American Journal of Applied Sciences 4 (6): 371-373, 2007 ISSN 1546-9239 © 2007 Science Publications

A Fixed Point Theorem for Contraction Type Mappings in Menger Spaces

Servet Kutukcu Department of Mathematics, Faculty of Science and Arts, Ondokuz Mayis University Kurupelit, 55139 Samsun, Turkey

Abstract: We proved a common fixed point theorem for a sequence of self maps satisfying a new contraction type condition in Menger spaces, results extended and generalize some known results in metric spaces and fuzzy metric spaces.

Key words: Fixed point, contraction map, Menger probabilistic metric space

INTRODUCTION

There have been a number of generalizations of metric space. One such generalization is Menger space introduced in 1942 by Menger^[1] who was use distribution functions instead of nonnegative real numbers as values of the metric. Schweizer and Sklar^[2] studied this concept and gave some fundamental results on this space. The important development of fixed-point theory in Menger spaces was due to Sehgal and Bharucha-Reid^[3]. The study of common fixed points of maps satisfying some contractive type condition has been at the centre of vigorous research activity. It is observed by many authors^[3,4-10] that contraction condition in metric space may be translated into probabilistic metric space endoved with min norms. The purpose of this was to define and investigate a new class of self-maps satisfying a new contraction type condition in Menger spaces.

Preliminaries: We recall some definitions and known results in Menger probabilistic metric space. For more details, we refer the readers $to^{[1,4-9,11,12]}$.

Definition 1: A triangular norm * (shorty t-norm) is a binary operation on the unit interval [0,1] such that for all *a*, *b*, *c*, $d \in [0,1]$ the following conditions are satisfied: (a) a * 1 = a, (b) a * b = b * a, (c) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, (d) a * (b * c) = (a * b) * c. Some examples of t-norms are $a * b = \max\{a+b-1,0\}$ and $a * b = \min\{a,b\}$. **Definition 2:** A distribution function is a function $F:[-\infty,\infty] \rightarrow [0,1]$ which is left continuous on \Re , non-decreasing and $F(-\infty) = 0$, $F(\infty) = 1$. If X is a nonempty set, $F: X \times X \rightarrow \Delta$ is called a probabilistic distance on X and F(x,y) is usually detoned by F_{xy} .

Definition 3 (¹¹): (see also[1-3,9]) The ordered pair (*X*,*F*) is called a probabilistic semimetric space (shortly PSM-space) if *X* is a nonempty set and *F* is a probabilistic distance satisfying the following conditions: for all *x*, *y*, *z* \in *X* and *t*, *s* > 0, (PM-1) $F_{xy}(t) = H(t) \Leftrightarrow x = y$,

 $(PM-2) F_{xy} = F_{yx}.$

If, in addition, the following inequality takes place: (PM-3) $F_{xz}(t) = 1$, $F_{zy}(s) = 1 \Rightarrow F_{xy}(t+s) = 1$, then (*X*,*F*) is called a probabilistic metric space.

The ordered triple (X,F, *) is called Menger probabilistic metric space (shortly Menger space) if (X,F) is a PM-space, * is a t-norm and the following condition is also satisfies: for all $x, y, z \in X$ and t, s > 0, (PM-4) $F_{xy}(t+s) \ge F_{xz}(t) * F_{zy}(s)$. For every PSM-space (X,F), we can consider the sets of the form $U_{\varepsilon,\lambda} = \{(x,y) \in X \times X : F_{xy}(\varepsilon) > 1-\lambda \}$.

The family $\{U_{\varepsilon,\lambda}\}_{\varepsilon>0,\lambda\in(0,1)}$ generates a semi uniformity denoted by U_F and a topology τ_F called the F-topology or the strong topology. Namely, $A \in \tau_F$ iff $\forall x \in A \exists \varepsilon > 0$ and $\lambda \in (0,1)$ such that $U_{\varepsilon,\lambda}(\mathbf{x}) \subset A$. U_F is also generated by the family $\{V_{\delta}\}_{\delta>0}$ where $V_{\delta} := U_{\delta,\delta}$ (²).

