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Abstract: This study presents transient stability assessment of electrical power system using 
Probabilistic Neural Network (PNN) and principle component analysis. Transient stability of a power 
system is first determined based on the generator relative rotor angles obtained from time domain 
simulation outputs. Simulations were carried out on the IEEE 9-bus test system considering three 
phase faults on the system. The data collected from the time domain simulations are then used as 
inputs to the PNN in which PNN is used as a classifier to determine whether the power system is stable 
or unstable. Principle component analysis is applied to extract useful input features to the PNN so that 
training time of the PNN can be reduced.  To verify the effectiveness of the proposed PNN method, it 
is compared with the multi layer perceptron neural network. Results show that the PNN gives faster 
and more accurate transient stability assessment compared to the multi layer perceptron neural network 
in terms of classification results. 
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INTRODUCTION 

  
 Recent blackouts in the USA, some European and 
Asian countries have illustrated the importance and 
need of more frequent and thorough power system 
stability study. Nowadays, power systems have evolved 
through continuing growth in interconnection, use of 
new technologies and controls. Due to the increased 
operations which may cause power system to be in 
highly stressed conditions, the need for dynamic 
security assessment of power systems is arising. 
Transient Stability Assessment (TSA) is part of 
dynamic security assessment of power systems which 
involves the evaluation of the ability of a power system 
to remain in equilibrium under severe but credible 
contingencies. These evaluations aim to assess the 
dynamic behavior of a power system in a fast and 
accurate way. Methods normally employed to assess 
TSA are by using time domain simulation, direct and 
artificial intelligence methods. Time domain simulation 
method is implemented by solving the state space 
differential equations of power networks and then 
determines transient stability. Direct methods such as 
the transient energy method determine transient 
stability without solving differential state space 
equations of power systems. These two methods are 

considered most accurate but are time consuming and 
need heavy computational effort. Presently, the use of 
Artificial Neural Network (ANN) in TSA has gained a 
lot of interest among researchers due to its ability to do 
parallel data processing, high accuracy and fast 
response.  
 In transient stability assessment, the Critical 
Clearing Time (CCT) is a very important parameter in 
order to maintain the stability of power systems. The 
CCT is the maximum time duration that a fault may 
occur in power systems without failure in the system so 
as to recover to a steady state operation. Some works 
have been carried out using the feed forward multilayer 
perceptron (MLP) with back propagation learning 
algorithm to determine the CCT of power systems[1,2]. 
Proposed the use of radial basis function networks to 
estimate the CCT[3]. Another method to assess power 
system transient stability using ANN is by means of 
classifying the system into either stable or unstable 
states for several contingencies applied to the 
system[2,4]. ANN method based on fuzzy ARTMAP 
architecture is also used to analyze TSA of a power 
system[5]. Ref.[6] proposed a combined supervised and 
unsupervised learning for evaluating dynamic security 
of a power system based on the concept of stability 
margin. Ref.[7] used ANN to map the operating 
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condition of a power system based on a transient 
stability index which provides a measure of stability in 
power systems. 
 In this study, a new method for transient stability 
assessment of power systems is proposed using 
Probabilistic Neural Network (PNN). The procedures of 
transient stability assessment using PNN are explained 
and the performance of the PNN is compared with the 
MLP so as to verify the effectiveness of the proposed 
method. Both the MLP and PNN networks were 
developed using the MATLAB Neural Network 
Toolbox. 
 

MATHEMATICAL MODEL OF 
MULTIMACHINE POWER SYSTEM 

 
 The differential equations to be solved in power 
system stability analysis using the time domain 
simulation method are the nonlinear ordinary equations 
with known initial values. Using the classical model of 
machines, the dynamic behavior of an n-generator 
power system can be described by the following 
equations: 
 

    
2
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d
M P P

dt
δ = −  (1) 

 
it is known that, 
 

    i
idt

δ = ω  (2) 

 
By substituting (2) in (1), therefore (1) becomes 
 

    i
i mi eiM P P

dt
ω = −  (3) 

 
where: 
δI = Rotor angle of machine i 
ωI = Rotor speed of machine i 
Pmi = Mechanical power of machine i 
Pei = Electrical power of machine i 
MI = Moment of inertia of machine i 
 
 A time domain simulation program can solve these 
equations through step-by-step integration by producing 
time response of all state variables.  
 

