic parts to the left and 
to the right of the crack, and the crack itself is modeled 
by a rotational spring with stiffness Kr. The distance L1 
from the left end of the element defines the position of 
the crack and the uniform depth of the crack is denoted 
with d. The rotational spring stiffness Kr is a function of 
the height of the uncracked cross-section h, the relative 
depth of the crack δ=d/h, and the product of Young's 
modulus E by the moment of inertia of the uncracked 
cross-section Iz, i.e. flexural rigidity EI. Okamura’s 
genuine definition for rotational stiffness also takes 
Poisson’s ratio ν into account. The remaining 
definitions can be found in the studies about the 
implementation of Okamura’s computational model[11-
16]. 

Two nodes are implemented for each considered 
finite element in order to describe the transverse 
displacements, each of them at one end of the element. 
The finite element has four degrees of freedom 
altogether: transverse displacement Y1 and rotation Φ1 
at the left end (starting node), as well transverse 
displacement Y2 and rotation Φ2 at the right end 
(ending node). Upward translations are taken as 
positive and counterclockwise rotations are also taken 
as positive. 

For slender beams and under assumption of 
Bernoulli-Euler’s hypothesis, axial displacements u can 
be expressed from transverse displacements v as (y 
represents the distance from neutral axis): 

( )
dx

xdv
y)y,x(u ⋅−=                 (1) 

The element’s strain energy consists of the 
contributions from both elastic parts as well as spring: 
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rotations of the cross sections to the left and to the right 
of the crack. Introducing linear relation between normal 
strains εx and normal stresses σx, Eq. (2) thus turns into  
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However, since the crack separates the beam into 
two elastic parts, the transverse displacements must be 
separately given for the parts to the left ( v

1
) and to the 

right ( v
2
) of the crack. They are assumed in the form 

of the complete polynomials of the third degree with 
altogether eight unknown constants:  
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The unknown coefficients 
4321

,,, αααα  and 

4321
,,, ββββ  are obtained from boundary and 

continuity conditions. Boundary conditions depend on 
actual situations at both ends of the analyzed element 
and, therefore, are given separately with each 
derivation. However, the continuity conditions at the 
crack location (x=L1) are identical for both finite 
elements under consideration. For the beam with 
constant flexural rigidity the continuity conditions are 
given as the equality of displacement, the condition for 
the discrete increase of rotations, the equality of 
bending moments, and the equality of shear forces:  
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With all unknown coefficients determined, the 
transverse displacements of considered part of the 
element are further expressed with the vector of 
unknown nodal displacements and rotations 

{ } { }T
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Finally, the stiffness matrix of the finite element 
can be obtained by:  



Am. J. Applied Sci., 5 (1): 55-60, 2008 

 

 57 

[ ] { } { }

{ } { }

{ } { }( )
{ } { }( )

11

11

1

1

Lx2Lx1

T

Lx2Lx1r

2

T

2

L

Lx

z

1

T

1

L

0x

z

)x('N)x('N 

)x('N)x('NK 

dx)x(''N)x(''NIE

dx)x(''N)x(''NIEK

==

==

=

=

−⋅

−⋅

+⋅⋅⋅⋅+

⋅⋅⋅⋅=

∫

∫

              (7) 

while the corresponding load vector due to a distributed 
load q(x) is obtained as:  

{ } { } { }∫∫
==

⋅⋅+⋅⋅=

L

Lx

2

L

0x

1

1

1

dx)x(N)x(qdx)x(N)x(qF  (8) 

 

Beam finite element with a hinge at the left – 

SCBFEHC: For the finite element SCBFEHC (Fig. 1), 
the boundary conditions required to obtain the 
interpolation functions embody three kinematical 
conditions: unknown discrete transverse displacement 
in the left node Y1, displacement Y2 and rotation Φ2 at 
the right node of the element, as well as mechanical 
condition mathematically describing the presence of the 
hinge in the beginning node: 
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Fig. 1: Element SCBFEHC with corresponding degrees  
            of freedom 