In ^[13], it is proved if $\sup_{t<0} (t * t) = 1$, then U_F is a uniformity, called F-uniformity, which is metrizable. The F-topology is generated by the F-uniformity and is determined by the F-convergence: $x_n \rightarrow x$

Corresponding Author: Servet Kutukcu, Department of Mathematics, Faculty of Science and Arts, Ondokuz Mayis University, Kurupelit, 55139 Samsun, Turkey

 $\Leftrightarrow F_{x,x}(t) \rightarrow 1, \forall t \ge 0.$

Definition 4 (^[2]): A sequence $\{x_n\}$ in a Menger space (X,F, *) is called converge to a point x in X (written as $x_n \to x$) if for every $\varepsilon > 0$ and $\lambda \in (0,1)$, there is an integer $n_0 = n_0(\varepsilon, \lambda)$ such that $F_{x_n x}(\varepsilon) > 1 - \lambda$ for all $n \ge n_0$. The sequence called Cauchy if for every $\varepsilon > 0$ and $\lambda \in (0,1)$, there is an integer $n_0 = n_0(\varepsilon, \lambda)$ such that $F_{x_n x_m}(\varepsilon) > 1 - \lambda$ for all $n, m \ge n_0$. A Menger space (X,F, *) is said to be complete if every Cauchy sequence in it converges to a point of it.

Lemma 1 (^[9]): Let $\{x_n\}$ be a sequence in a Menger space (X, F, *) with continuous t- norm * and $t * t \ge t$. If there exists a constant $\alpha \in (0,1)$ such that $F_{x_n x_{n+1}}(\alpha t) \ge F_{x_{n-1} x_n}(t)$ for all t > 0 and n = 1,2..., then $\{x_n\}$ is a Cauchy sequence in X.

Lemma 2 (^[9]): Let (X, F, *) be a Menger space. If there exists a constant $\alpha \in (0,1)$ such that $F_{xy}(\alpha t) \ge F_{xy}(t)$ for all $x, y \in X$ and t > 0, then x = y.

Remark 1: In a Menger space (X,F,*), if $t*t \ge t$ for all $t \in [0,1]$ then $a*b = \min\{a,b\}$ for all $a, b \in [0,1]$ and it is well known that such t-norm is continuous.

RESULTS

Theorem 1: Let $\{T_n\}$, n = 1, 2, ... be a sequence of mappings of a complete Menger space (X,F,*) into itself with $t*t \ge t$ for all $t \in [0,1]$ and $S: X \to X$ be a continuous mapping such that $T_n(X) \subseteq S(X)$ and S is commuting with each T_n . If there exists a constant $\alpha \in (0,1)$ such that for any two mappings T_i and T_j min $\{F_{T_i x T_j y}^2(\alpha t), F_{Sx T_i x}(\alpha t) F_{Sy T_j y}(\alpha t), F_{Sx Sy}(\alpha t)\} + a$ $F_{Sy T_j y}(\alpha t)$ $F_{Sx T_j y}(2\alpha t) \ge [p \ F_{Sx T_i x}(t) + q \ F_{Sx Sy}(t)]$ $F_{Sx T_j y}(2\alpha t)$

holds for all $x, y \in X$ and 0 < p,q < 1 and $0 \le a < 1$ such that p+q-a = 1, then there exists a unique common fixed point for all T_n and S.