PROBABILISTIC NEURAL 
NETWORK THEORY 

 
 PNN which is a class of Radial Basis Function 
(RBF) network is useful for automatic pattern 
recognition, nonlinear mapping and estimation of 
probabilities    of    class   membership   and   likelihood 
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Fig. 1: PNN architecture 
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Fig. 2: PNN pattern layer 
 
ratios[8]. It is a direct continuation of the work on Bayes 
classifiers[9] in which it is interpreted as a function that 
approximates the probability density of the underlying 
example distribution. The PNN consists of nodes with 
four layers namely input, pattern, summation and 
output layers as shown in Fig. 1. The input layer 
consists of merely distribution units that give similar 
values to the entire pattern layer. 
 For this work, RBF is used as the activation 
function in the pattern layer. Figure 2 shows the pattern 
layer of the PNN. The   dist  box shown in Fig. 2 
subtracts the input weights, IW1,1, from the input 
vector, p and sums the squares of the differences to find 
the Euclidean distance.  The differences indicate how 
close the input is to the vectors of the training set. 
These elements are multiplied element by element, with 
the bias, b, using the dot product (.*) function and sent 
to the radial basis transfer function. 
 The output a is given as,   
 

   1,1a radbas( IW p b)= −     (4) 

 
where, radbas is the radial basis activation function 
which can be written in general form as, 
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2nradbas(n) e=  (5) 

 
 The training algorithm used to train the RBF is the 
orthogonal least squares method which provides a 
systematic approach to the selection of RBF centers[10].  
 The summation layer shown in Fig. 1 simply sums 
the inputs from the pattern layer which correspond to 
the category from which the training patterns are 
selected as either class 1 or class 2. Finally, the output 
layer of the PNN is a binary neuron that produces the 
classification decision. As for this work, the 
classification is either class 1 for stable cases or class 2 
for unstable cases. Performance of the developed PNN 
can be gauged by calculating the error of the actual and 
desired test data. Firstly, error is defined as,  
 

n n nError,E Desired Output,DO Actual Output,AO= −   (6) 

 
where, n is the test data number. The desired output is 
the known output data used for testing the neural 
network. Meanwhile, the Actual Output (AO) is the 
output obtained from testing on the trained network.  
 From Eq. 6, the mean error can be obtained as: 
 

  
N

n

n 1

E
Percentage Mean Error,(ME) 100

N=
= ×�   (7) 

 
where N is the total number of test data. 
 The percentage classification error is given by, 
 

 
Percentage Classification Error

no. of misclassification ot test data
100

N
= ×

  

      (8) 

 
MATERIALS AND METHODS 

 
 In the PNN method used for transient stability 
assessment, the IEEE 9-bus test system is used for 
verification of the method. Before the PNN 
implementation, time domain simulations considering 
several contingencies were carried out for the purpose 
of gathering the training data sets. Simulations were 
done by using the MATLAB-based PSAT software[11]. 
Time domain simulation method is chosen to assess the 
transient stability of a power system because it is the 
most accurate method compared to the direct method. 
In PSAT, power flow is used to initialize the states 
variable before commencing time domain simulation. 
The differential equations to be solved in transient 
stability analysis are nonlinear ordinary equations with 
known  initial  values.  To  solve   these   equations,  the 
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Fig. 3: IEEE 9 bus system 
 
techniques available in PSAT are the Euler and 
trapezoidal rule techniques. In this work, the 
trapezoidal technique is used considering the fact that it 
is widely used for solving electro-mechanical 
differential algebraic equations[12].  The type of 
contingency considered is the three-phase balanced 
faults created at various locations in the system at any 
one time. When a three-phase fault occur at any line in 
the system, a breaker will operate and the respective 
line will be disconnected at the Fault Clearing Time 
(FCT) which is set by a user. The FCT is set randomly 
by considering whether the system is stable or unstable 
after a fault is cleared. According to ref.[13], if the 
relative rotor angles with respect to the slack generator 
remain stable after a fault is cleared, it implies that   
FCT<CCT and  the power system is said to be stable 
but if the relative angles go out of step after a  fault is 
cleared, it means  FCT>CCT and the system is 
unstable.  
 