 
Interpolation functions that satisfy boundary and 

continuity conditions are: 
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with ψ representing the ratio between flexural rigidity 
EI and rotational spring stiffness Kr. It can be easily 
verified that for the uncracked case (i.e. Kr=∞ or 

0=ψ ) presented interpolation functions become 

standard interpolation functions for the noncracked 
beam finite element for hinged – clamped boundary 
conditions. Finally, the stiffness matrix is 
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The corresponding load vector for a uniform transverse 
load q over the entire element is further given as: 
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Beam finite element with a hinge at the right end – 

SCBFECH: The finite element SCBFECH (Fig. 2) has 
a hinge at the right, ending node and, therefore, the 
kinematical boundary conditions embody unknown 
discrete displacement Y1 and rotation Φ1 at the left 
node, as well as displacement Y2 at the right node of the 
element. The fourth boundary condition mathematically 
describes the mechanical condition of the hinge’s 
presence in the ending node: 
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Fig. 2: Element SCBFECH with corresponding degrees 
           of freedom 
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Introducing the abbreviation 
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the interpolation functions that satisfy boundary and 
continuity conditions are: 
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Finally, the stiffness matrix is 
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and the corresponding load vector for a uniform 
transverse load q over the complete element is given as: 
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RESULTS AND DISCUSSION 

 
In the presented example, a simply supported beam 

was considered. The length L of the span was 10 m, and 
the cross-section of the beam was a rectangle with 
dimensions 0.10 m/0.20 m. The Young modulus E was 
30 GPa, while the Poisson’s ratio ν was taken as 0.3. 
Two transverse cracks were induced, located at the 
distances of 3 m and 2 m, from the left and right 
support, respectively. The selected depth of the cracks 
was 0.1 m. This structure was selected because despite 
the presence of two cracks on the structure the reactions 
and the inner forces can be easily determined with the 
elementary static. Two load cases are considered here. 

First load case: A concentrated vertical upward load 
P=10 kN was applied at a distance of 5.5 m from the 
left support, Fig. 3. The structure was modeled with 
three nodes (located at left end, under load and at right 
end), and both newly derived beam finite elements, 
connected at the position of the load. For the evaluation 
of rotational linear spring stiffness the definition given 
by Okamura was selected among all existing definitions 
due to the fact that it is the only one that takes the 
Poisson’s ratio into account. The value of the rotational 
spring stiffness for the simplified model was therefore 
Kr= 3.14197572⋅10

6 Nm.  
 

P=10 kN 
cross section 

b/h=0.1/0.2 m 

 L=10 m 

2.0 m 3.0 m 

5.5 m 

 

Fig. 3: Geometry of first load case 
 

The model had 4 degrees of freedom but taking 
into the account the prescribed zero displacements 
(vertical displacement at both supports) the problem 
reduced to a system of just two linear equations with 
two unknowns (vertical displacement Y2 and rotation Φ2 

beneath the applied force). The unknowns were 
obtained from the following system (where the 
structure’s global stiffness matrix [ ]K  was obtained 
from the element’s stiffness matrixes): 
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Introducing the two obtained discrete values into 

the derived interpolation functions, the distribution of 
transverse displacements was obtained also along the 
longitudinal axis of the structure, Fig. 4. Figure 4 
further shows the displacements obtained in discrete 
points by solving approximately 120,000 linear 
equations from the computational model where the 
complete structure was analyzed implementing a 
commercial finite element program COSMOS/M. The 
discrete crack approach was utilized to model the crack 
and the computational model consisted of 20,000 2D 8 
noded quadrilateral plane finite elements. 