Proof: Let x_0 be an arbitrary point of *X* and $\{x_n\}$ be a sequence defined by $Sx_n = T_nx_{n-1}$, n = 1, 2, ... Then for each t > 0 and $0 < \alpha < 1$, we have

$$\min\{F_{T_{I}x_{0}T_{2}x_{I}}^{2}(\alpha t),F_{Sx_{0}T_{I}x_{0}}(\alpha t)F_{Sx_{1}T_{2}x_{I}}(\alpha t),F_{Sx_{1}T_{2}x_{I}}^{2}(\alpha t)\} + a F_{Sx_{1}T_{2}x_{I}}(\alpha t) F_{Sx_{0}T_{2}x_{I}}(2\alpha t) \geq$$

$$[p F_{Sx_0T_1x_0}(t) + q F_{Sx_0Sx_1}(t)] F_{Sx_0T_2x_1}(2\alpha t) \text{ and} \min\{F_{Sx_1Sx_2}^2(\alpha t), F_{Sx_0Sx_1}(\alpha t)F_{Sx_1Sx_2}(\alpha t), F_{Sx_1Sx_2}^2(\alpha t)\} + a F_{Sx_1Sx_2}(\alpha t) F_{Sx_0Sx_2}(2\alpha t) \ge [p F_{Sx_0Sx_1}(t) + q F_{Sx_0Sx_1}(t)] F_{Sx_0Sx_2}(2\alpha t).$$

Thus, it follows that

$$\min\{F_{Sx_1Sx_2}^2(\alpha t), F_{Sx_0Sx_1}(\alpha t)F_{Sx_1Sx_2}(\alpha t)\} + a F_{Sx_1Sx_2}(\alpha t)$$

$$F_{Sx_0Sx_2}(2\alpha t) \ge (p+q) F_{Sx_0Sx_1}(t) F_{Sx_0Sx_2}(2\alpha t) \text{ and}$$

$$F_{Sx_1Sx_2}(\alpha t) \min\{F_{Sx_1Sx_2}(\alpha t), F_{Sx_0Sx_1}(\alpha t)\} + a F_{Sx_1Sx_2}(\alpha t)$$

$$F_{Sx_0Sx_2}(2\alpha t) \ge (p+q) F_{Sx_0Sx_1}(t) F_{Sx_0Sx_2}(2\alpha t).$$

Since $F_{Sx_0Sx_2}(2\alpha t) \ge \min\{F_{Sx_0Sx_1}(\alpha t), F_{Sx_1Sx_2}(\alpha t)\},\$ we have

$$F_{Sx_{1}Sx_{2}}(\alpha t) F_{Sx_{0}Sx_{2}}(2\alpha t) + a F_{Sx_{1}Sx_{2}}(\alpha t) F_{Sx_{0}Sx_{2}}(2\alpha t) \geq (p+q) F_{Sx_{0}Sx_{1}}(t) F_{Sx_{0}Sx_{2}}(2\alpha t) \text{ and} (1+a) F_{Sx_{1}Sx_{2}}(\alpha t) F_{Sx_{0}Sx_{2}}(2\alpha t) \geq (p+q) F_{Sx_{0}Sx_{1}}(t) F_{Sx_{0}Sx_{2}}(2\alpha t).$$

Since p + q - a = 1, we have $F_{Sx_1Sx_2}(\alpha t) \ge F_{Sx_0Sx_1}(t)$. By induction, $F_{Sx_nSx_{n+1}}(\alpha t) \ge F_{Sx_{n-1}Sx_n}(t), n = 1,2,...$ Thus, by Lemma 1, $\{Sx_n\}$ is a Cauchy sequence in *X*. Since *X* is complete, there exists some $u \in X$ such that $Sx_n \to u$. Since $Sx_n = T_nx_{n-1}, \{T_nx_{n-1}\}$ also converges to *u*. Since *S* commutes with each T_n , using (3.1), we have

$$\min \{ F_{SSx_nT_ku}^2(\alpha t), F_{SSx_{n-l}SSx_n}(\alpha t) F_{SuT_ku}(\alpha t), F_{SuT_ku}^2(\alpha t) \} + a F_{SuT_ku}(\alpha t) F_{SSx_{n-l}T_ku}(2\alpha t) \geq [p F_{SSx_{n-l}SSx_n}(t) + q F_{SSx_{n-l}Su}(t)] F_{SSx_{n-l}T_ku}(2\alpha t).$$