Transient stability simulation on the test system: 
Figure 3 shows the IEEE 9-bus system in which the 
data used for this work is obtained from ref.[13]. The 
system consists of three Type-2 synchronous generators 
with AVR Type-1, six transmission lines, three 
transformers and three loads.  
 Figure 4 shows examples of the time domain 
simulation results illustrating stable and unstable cases. 
A three phase fault is said to occur at time t = 1 second 
at bus 7. In Fig. 4a, the FCT is set at 1.08 second while 
in Fig. 4b the FCT is set at 1.25 second. Figure 4a 
shows that the relative rotor angles of the generators 
oscillates and the system is said to be stable whereas 
Fig. 4b shows that the relative rotor angles of the 
generators go out of step after a fault is cleared and the 
system becomes unstable. It can be deduced from Fig. 4 
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Fig. 4: Relative  rotor angle curves of generators for 

(a): stable and (b): unstable cases 
 
that the FCT setting is an important factor to determine 
the stability of power systems. If FCT is set at a shorter 
time than the CCT of the line, the system is stable, 
otherwise the system will be unstable.  
 
Data preprocessing: The simulation on the system for 
a fault at each line runs for five seconds at a time step 
∆t, set at 0.001 sec. The fault is set to occur at one 
second from the beginning of the simulation.  Data for 
each contingency is recorded in which one steady state 
data is taken before the fault occurs and 20 sampled 
data taken for one second duration after the fault 
occurs. There are 25 contingencies simulated on the 
system and this gives a size of 25×21 or 525 data 
collected. The collected data are further analyzed and 
trimmed down to 468 due to repetitions of data. The 
one steady state data taken before all faults occur are 
reduced to  one  only  since  the values will be the same 

Table 1: Input Features Selected 
Name of input features No. of features 
Relative rotor angles(δi-1) 2 
Generator speed (ωi) 3 
Pgen and Qgen 6 
Pline and Qline 12 
Ptrans and Qtrans 6 
Total number of features 29 

 
for all faults. Next, the repetitions are due to the faults 
that occur on the same line. The FCT of the same line 
are set at four different times, two for stable cases and 
two for unstable cases. At the start of the fault, same 
values of data are recorded for all the four faults. A few 
milliseconds after the fault, the recorded data differ 
from each other due to different FCT settings. For the 
repetitions of data recorded, one data out of the four 
different FCT settings are kept. These data are denoted 
as data for stable cases. The data collected are 
normalized so that they have zero mean and unity 
variance. 
 
Feature extraction method: The selection of input 
features is an important factor to be considered in the 
ANN implementation. The input features selected for 
this work are relative rotor angles (δi-1), motor speed 
(ωi), generated real and reactive powers (Pgen, Qgen), real 
and reactive power flows on transmission line (Pline, 
Qline) and the transformer powers (Ptrans, Qtrans). Overall 
there are 29 input features to the ANN. Table 1 shows 
the breakdown of the input features selected for the 
neural network. 
 Out of the 468 data collected from simulations, a 
quarter of the data which is 117 data are randomly 
selected for testing and the remaining 351 data are 
selected for training the neural network.  Principle 
component analysis is used for feature extraction or 
dimension reduction of the input features. The analysis 
orthogonalizes the components of the input vectors so 
that they are uncorrelated with each other, orders the 
components so that those with largest variation come 
first and eliminates those that contribute less to the 
variation in the data set. The standard procedure when 
using principle components is by first normalizing the 
input features so that they have zero mean and unity 
variance. In this work, principle component analysis 
eliminates those principal components that contribute 
less than 2% to the total variation in the data set. By 
applying the analysis, the input features to the networks 
are reduced from 29 to 11 features only. These reduced 
features are then used for training the neural networks. 
For any additional features to be considered, similar 
PCA procedure needs to be carried out. 
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TEST RESULTS 
 
 In this section, the results obtained from the PNN 
for transient stability assessment are presented. Initially, 
the PNN results using 29 and 11 input features are 
given and discussed. For the purpose of evaluating the 
effectiveness of the PNN, the results of the multi layer 
perceptron neural network (MLPNN) are also 
presented.  Finally, a comparison is made between PNN 
and MLPNN results for transient stability assessment.  
 