The values for displacements for some 
representative points are summarized in Table 1.  
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Table 1: Comparison of vertical displacements for the first 

load case 
Location (m) of the point vertical displacements (m) 

 2 beam FE 20,000 2D FE 
x = 3.0 (left crack) 0.090717 0.090456 

x = 5.0 (midspan) 0.112602 0.112390 

x = 5.5 (under the force F ) 0.111745 0.111540 
x = 8.0 (right crack) 0.068450 0.068182 
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2 cracked BFE 
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Fig. 4: Transverse displacements v for first load case 
 
Second load case: On the same structure a vertical 
upward uniformly distributed load q=10 kN over the 
whole span was applied. The structure was first 
modeled with both newly derived beam finite elements, 
however, now connected at the midspan. Similarly to 
the previous load case the analysis again reduced to a 
system of just two linear equations with two unknowns 
(vertical displacement and rotation at the midspan). In 
addition, also this load situation was analyzed 
implementing the computational model with 20,000 2D 
quadrilateral plane finite elements. Although in the first 
load case the agreement of the results was excellent for 
all point along the structure, in this situation the 
discrepancies of the displacements in the regions 
between the nodes become noticeable. The reason for 
this lies in the fact that the implemented interpolation 
functions for the derived finite elements are complete 
polynomials of the third degree, while the actual elastic 
curve of transverse displacements due to a uniform load 
is a complete polynomial of the fourth degree. 
Therefore, the structure was re-analyzed implementing 
three beam finite elements (a standard beam FE was 
inserted between the two cracked beam finite elements), 
with the lengths of 3.5 m, 5.0 and 2.5 m. This 
consequently increased the rank of system of linear 
equations to four, but also clearly reflected in the 
increased matching of the results, Fig. 5. 

The displacements values for some representative 
points are summarized in Table 2. 
 
 

DISCUSSION 

 
From Figures 4 and 5 it is clearly evident that only 

moderate discrepancies appeared when comparing the 
results from the appropriate simplified model with the 

results from the detailed 2D finite element mesh. The 
values presented in Tables 1 and 2 confirm that as the 
absolute maximum difference for displacement is 
smaller than 0.45 %, which proves that the radical 
difference in the computational effort is not reflected in 
the significant differences in the results between the FE 
models. Further, since new finite elements have been 
primarily developed for the purposes of inverse 
identification, where several input parameters are 
uncertain, this level of the accuracy should therefore be 
satisfactorily. 
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Fig. 5: Transverse displacements v for second 

load case 
 
Besides transverse displacements, bending 

moments and shear forces were also evaluated for both 
load cases and then compared with the values obtained 
with elementary static analysis. Since these results 
exhibited perfect matching they are not presented here. 
  

CONCLUSION 

 
This paper overcomes the limitation on hinge 

modeling within the structural element as two new 
beam finite elements for the analysis of beams with 
transverse cracks are presented in the paper. 
Corresponding stiffness matrixes and load vectors, as 
well the interpolation functions for supplementary 
computation of transverse displacements within the 
elements are given in closed symbolic forms. It is 
obvious that for the uncracked case, i.e. Kr=∞, all given 
results reduces into standard expressions for the 
noncracked elements.  

The main advantage of the presented beam finite 
elements with transverse cracks over the 2D FE 
discretisations is clearly evident as their implementation 
allows the utilization of small and compact, but still 
reliable computational models. Consequently, 
essentially less computational effort is required as the 
transverse displacements, reactions and also inner 
forces can be computed from a significantly smaller 
number of linear equations as with proper 2D finite 
elements’ description of cracks. Since presented 
stiffness matrixes and load vectors are written entirely 
in symbolic forms, this allows their straightforward 
implementation in the existing finite element software 
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and consequently, fast real time analysis. Further, since 
also the corresponding interpolation functions are 
already presented, this allows additional derivation of 
mass and geometrical stiffness matrixes for the 
presented finite elements. 

The general drawback of the applied simplified 
model is the complete absence of information about the 
stress distribution in the vicinity of the crack, which is 
essential for crack propagation analysis. However, 
considering that the main essence of proposed solutions 
is to yield the best possible global response with the 
minimum possible data, which is essential from the 
inverse identification point of view, this is not an 
essential limitation as non-propagation of cracks during 
the inverse analysis is assumed. 

 Although presented finite elements can provide 
reliable information about transverse displacements, 
inner forces and reaction, the focus of the future work 
should be oriented towards the inclusion of shear 
stresses in the model which should expand the 
utilization of the computational model also for 
nonslender elements. 
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