Using the continuity of *S* and taking limits on both sides, we have

$$\min\{F_{SuT_{k}u}^{2}(\alpha t), F_{SuSu}(\alpha t)F_{SuT_{k}u}(\alpha t), F_{SuT_{k}u}^{2}(\alpha t)\} + a F_{SuT_{k}u}(\alpha t) F_{SuT_{k}u}(2\alpha t) \geq$$

 $[p F_{SuSu}(t) + q F_{SuSu}(t)] F_{SuT_ku}(2\alpha t) \text{ and so } F_{SuT_ku}^2(\alpha t) + a F_{SuT_ku}(\alpha t) F_{SuT_ku}(2\alpha t) \ge (p+q) F_{SuT_ku}(2\alpha t).$

Since $F_{SuT_ku}(2\alpha t) \ge \min\{F_{SuSu}(\alpha t), F_{SuT_ku}(\alpha t)\} = F_{SuT_ku}(\alpha t)$, we have

$$(1+a) F_{SuT_ku}^2(2\alpha t) = F_{SuT_ku}^2(2\alpha t) + a F_{SuT_ku}(2\alpha t)$$
$$F_{SuT_ku}(2\alpha t) \ge (p+q) F_{SuT_ku}(2\alpha t)$$

and hence $F_{SuT_ku}(2\alpha t) \ge 1$ for all $\alpha \in (0,1)$ and $t \ge 0$. Therefore $Su = T_ku$ for any fixed integer k. Moreover, min $\{F_{Sx_nT_ku}^2(\alpha t), F_{Sx_{n-1}Sx_n}(\alpha t)F_{SuT_ku}(\alpha t), F_{SuT_ku}^2(\alpha t)\} +$

$$a F_{SuT_{k}u}(\alpha t) F_{Sx_{n-1}T_{k}u}(2\alpha t) \geq$$

$$[p F_{Sx_{n-1}Sx_n}(t) + q F_{Sx_{n-1}Su}(t)] F_{Sx_{n-1}T_ku}(2\alpha t).$$

Taking the limits on both sides, we have

 $\min\{F_{uT_ku}^2(\alpha t), F_{uu}(\alpha t)F_{SuSu}(\alpha t), F_{SuSu}^2(\alpha t)\} + a F_{SuSu}(\alpha t)$

$$F_{uT_ku}(2\alpha t) \ge \left[p F_{uu}(t) + q F_{uSu}(t)\right] F_{uT_ku}(2\alpha t)$$

and so

 $F_{uT_k u}^2(\alpha t) \; + a \; F_{uT_k u}(2\alpha t) \geq \; \left[p + q \; F_{uSu}(t) \; \right] \; \; F_{uT_k u}(2\alpha t) \; . \label{eq:started}$

Thus, it follows that $F_{uT_k u}(2\alpha t) \ge 1$ for all $\alpha \in (0,1)$ and $t \ge 0$. Therefore $u = Su = T_k u$ for any fixed integer k. Thus u is a common fixed point of S and T_n for n = 1, 2, ...

For uniquenesses, let v be another common fixed point of S and T_n for n = 1, 2, ... Using (3.1), we have

$$\min\{F_{uv}^{2}(\alpha t), F_{Suu}(\alpha t)F_{Svv}(\alpha t), F_{Svv}^{2}(\alpha t)\} + a F_{Svv}(\alpha t) F_{Suv}(2\alpha t) \geq [p F_{Suu}(t) + q F_{SuSv}(t)] F_{Suv}(2\alpha t) \text{ and}$$

 $F_{uv}^2(\alpha t) + a F_{uv}(2\alpha t) \ge [p + q F_{uv}(t)] F_{uv}(2\alpha t).$

So $F_{uv}(2\alpha t) \ge 1$ for all $\alpha \in (0,1)$ and t > 0. Hence, by Lemma 2, u = v. This completes the proof. If we take a = 0 in the main Theorem, we have the following:

Corollary 1: Let $\{T_n\}$, n = 1, 2, ... be a sequence of mappings of a complete Menger space (X, F, *) into itself with $t * t \ge t$ for all $t \in [0,1]$ and $S : X \to X$ be a continuous mapping such that $T_n(X) \subseteq S(X)$ and S is commuting with each T_n . If there exists a constant $\alpha \in (0,1)$ such that for any two mappings T_i and T_j

$$\min\{F_{T_i x T_j y}^2(\alpha t), F_{S x T_i x}(\alpha t) F_{S y T_j y}(\alpha t), F_{S y T_j y}^2(\alpha t)\} \ge [p F_{S x T_i x}(t) + q F_{S x S y}(t)] F_{S x T_j y}(2\alpha t)$$

holds for all $x, y \in X$ and 0 < p,q < 1 such that p+q = 1, then there exists a unique common fixed point for all T_n and S.

Proof: It is easy to verify from Theorem 1. If we take a = 0 and $S = I_X$ (the identity map on X) in the main Theorem, we have the following:

Corollary 2: Let $\{T_n\}$, n = 1, 2, ... be a sequence of mappings of a complete Menger space (X, F, *) into itself with $t * t \ge t$ for all $t \in [0,1]$. If there exists a constant $\alpha \in (0,1)$ such that for any two mappings T_i and T_j

$$\min\{F_{T_ixT_jy}^2(\alpha t), F_{xT_ix}(\alpha t)F_{yT_jy}(\alpha t), F_{yT_jy}^2(\alpha t)\} \ge [p F_{xT_ix}(t) + q F_{xy}(t)]F_{xT_jy}(2\alpha t)$$

holds for all $x, y \in X$ and 0 < p,q < 1 such that p+q = 1, then for any $x_0 \in X$ the sequence $\{x_n\} = \{T_n x_{n-1}\}, n = 1, 2, ...$ converges and its limit is the unique common fixed for all T_n .

Proof: Existance and uniquess of common fixed point follows from Theorem 1. Convergence of the sequence $\{x_n\}$ can be proved as in Theorem 1.

REFERENCES

- 1. Menger, K., 1942. Statistical metric. Proc. Nat. Acad. Sci., 28: 535-537.
- Schweizer, B. and A. Sklar, 1960. Statistical metric spaces. Pasific J. Math., 10: 313-334.
- Sehgal, V. and A. Bharucha-Reid, 1972. Fixed points of contraction mappings on probabilistic metric spaces. Math. System Theory, 6: 97-102.
- Hadzic, O., 1995. Fixed point theory in probabilistic metric spaces, Serbian Academy of Science and Arts, Novi Sad University.
- Hadzic, O. and E. Pap, 2001. Fixed point theory in probabilistic metric spaces, Kluwer Acad. Publ., Dordrecht.
- 6. Kutukcu, S., 2006. A fixed point theorem in Menger spaces. Int. Math. J., 1: 1543-1554.
- Milovanovic-Arandelovic, M.M., 1997. A common fixed points theorem for contraction type mappings on Menger spaces. Filomat, 11: 103-108.
- Radu, V., 1994. Lectures on probabilistic analysis, Timişoara University, Surveys Lectures Notes and Monograph Series on Probability Statistics and Applied Mathematics. Vol. 2.
- Singh, B. and S. Jain, 2005. A fixed point theorem in Menger Space through weak compatibility. J. Math. Anal. Appl., 301: 439-448.
- Vasuki, R., 1990. A fixed point theorem for a sequence of maps satisfying a new contraction type condition in Menger spaces. Math. Japonica, 35: 1099-1102.
- 11. Constantin, G. and I. Istratescu, 1989. Elements of probabilistic analysis, Ed. Acad. București and Kluwer Acad. Publ.
- Kutukcu, S., D. Turkoglu and C. Yildiz, 2006. Common fixed points of compatible maps of type (β) on fuzzy metric spaces. Commun. Korean Math. Soc., 21: 89-100.
- Schweizer, B., A. Sklar and E. Thorp, 1960. The metrization of SM-spaces. Pasific J. Math., 10: 673-675.