PNN results for transient stability assessment: The 
PNN developed in this work is used for classifying 
power system transient stability states in which the 
PNN classifies 1 for stable cases and 2 for unstable 
cases.  The  architecture of the PNN is such that it has 
29 input neurons, the hidden layer neurons equal the 
number of input features which is 29 and with a single 

output neuron. Table 2 shows the PNN testing results 
using the 29 (PNN-29) and 11(PNN-11) input features. 
The shaded cells in the Table denote the 
misclassification of test data. For the PNN-29, looking 
into Table 2, it can be deduced that the false alarm rate 
is 0.86% and the false dismissal rate is 0.86%. False 
dismissal rate is the rate of unstable cases assigned to 
the stable cases and the false alarm rate is the rate of 
stable cases assigned to the unstable cases. Thus, the 
total error of misclassification and the mean error are 
both 1.71%. 
 For the PNN-11 results, the shaded cells in the 
table denote the misclassification of test data. From the 
table, it is noted that the false alarm rate is 0.86% and 
the false dismissal rate is 0.86%. Hence, the total error 
of misclassification and the mean error are both 1.71%. 
It can be deduced that, with or without PCA, the 
performance  of  the  PNN remains the same. As shown 

 
Table 2: PNN Testing Results Using 29 and 11 Input Features 
Test Desired PNN- PNN- Test Desired  PNN- PNN- Test Desired  PNN- PNN- 
data output 29 11 data output 29 11 data output 29 11 
1 1 1 1 40 1 1 1 79 1 1 1 
2 1 1 1 41 1 1 1 80 2 1 1 
3 1 1 1 42 2 2 2 81 2 2 2 
4 1 1 1 43 2 2 2 82 2 2 2 
5 1 1 1 44 2 2 2 83 2 2 2 
6 2 2 2 45 2 2 2 84 1 1 1 
7 2 2 2 46 1 1 1 85 1 1 1 
8 2 2 2 47 1 1 1 86 1 1 1 
9 2 2 2 48 1 1 1 87 1 1 1 
10 1 1 1 49 1 1 1 88 1 1 1 
11 1 1 1 50 1 1 1 89 2 2 2 
12 1 1 1 51 2 2 2 90 2 2 2 
13 1 1 1 52 2 2 2 91 2 2 2 
14 1 1 1 53 2 2 2 92 2 2 2 
15 2 2 2 54 2 2 2 93 2 2 2 
16 2 2 2 55 1 1 1 94 1 1 1 
17 2 2 2 56 1 1 1 95 1 1 1 
18 2 2 2 57 1 1 1 96 1 1 1 
19 1 1 1 58 1 1 1 97 1 1 1 
20 1 1 1 59 1 1 1 98 1 1 1 
21 1 1 1 60 2 2 2 99 1 1 1 
22 1 1 1 61 2 2 2 100 1 1 1 
23 1 1 1 62 2 2 2 101 1 1 1 
24 2 2 2 63 2 2 2 102 1 1 1 
25 2 2 2 64 2 2 2 103 1 1 1 
26 2 2 2 65 1 1 1 104 2 2 2 
27 2 2 2 66 1 1 1 105 2 2 2 
28 1 2 2 67 1 1 1 106 2 2 2 
29 1 1 1 68 1 1 1 107 2 2 2 
30 1 1 1 69 1 1 1 108 1 1 1 
31 1 1 1 70 2 2 2 109 1 1 1 
32 1 1 1 71 2 2 2 110 1 1 1 
33 2 2 2 72 2 2 2 111 1 1 1 
34 2 2 2 73 2 2 2 112 1 1 1 
35 2 2 2 74 2 2 2 113 2 2 2 
36 2 2 2 75 1 1 1 114 2 2 2 
37 1 1 1 76 1 1 1 115 2 2 2 
38 1 1 1 77 1 1 1 116 2 2 2 
39 1 1 1 78 1 1 1 117 2 2 2 
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Table 3: MLPNN Results Using 29 and 11 Input Features 
Test Desired MLPNN- MLPNN- Test Desired MLPNN- MLPNN- Test Desired MLPNN- MLPNN- 
data output 29 11 data output 29 11 data output 29 11 
1 1 1 1 40 1 1 1 79 1 1 1 
2 1 1 1 41 1 1 1 80 2 2 X 
3 1 1 1 42 2 2 2 81 2 2 2 
4 1 1 1 43 2 2 2 82 2 2 2 
5 1 1 1 44 2 2 2 83 2 2 2 
6 2 2 2 45 2 2 2 84 1 1 X 
7 2 2 2 46 1 1 1 85 1 1 1 
8 2 2 2 47 1 1 1 86 1 1 1 
9 2 2 2 48 1 X 1 87 1 1 1 
10 1 1 1 49 1 1 2 88 1 1 1 
11 1 1 1 50 1 X 1 89 2 2 2 
12 1 1 1 51 2 2 2 90 2 2 2 
13 1 1 1 52 2 2 2 91 2 2 2 
14 1 1 1 53 2 2 2 92 2 2 2 
15 2 2 2 54 2 2 2 93 2 2 2 
16 2 2 2 55 1 1 1 94 1 X X 
17 2 2 2 56 1 1 1 95 1 X X 
18 2 2 2 57 1 1 1 96 1 X 1 
19 1 1 1 58 1 1 1 97 1 X 1 
20 1 1 1 59 1 1 1 98 1 1 1 
21 1 1 1 60 2 X X 99 1 1 1 
22 1 1 1 61 2 X X 100 1 1 1 
23 1 1 1 62 2 X 1 101 1 1 1 
24 2 2 2 63 2 2 2 102 1 1 1 
25 2 2 2 64 2 2 2 103 1 1 1 
26 2 2 2 65 1 1 1 104 2 2 2 
27 2 2 2 66 1 1 1 105 2 2 2 
28 1 X X 67 1 1 1 106 2 2 2 
29 1 1 X 68 1 1 1 107 2 2 2 
30 1 1 1 69 1 1 1 108 1 X X 
31 1 X X 70 2 X X 109 1 1 1 
32 1 1 1 71 2 2 2 110 1 1 1 
33 2 2 2 72 2 2 2 111 1 1 1 
34 2 2 2 73 2 2 2 112 1 1 X 
35 2 2 2 74 2 2 2 113 2 2 2 
36 2 2 2 75 1 1 1 114 2 2 2 
37 1 1 1 76 1 1 1 115 2 2 2 
38 1 1 1 77 1 1 1 116 2 2 2 
39 1 1 1 78 1 1 1 117 2 2 2 

 
in Table 2, the misclassifications of test data occur at 
the same data set. Thus, it concluded that no 
information is lost when using PCA to extract the input 
features to the PNN. The time taken to train the PNN-
29 and PNN-11 are 1.32 seconds and 0.76 seconds, 
respectively. The time taken to train the PNN-11 is less 
compared to using the complete input features, but 
however the difference in the training times is for a 
small test system such as the 9-bus system. 
 
MLPNN results for transient stability assessment: 
The testing results of the MLPNN using the complete 
29 input features (MLPNN-29) and reduced 11 input 
features (MLPNN-11) are given in Table 3. The 
architecture  of  the  MLPNN-29  is  such  that  it  has 
29 input neurons representing the 29 input features, one 
hidden layer with 13 neurons of hyperbolic tangent 
transfer function and a single output neuron. The mean 

squared error is used as a goal for training the neural 
network which is set at 0.03. As for the architecture of 
the MLPNN-11 is such that it has 11 input features, one 
hidden layer with 5 neurons of hyperbolic tangent 
transfer function and a single output neuron. Its error 
goal is set at 0.04. The training algorithm used for both 
network is the resilient back propagation algorithm[14]. 
 The performance goal was met at 41,050 epochs 
after a training time of 25min 32sec for MLPNN-29. As 
for he MLPNN-11, the performance goal was met at 
11,150 epochs after 3 min 36.2 sec of training time. The 
calculated mean error is 6% for MLPNN-29 and 6.9% 
for MLPNN-11. The MLPNN outputs are not crisp 0 or 
1 but in the range 0 to 1, where ‘0’ indicates the system 
is stable and 1 when the system is unstable. So for 
classification purpose, a decision rule is used such that 
if the MLPNN output is in the range of 0.9 to 1.1 
(±10%),   it   will   indicate   that  the  system  is   stable 



Am. J. Applied Sci., 5 (9): 1225-1232, 2008 
 

 1231 

Table 4. Summary of PNN and MLPNN Results 
Network PNN- PNN- MLPNN- MLPNN- 
 29 11 29 11 
Input features 29 11 29 11 
Mean error 0.0171 0.0171 0.06 0.069 
Misclassification 2 (1.71%) 2 (1.71%) 13 (11.1%) 14 (11.9%) 

 
(class 1 or 1) whereas if the MLPNN output is in the 
range of -0.1 to 0.1 (±10%), it means that the system is 
unstable (class 2 or 2). For MLPNN output outside this 
range of values, it is considered as misclassified and 
denoted as X in the table. Classes 1 and 2 are used in 
column MLPNN in Table 3 instead of 1 and 0 for stable 
and unstable classification so that the results conformed 
to the results obtained from PNN. By using this 
decision rule the number of misclassified data for 
MLPNN-29 is 13 out of 117 test data, which is 11%. 
The number of misclassified data for MLPNN-11in this 
case is 14, thus giving a percentage classification error 
of 11.9%. Comparing these results with the MLPNN-
29, the MLPNN-11 is less accurate and this may be due 
to some information lost when the PCA is applied.  
 
Comparison of neural network results in transient 
stability assessment: Table 4 summarizes the neural 
network results in which the columns indicated by 
MLPNN-11 and PNN-11 are the networks that use the 
PCA for feature extraction. 
 From the table, comparing the results of PNN-29 
and PNN-11, it is shown that both neural networks give 
similar performance.  The PCA applied on PNN does 
not affect the performance of the PNN-11 in terms of its 
mean error and percentage of classification error. In 
terms of training time, the time for training PNN-11 is 
shorter compared to training PNN although it is not 
significant.  
 Comparing the results of MLPNN-29 and 
MLPNN-11, it is noted that the mean error and 
percentage classification of the MLPNN-11 are slightly 
greater than that of MLPNN-29. This is due to the fact 
that some information is lost when PCA is applied to 
the MLPNN network. In terms of training time, the 
MLPNN-29 takes much longer time (25 min 32 sec) 
compared to the MLPNN-11 (3 min 36.2 sec).  
 As for results of PNN and MLPNN, it can be 
concluded that the performance of PNN is better 
compared with MLPNN for both with and without the 
application of PCA. The mean error for both PNN-29 
and PNN-11 are 0.017 compared to 0.06 and 0.069 for 
MLPNN-29 and MLPNN-11, respectively. The 
percentage classification errors are also less for both 
PNN-29 and PNN-11 (1.71%) compared to 11.1% and 
11.9% for MLPNN-29 and MLPNN-11, respectively. 
In terms of training time, both PNN-29 and PNN-11 are 

significantly shorter than the time taken to train 
MLPNN-29 and MLPNN-11.    
 

CONCLUSION 
 
 The use of PNN has been proposed for transient 
stability assessment of electrical power system by 
means of classifying the system into either stable or 
unstable states for several three phase faults applied to 
the system. Time domain simulations were first carried 
out to generate training data for the PNN and to 
determine transient stability state of a power system by 
visualizing the generator relative rotor angles. Principle 
component analysis is also applied to extract the useful 
input features to the PNN.  The PNN is then compared 
with the MLPNN so as to evaluate its effectiveness in 
transient stability assessment. Results show that the 
PNN gives better performance than the MLPNN in 
terms of transient stability classification. Another 
advantage of PNN compared to MLPNN is that the 
training time is significantly faster. Thus, the PNN is a 
promising neural network technique for the transient 
stability assessment of power systems.  
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